xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 23244a5c)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time.
21  * - for astronomical applications: add a new function to get
22  * non ambiguous timestamps even around leap seconds. This needs
23  * a new timestamp format and a good name.
24  *
25  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
26  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
27  *
28  *      This program is free software; you can redistribute it and/or
29  *      modify it under the terms of the GNU General Public License
30  *      as published by the Free Software Foundation; either version
31  *      2 of the License, or (at your option) any later version.
32  */
33 
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/clockchips.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <linux/clk-provider.h>
58 #include <linux/suspend.h>
59 #include <linux/rtc.h>
60 #include <asm/trace.h>
61 
62 #include <asm/io.h>
63 #include <asm/processor.h>
64 #include <asm/nvram.h>
65 #include <asm/cache.h>
66 #include <asm/machdep.h>
67 #include <linux/uaccess.h>
68 #include <asm/time.h>
69 #include <asm/prom.h>
70 #include <asm/irq.h>
71 #include <asm/div64.h>
72 #include <asm/smp.h>
73 #include <asm/vdso_datapage.h>
74 #include <asm/firmware.h>
75 #include <asm/cputime.h>
76 #include <asm/asm-prototypes.h>
77 
78 /* powerpc clocksource/clockevent code */
79 
80 #include <linux/clockchips.h>
81 #include <linux/timekeeper_internal.h>
82 
83 static u64 rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 	.name         = "rtc",
86 	.rating       = 400,
87 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
88 	.mask         = CLOCKSOURCE_MASK(64),
89 	.read         = rtc_read,
90 };
91 
92 static u64 timebase_read(struct clocksource *);
93 static struct clocksource clocksource_timebase = {
94 	.name         = "timebase",
95 	.rating       = 400,
96 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
97 	.mask         = CLOCKSOURCE_MASK(64),
98 	.read         = timebase_read,
99 };
100 
101 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
102 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
103 
104 static int decrementer_set_next_event(unsigned long evt,
105 				      struct clock_event_device *dev);
106 static int decrementer_shutdown(struct clock_event_device *evt);
107 
108 struct clock_event_device decrementer_clockevent = {
109 	.name			= "decrementer",
110 	.rating			= 200,
111 	.irq			= 0,
112 	.set_next_event		= decrementer_set_next_event,
113 	.set_state_shutdown	= decrementer_shutdown,
114 	.tick_resume		= decrementer_shutdown,
115 	.features		= CLOCK_EVT_FEAT_ONESHOT |
116 				  CLOCK_EVT_FEAT_C3STOP,
117 };
118 EXPORT_SYMBOL(decrementer_clockevent);
119 
120 DEFINE_PER_CPU(u64, decrementers_next_tb);
121 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
122 
123 #define XSEC_PER_SEC (1024*1024)
124 
125 #ifdef CONFIG_PPC64
126 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
127 #else
128 /* compute ((xsec << 12) * max) >> 32 */
129 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
130 #endif
131 
132 unsigned long tb_ticks_per_jiffy;
133 unsigned long tb_ticks_per_usec = 100; /* sane default */
134 EXPORT_SYMBOL(tb_ticks_per_usec);
135 unsigned long tb_ticks_per_sec;
136 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
137 
138 DEFINE_SPINLOCK(rtc_lock);
139 EXPORT_SYMBOL_GPL(rtc_lock);
140 
141 static u64 tb_to_ns_scale __read_mostly;
142 static unsigned tb_to_ns_shift __read_mostly;
143 static u64 boot_tb __read_mostly;
144 
145 extern struct timezone sys_tz;
146 static long timezone_offset;
147 
148 unsigned long ppc_proc_freq;
149 EXPORT_SYMBOL_GPL(ppc_proc_freq);
150 unsigned long ppc_tb_freq;
151 EXPORT_SYMBOL_GPL(ppc_tb_freq);
152 
153 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
154 /*
155  * Factors for converting from cputime_t (timebase ticks) to
156  * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
157  * These are all stored as 0.64 fixed-point binary fractions.
158  */
159 u64 __cputime_jiffies_factor;
160 EXPORT_SYMBOL(__cputime_jiffies_factor);
161 u64 __cputime_usec_factor;
162 EXPORT_SYMBOL(__cputime_usec_factor);
163 u64 __cputime_sec_factor;
164 EXPORT_SYMBOL(__cputime_sec_factor);
165 u64 __cputime_clockt_factor;
166 EXPORT_SYMBOL(__cputime_clockt_factor);
167 
168 cputime_t cputime_one_jiffy;
169 
170 #ifdef CONFIG_PPC_SPLPAR
171 void (*dtl_consumer)(struct dtl_entry *, u64);
172 #endif
173 
174 #ifdef CONFIG_PPC64
175 #define get_accounting(tsk)	(&get_paca()->accounting)
176 #else
177 #define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
178 #endif
179 
180 static void calc_cputime_factors(void)
181 {
182 	struct div_result res;
183 
184 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
185 	__cputime_jiffies_factor = res.result_low;
186 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
187 	__cputime_usec_factor = res.result_low;
188 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
189 	__cputime_sec_factor = res.result_low;
190 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
191 	__cputime_clockt_factor = res.result_low;
192 }
193 
194 /*
195  * Read the SPURR on systems that have it, otherwise the PURR,
196  * or if that doesn't exist return the timebase value passed in.
197  */
198 static unsigned long read_spurr(unsigned long tb)
199 {
200 	if (cpu_has_feature(CPU_FTR_SPURR))
201 		return mfspr(SPRN_SPURR);
202 	if (cpu_has_feature(CPU_FTR_PURR))
203 		return mfspr(SPRN_PURR);
204 	return tb;
205 }
206 
207 #ifdef CONFIG_PPC_SPLPAR
208 
209 /*
210  * Scan the dispatch trace log and count up the stolen time.
211  * Should be called with interrupts disabled.
212  */
213 static u64 scan_dispatch_log(u64 stop_tb)
214 {
215 	u64 i = local_paca->dtl_ridx;
216 	struct dtl_entry *dtl = local_paca->dtl_curr;
217 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
218 	struct lppaca *vpa = local_paca->lppaca_ptr;
219 	u64 tb_delta;
220 	u64 stolen = 0;
221 	u64 dtb;
222 
223 	if (!dtl)
224 		return 0;
225 
226 	if (i == be64_to_cpu(vpa->dtl_idx))
227 		return 0;
228 	while (i < be64_to_cpu(vpa->dtl_idx)) {
229 		dtb = be64_to_cpu(dtl->timebase);
230 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
231 			be32_to_cpu(dtl->ready_to_enqueue_time);
232 		barrier();
233 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
234 			/* buffer has overflowed */
235 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
236 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
237 			continue;
238 		}
239 		if (dtb > stop_tb)
240 			break;
241 		if (dtl_consumer)
242 			dtl_consumer(dtl, i);
243 		stolen += tb_delta;
244 		++i;
245 		++dtl;
246 		if (dtl == dtl_end)
247 			dtl = local_paca->dispatch_log;
248 	}
249 	local_paca->dtl_ridx = i;
250 	local_paca->dtl_curr = dtl;
251 	return stolen;
252 }
253 
254 /*
255  * Accumulate stolen time by scanning the dispatch trace log.
256  * Called on entry from user mode.
257  */
258 void accumulate_stolen_time(void)
259 {
260 	u64 sst, ust;
261 	u8 save_soft_enabled = local_paca->soft_enabled;
262 	struct cpu_accounting_data *acct = &local_paca->accounting;
263 
264 	/* We are called early in the exception entry, before
265 	 * soft/hard_enabled are sync'ed to the expected state
266 	 * for the exception. We are hard disabled but the PACA
267 	 * needs to reflect that so various debug stuff doesn't
268 	 * complain
269 	 */
270 	local_paca->soft_enabled = 0;
271 
272 	sst = scan_dispatch_log(acct->starttime_user);
273 	ust = scan_dispatch_log(acct->starttime);
274 	acct->stime -= sst;
275 	acct->utime -= ust;
276 	acct->steal_time += ust + sst;
277 
278 	local_paca->soft_enabled = save_soft_enabled;
279 }
280 
281 static inline u64 calculate_stolen_time(u64 stop_tb)
282 {
283 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
284 		return scan_dispatch_log(stop_tb);
285 
286 	return 0;
287 }
288 
289 #else /* CONFIG_PPC_SPLPAR */
290 static inline u64 calculate_stolen_time(u64 stop_tb)
291 {
292 	return 0;
293 }
294 
295 #endif /* CONFIG_PPC_SPLPAR */
296 
297 /*
298  * Account time for a transition between system, hard irq
299  * or soft irq state.
300  */
301 static unsigned long vtime_delta(struct task_struct *tsk,
302 				 unsigned long *stime_scaled,
303 				 unsigned long *steal_time)
304 {
305 	unsigned long now, nowscaled, deltascaled;
306 	unsigned long stime;
307 	unsigned long utime, utime_scaled;
308 	struct cpu_accounting_data *acct = get_accounting(tsk);
309 
310 	WARN_ON_ONCE(!irqs_disabled());
311 
312 	now = mftb();
313 	nowscaled = read_spurr(now);
314 	stime = now - acct->starttime;
315 	acct->starttime = now;
316 	deltascaled = nowscaled - acct->startspurr;
317 	acct->startspurr = nowscaled;
318 
319 	*steal_time = calculate_stolen_time(now);
320 
321 	utime = acct->utime - acct->utime_sspurr;
322 	acct->utime_sspurr = acct->utime;
323 
324 	/*
325 	 * Because we don't read the SPURR on every kernel entry/exit,
326 	 * deltascaled includes both user and system SPURR ticks.
327 	 * Apportion these ticks to system SPURR ticks and user
328 	 * SPURR ticks in the same ratio as the system time (delta)
329 	 * and user time (udelta) values obtained from the timebase
330 	 * over the same interval.  The system ticks get accounted here;
331 	 * the user ticks get saved up in paca->user_time_scaled to be
332 	 * used by account_process_tick.
333 	 */
334 	*stime_scaled = stime;
335 	utime_scaled = utime;
336 	if (deltascaled != stime + utime) {
337 		if (utime) {
338 			*stime_scaled = deltascaled * stime / (stime + utime);
339 			utime_scaled = deltascaled - *stime_scaled;
340 		} else {
341 			*stime_scaled = deltascaled;
342 		}
343 	}
344 	acct->utime_scaled += utime_scaled;
345 
346 	return stime;
347 }
348 
349 void vtime_account_system(struct task_struct *tsk)
350 {
351 	unsigned long stime, stime_scaled, steal_time;
352 	struct cpu_accounting_data *acct = get_accounting(tsk);
353 
354 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
355 
356 	stime -= min(stime, steal_time);
357 	acct->steal_time += steal_time;
358 
359 	if ((tsk->flags & PF_VCPU) && !irq_count()) {
360 		acct->gtime += stime;
361 		acct->utime_scaled += stime_scaled;
362 	} else {
363 		if (hardirq_count())
364 			acct->hardirq_time += stime;
365 		else if (in_serving_softirq())
366 			acct->softirq_time += stime;
367 		else
368 			acct->stime += stime;
369 
370 		acct->stime_scaled += stime_scaled;
371 	}
372 }
373 EXPORT_SYMBOL_GPL(vtime_account_system);
374 
375 void vtime_account_idle(struct task_struct *tsk)
376 {
377 	unsigned long stime, stime_scaled, steal_time;
378 	struct cpu_accounting_data *acct = get_accounting(tsk);
379 
380 	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
381 	acct->idle_time += stime + steal_time;
382 }
383 
384 /*
385  * Account the whole cputime accumulated in the paca
386  * Must be called with interrupts disabled.
387  * Assumes that vtime_account_system/idle() has been called
388  * recently (i.e. since the last entry from usermode) so that
389  * get_paca()->user_time_scaled is up to date.
390  */
391 void vtime_flush(struct task_struct *tsk)
392 {
393 	struct cpu_accounting_data *acct = get_accounting(tsk);
394 
395 	if (acct->utime)
396 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
397 
398 	if (acct->utime_scaled)
399 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
400 
401 	if (acct->gtime)
402 		account_guest_time(tsk, acct->gtime);
403 
404 	if (acct->steal_time)
405 		account_steal_time(acct->steal_time);
406 
407 	if (acct->idle_time)
408 		account_idle_time(acct->idle_time);
409 
410 	if (acct->stime)
411 		account_system_index_time(tsk, acct->stime, CPUTIME_SYSTEM);
412 
413 	if (acct->stime_scaled)
414 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
415 
416 	if (acct->hardirq_time)
417 		account_system_index_time(tsk, acct->hardirq_time, CPUTIME_IRQ);
418 
419 	if (acct->softirq_time)
420 		account_system_index_time(tsk, acct->softirq_time, CPUTIME_SOFTIRQ);
421 
422 	acct->utime = 0;
423 	acct->utime_scaled = 0;
424 	acct->utime_sspurr = 0;
425 	acct->gtime = 0;
426 	acct->steal_time = 0;
427 	acct->idle_time = 0;
428 	acct->stime = 0;
429 	acct->stime_scaled = 0;
430 	acct->hardirq_time = 0;
431 	acct->softirq_time = 0;
432 }
433 
434 #ifdef CONFIG_PPC32
435 /*
436  * Called from the context switch with interrupts disabled, to charge all
437  * accumulated times to the current process, and to prepare accounting on
438  * the next process.
439  */
440 void arch_vtime_task_switch(struct task_struct *prev)
441 {
442 	struct cpu_accounting_data *acct = get_accounting(current);
443 
444 	acct->starttime = get_accounting(prev)->starttime;
445 	acct->startspurr = get_accounting(prev)->startspurr;
446 }
447 #endif /* CONFIG_PPC32 */
448 
449 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
450 #define calc_cputime_factors()
451 #endif
452 
453 void __delay(unsigned long loops)
454 {
455 	unsigned long start;
456 	int diff;
457 
458 	if (__USE_RTC()) {
459 		start = get_rtcl();
460 		do {
461 			/* the RTCL register wraps at 1000000000 */
462 			diff = get_rtcl() - start;
463 			if (diff < 0)
464 				diff += 1000000000;
465 		} while (diff < loops);
466 	} else {
467 		start = get_tbl();
468 		while (get_tbl() - start < loops)
469 			HMT_low();
470 		HMT_medium();
471 	}
472 }
473 EXPORT_SYMBOL(__delay);
474 
475 void udelay(unsigned long usecs)
476 {
477 	__delay(tb_ticks_per_usec * usecs);
478 }
479 EXPORT_SYMBOL(udelay);
480 
481 #ifdef CONFIG_SMP
482 unsigned long profile_pc(struct pt_regs *regs)
483 {
484 	unsigned long pc = instruction_pointer(regs);
485 
486 	if (in_lock_functions(pc))
487 		return regs->link;
488 
489 	return pc;
490 }
491 EXPORT_SYMBOL(profile_pc);
492 #endif
493 
494 #ifdef CONFIG_IRQ_WORK
495 
496 /*
497  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
498  */
499 #ifdef CONFIG_PPC64
500 static inline unsigned long test_irq_work_pending(void)
501 {
502 	unsigned long x;
503 
504 	asm volatile("lbz %0,%1(13)"
505 		: "=r" (x)
506 		: "i" (offsetof(struct paca_struct, irq_work_pending)));
507 	return x;
508 }
509 
510 static inline void set_irq_work_pending_flag(void)
511 {
512 	asm volatile("stb %0,%1(13)" : :
513 		"r" (1),
514 		"i" (offsetof(struct paca_struct, irq_work_pending)));
515 }
516 
517 static inline void clear_irq_work_pending(void)
518 {
519 	asm volatile("stb %0,%1(13)" : :
520 		"r" (0),
521 		"i" (offsetof(struct paca_struct, irq_work_pending)));
522 }
523 
524 #else /* 32-bit */
525 
526 DEFINE_PER_CPU(u8, irq_work_pending);
527 
528 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
529 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
530 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
531 
532 #endif /* 32 vs 64 bit */
533 
534 void arch_irq_work_raise(void)
535 {
536 	preempt_disable();
537 	set_irq_work_pending_flag();
538 	set_dec(1);
539 	preempt_enable();
540 }
541 
542 #else  /* CONFIG_IRQ_WORK */
543 
544 #define test_irq_work_pending()	0
545 #define clear_irq_work_pending()
546 
547 #endif /* CONFIG_IRQ_WORK */
548 
549 static void __timer_interrupt(void)
550 {
551 	struct pt_regs *regs = get_irq_regs();
552 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
553 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
554 	u64 now;
555 
556 	trace_timer_interrupt_entry(regs);
557 
558 	if (test_irq_work_pending()) {
559 		clear_irq_work_pending();
560 		irq_work_run();
561 	}
562 
563 	now = get_tb_or_rtc();
564 	if (now >= *next_tb) {
565 		*next_tb = ~(u64)0;
566 		if (evt->event_handler)
567 			evt->event_handler(evt);
568 		__this_cpu_inc(irq_stat.timer_irqs_event);
569 	} else {
570 		now = *next_tb - now;
571 		if (now <= decrementer_max)
572 			set_dec(now);
573 		/* We may have raced with new irq work */
574 		if (test_irq_work_pending())
575 			set_dec(1);
576 		__this_cpu_inc(irq_stat.timer_irqs_others);
577 	}
578 
579 #ifdef CONFIG_PPC64
580 	/* collect purr register values often, for accurate calculations */
581 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
582 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
583 		cu->current_tb = mfspr(SPRN_PURR);
584 	}
585 #endif
586 
587 	trace_timer_interrupt_exit(regs);
588 }
589 
590 /*
591  * timer_interrupt - gets called when the decrementer overflows,
592  * with interrupts disabled.
593  */
594 void timer_interrupt(struct pt_regs * regs)
595 {
596 	struct pt_regs *old_regs;
597 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
598 
599 	/* Ensure a positive value is written to the decrementer, or else
600 	 * some CPUs will continue to take decrementer exceptions.
601 	 */
602 	set_dec(decrementer_max);
603 
604 	/* Some implementations of hotplug will get timer interrupts while
605 	 * offline, just ignore these and we also need to set
606 	 * decrementers_next_tb as MAX to make sure __check_irq_replay
607 	 * don't replay timer interrupt when return, otherwise we'll trap
608 	 * here infinitely :(
609 	 */
610 	if (!cpu_online(smp_processor_id())) {
611 		*next_tb = ~(u64)0;
612 		return;
613 	}
614 
615 	/* Conditionally hard-enable interrupts now that the DEC has been
616 	 * bumped to its maximum value
617 	 */
618 	may_hard_irq_enable();
619 
620 
621 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
622 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
623 		do_IRQ(regs);
624 #endif
625 
626 	old_regs = set_irq_regs(regs);
627 	irq_enter();
628 
629 	__timer_interrupt();
630 	irq_exit();
631 	set_irq_regs(old_regs);
632 }
633 EXPORT_SYMBOL(timer_interrupt);
634 
635 /*
636  * Hypervisor decrementer interrupts shouldn't occur but are sometimes
637  * left pending on exit from a KVM guest.  We don't need to do anything
638  * to clear them, as they are edge-triggered.
639  */
640 void hdec_interrupt(struct pt_regs *regs)
641 {
642 }
643 
644 #ifdef CONFIG_SUSPEND
645 static void generic_suspend_disable_irqs(void)
646 {
647 	/* Disable the decrementer, so that it doesn't interfere
648 	 * with suspending.
649 	 */
650 
651 	set_dec(decrementer_max);
652 	local_irq_disable();
653 	set_dec(decrementer_max);
654 }
655 
656 static void generic_suspend_enable_irqs(void)
657 {
658 	local_irq_enable();
659 }
660 
661 /* Overrides the weak version in kernel/power/main.c */
662 void arch_suspend_disable_irqs(void)
663 {
664 	if (ppc_md.suspend_disable_irqs)
665 		ppc_md.suspend_disable_irqs();
666 	generic_suspend_disable_irqs();
667 }
668 
669 /* Overrides the weak version in kernel/power/main.c */
670 void arch_suspend_enable_irqs(void)
671 {
672 	generic_suspend_enable_irqs();
673 	if (ppc_md.suspend_enable_irqs)
674 		ppc_md.suspend_enable_irqs();
675 }
676 #endif
677 
678 unsigned long long tb_to_ns(unsigned long long ticks)
679 {
680 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
681 }
682 EXPORT_SYMBOL_GPL(tb_to_ns);
683 
684 /*
685  * Scheduler clock - returns current time in nanosec units.
686  *
687  * Note: mulhdu(a, b) (multiply high double unsigned) returns
688  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
689  * are 64-bit unsigned numbers.
690  */
691 unsigned long long sched_clock(void)
692 {
693 	if (__USE_RTC())
694 		return get_rtc();
695 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
696 }
697 
698 
699 #ifdef CONFIG_PPC_PSERIES
700 
701 /*
702  * Running clock - attempts to give a view of time passing for a virtualised
703  * kernels.
704  * Uses the VTB register if available otherwise a next best guess.
705  */
706 unsigned long long running_clock(void)
707 {
708 	/*
709 	 * Don't read the VTB as a host since KVM does not switch in host
710 	 * timebase into the VTB when it takes a guest off the CPU, reading the
711 	 * VTB would result in reading 'last switched out' guest VTB.
712 	 *
713 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
714 	 * would be unsafe to rely only on the #ifdef above.
715 	 */
716 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
717 	    cpu_has_feature(CPU_FTR_ARCH_207S))
718 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
719 
720 	/*
721 	 * This is a next best approximation without a VTB.
722 	 * On a host which is running bare metal there should never be any stolen
723 	 * time and on a host which doesn't do any virtualisation TB *should* equal
724 	 * VTB so it makes no difference anyway.
725 	 */
726 	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
727 }
728 #endif
729 
730 static int __init get_freq(char *name, int cells, unsigned long *val)
731 {
732 	struct device_node *cpu;
733 	const __be32 *fp;
734 	int found = 0;
735 
736 	/* The cpu node should have timebase and clock frequency properties */
737 	cpu = of_find_node_by_type(NULL, "cpu");
738 
739 	if (cpu) {
740 		fp = of_get_property(cpu, name, NULL);
741 		if (fp) {
742 			found = 1;
743 			*val = of_read_ulong(fp, cells);
744 		}
745 
746 		of_node_put(cpu);
747 	}
748 
749 	return found;
750 }
751 
752 static void start_cpu_decrementer(void)
753 {
754 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
755 	/* Clear any pending timer interrupts */
756 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
757 
758 	/* Enable decrementer interrupt */
759 	mtspr(SPRN_TCR, TCR_DIE);
760 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
761 }
762 
763 void __init generic_calibrate_decr(void)
764 {
765 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
766 
767 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
768 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
769 
770 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
771 				"(not found)\n");
772 	}
773 
774 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
775 
776 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
777 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
778 
779 		printk(KERN_ERR "WARNING: Estimating processor frequency "
780 				"(not found)\n");
781 	}
782 }
783 
784 int update_persistent_clock(struct timespec now)
785 {
786 	struct rtc_time tm;
787 
788 	if (!ppc_md.set_rtc_time)
789 		return -ENODEV;
790 
791 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
792 	tm.tm_year -= 1900;
793 	tm.tm_mon -= 1;
794 
795 	return ppc_md.set_rtc_time(&tm);
796 }
797 
798 static void __read_persistent_clock(struct timespec *ts)
799 {
800 	struct rtc_time tm;
801 	static int first = 1;
802 
803 	ts->tv_nsec = 0;
804 	/* XXX this is a litle fragile but will work okay in the short term */
805 	if (first) {
806 		first = 0;
807 		if (ppc_md.time_init)
808 			timezone_offset = ppc_md.time_init();
809 
810 		/* get_boot_time() isn't guaranteed to be safe to call late */
811 		if (ppc_md.get_boot_time) {
812 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
813 			return;
814 		}
815 	}
816 	if (!ppc_md.get_rtc_time) {
817 		ts->tv_sec = 0;
818 		return;
819 	}
820 	ppc_md.get_rtc_time(&tm);
821 
822 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
823 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
824 }
825 
826 void read_persistent_clock(struct timespec *ts)
827 {
828 	__read_persistent_clock(ts);
829 
830 	/* Sanitize it in case real time clock is set below EPOCH */
831 	if (ts->tv_sec < 0) {
832 		ts->tv_sec = 0;
833 		ts->tv_nsec = 0;
834 	}
835 
836 }
837 
838 /* clocksource code */
839 static u64 rtc_read(struct clocksource *cs)
840 {
841 	return (u64)get_rtc();
842 }
843 
844 static u64 timebase_read(struct clocksource *cs)
845 {
846 	return (u64)get_tb();
847 }
848 
849 void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
850 			 struct clocksource *clock, u32 mult, u64 cycle_last)
851 {
852 	u64 new_tb_to_xs, new_stamp_xsec;
853 	u32 frac_sec;
854 
855 	if (clock != &clocksource_timebase)
856 		return;
857 
858 	/* Make userspace gettimeofday spin until we're done. */
859 	++vdso_data->tb_update_count;
860 	smp_mb();
861 
862 	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
863 	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
864 	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
865 	do_div(new_stamp_xsec, 1000000000);
866 	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
867 
868 	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
869 	/* this is tv_nsec / 1e9 as a 0.32 fraction */
870 	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
871 
872 	/*
873 	 * tb_update_count is used to allow the userspace gettimeofday code
874 	 * to assure itself that it sees a consistent view of the tb_to_xs and
875 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
876 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
877 	 * the two values of tb_update_count match and are even then the
878 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
879 	 * loops back and reads them again until this criteria is met.
880 	 * We expect the caller to have done the first increment of
881 	 * vdso_data->tb_update_count already.
882 	 */
883 	vdso_data->tb_orig_stamp = cycle_last;
884 	vdso_data->stamp_xsec = new_stamp_xsec;
885 	vdso_data->tb_to_xs = new_tb_to_xs;
886 	vdso_data->wtom_clock_sec = wtm->tv_sec;
887 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
888 	vdso_data->stamp_xtime = *wall_time;
889 	vdso_data->stamp_sec_fraction = frac_sec;
890 	smp_wmb();
891 	++(vdso_data->tb_update_count);
892 }
893 
894 void update_vsyscall_tz(void)
895 {
896 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
897 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
898 }
899 
900 static void __init clocksource_init(void)
901 {
902 	struct clocksource *clock;
903 
904 	if (__USE_RTC())
905 		clock = &clocksource_rtc;
906 	else
907 		clock = &clocksource_timebase;
908 
909 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
910 		printk(KERN_ERR "clocksource: %s is already registered\n",
911 		       clock->name);
912 		return;
913 	}
914 
915 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
916 	       clock->name, clock->mult, clock->shift);
917 }
918 
919 static int decrementer_set_next_event(unsigned long evt,
920 				      struct clock_event_device *dev)
921 {
922 	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
923 	set_dec(evt);
924 
925 	/* We may have raced with new irq work */
926 	if (test_irq_work_pending())
927 		set_dec(1);
928 
929 	return 0;
930 }
931 
932 static int decrementer_shutdown(struct clock_event_device *dev)
933 {
934 	decrementer_set_next_event(decrementer_max, dev);
935 	return 0;
936 }
937 
938 /* Interrupt handler for the timer broadcast IPI */
939 void tick_broadcast_ipi_handler(void)
940 {
941 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
942 
943 	*next_tb = get_tb_or_rtc();
944 	__timer_interrupt();
945 }
946 
947 static void register_decrementer_clockevent(int cpu)
948 {
949 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
950 
951 	*dec = decrementer_clockevent;
952 	dec->cpumask = cpumask_of(cpu);
953 
954 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
955 		    dec->name, dec->mult, dec->shift, cpu);
956 
957 	clockevents_register_device(dec);
958 }
959 
960 static void enable_large_decrementer(void)
961 {
962 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
963 		return;
964 
965 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
966 		return;
967 
968 	/*
969 	 * If we're running as the hypervisor we need to enable the LD manually
970 	 * otherwise firmware should have done it for us.
971 	 */
972 	if (cpu_has_feature(CPU_FTR_HVMODE))
973 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
974 }
975 
976 static void __init set_decrementer_max(void)
977 {
978 	struct device_node *cpu;
979 	u32 bits = 32;
980 
981 	/* Prior to ISAv3 the decrementer is always 32 bit */
982 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
983 		return;
984 
985 	cpu = of_find_node_by_type(NULL, "cpu");
986 
987 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
988 		if (bits > 64 || bits < 32) {
989 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
990 			bits = 32;
991 		}
992 
993 		/* calculate the signed maximum given this many bits */
994 		decrementer_max = (1ul << (bits - 1)) - 1;
995 	}
996 
997 	of_node_put(cpu);
998 
999 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
1000 		bits, decrementer_max);
1001 }
1002 
1003 static void __init init_decrementer_clockevent(void)
1004 {
1005 	int cpu = smp_processor_id();
1006 
1007 	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
1008 
1009 	decrementer_clockevent.max_delta_ns =
1010 		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
1011 	decrementer_clockevent.min_delta_ns =
1012 		clockevent_delta2ns(2, &decrementer_clockevent);
1013 
1014 	register_decrementer_clockevent(cpu);
1015 }
1016 
1017 void secondary_cpu_time_init(void)
1018 {
1019 	/* Enable and test the large decrementer for this cpu */
1020 	enable_large_decrementer();
1021 
1022 	/* Start the decrementer on CPUs that have manual control
1023 	 * such as BookE
1024 	 */
1025 	start_cpu_decrementer();
1026 
1027 	/* FIME: Should make unrelatred change to move snapshot_timebase
1028 	 * call here ! */
1029 	register_decrementer_clockevent(smp_processor_id());
1030 }
1031 
1032 /* This function is only called on the boot processor */
1033 void __init time_init(void)
1034 {
1035 	struct div_result res;
1036 	u64 scale;
1037 	unsigned shift;
1038 
1039 	if (__USE_RTC()) {
1040 		/* 601 processor: dec counts down by 128 every 128ns */
1041 		ppc_tb_freq = 1000000000;
1042 	} else {
1043 		/* Normal PowerPC with timebase register */
1044 		ppc_md.calibrate_decr();
1045 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1046 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1047 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1048 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1049 	}
1050 
1051 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1052 	tb_ticks_per_sec = ppc_tb_freq;
1053 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1054 	calc_cputime_factors();
1055 	setup_cputime_one_jiffy();
1056 
1057 	/*
1058 	 * Compute scale factor for sched_clock.
1059 	 * The calibrate_decr() function has set tb_ticks_per_sec,
1060 	 * which is the timebase frequency.
1061 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1062 	 * the 128-bit result as a 64.64 fixed-point number.
1063 	 * We then shift that number right until it is less than 1.0,
1064 	 * giving us the scale factor and shift count to use in
1065 	 * sched_clock().
1066 	 */
1067 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1068 	scale = res.result_low;
1069 	for (shift = 0; res.result_high != 0; ++shift) {
1070 		scale = (scale >> 1) | (res.result_high << 63);
1071 		res.result_high >>= 1;
1072 	}
1073 	tb_to_ns_scale = scale;
1074 	tb_to_ns_shift = shift;
1075 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1076 	boot_tb = get_tb_or_rtc();
1077 
1078 	/* If platform provided a timezone (pmac), we correct the time */
1079 	if (timezone_offset) {
1080 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1081 		sys_tz.tz_dsttime = 0;
1082 	}
1083 
1084 	vdso_data->tb_update_count = 0;
1085 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1086 
1087 	/* initialise and enable the large decrementer (if we have one) */
1088 	set_decrementer_max();
1089 	enable_large_decrementer();
1090 
1091 	/* Start the decrementer on CPUs that have manual control
1092 	 * such as BookE
1093 	 */
1094 	start_cpu_decrementer();
1095 
1096 	/* Register the clocksource */
1097 	clocksource_init();
1098 
1099 	init_decrementer_clockevent();
1100 	tick_setup_hrtimer_broadcast();
1101 
1102 #ifdef CONFIG_COMMON_CLK
1103 	of_clk_init(NULL);
1104 #endif
1105 }
1106 
1107 
1108 #define FEBRUARY	2
1109 #define	STARTOFTIME	1970
1110 #define SECDAY		86400L
1111 #define SECYR		(SECDAY * 365)
1112 #define	leapyear(year)		((year) % 4 == 0 && \
1113 				 ((year) % 100 != 0 || (year) % 400 == 0))
1114 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
1115 #define	days_in_month(a) 	(month_days[(a) - 1])
1116 
1117 static int month_days[12] = {
1118 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1119 };
1120 
1121 void to_tm(int tim, struct rtc_time * tm)
1122 {
1123 	register int    i;
1124 	register long   hms, day;
1125 
1126 	day = tim / SECDAY;
1127 	hms = tim % SECDAY;
1128 
1129 	/* Hours, minutes, seconds are easy */
1130 	tm->tm_hour = hms / 3600;
1131 	tm->tm_min = (hms % 3600) / 60;
1132 	tm->tm_sec = (hms % 3600) % 60;
1133 
1134 	/* Number of years in days */
1135 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1136 		day -= days_in_year(i);
1137 	tm->tm_year = i;
1138 
1139 	/* Number of months in days left */
1140 	if (leapyear(tm->tm_year))
1141 		days_in_month(FEBRUARY) = 29;
1142 	for (i = 1; day >= days_in_month(i); i++)
1143 		day -= days_in_month(i);
1144 	days_in_month(FEBRUARY) = 28;
1145 	tm->tm_mon = i;
1146 
1147 	/* Days are what is left over (+1) from all that. */
1148 	tm->tm_mday = day + 1;
1149 
1150 	/*
1151 	 * No-one uses the day of the week.
1152 	 */
1153 	tm->tm_wday = -1;
1154 }
1155 EXPORT_SYMBOL(to_tm);
1156 
1157 /*
1158  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1159  * result.
1160  */
1161 void div128_by_32(u64 dividend_high, u64 dividend_low,
1162 		  unsigned divisor, struct div_result *dr)
1163 {
1164 	unsigned long a, b, c, d;
1165 	unsigned long w, x, y, z;
1166 	u64 ra, rb, rc;
1167 
1168 	a = dividend_high >> 32;
1169 	b = dividend_high & 0xffffffff;
1170 	c = dividend_low >> 32;
1171 	d = dividend_low & 0xffffffff;
1172 
1173 	w = a / divisor;
1174 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1175 
1176 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1177 	x = ra;
1178 
1179 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1180 	y = rb;
1181 
1182 	do_div(rc, divisor);
1183 	z = rc;
1184 
1185 	dr->result_high = ((u64)w << 32) + x;
1186 	dr->result_low  = ((u64)y << 32) + z;
1187 
1188 }
1189 
1190 /* We don't need to calibrate delay, we use the CPU timebase for that */
1191 void calibrate_delay(void)
1192 {
1193 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1194 	 * as the number of __delay(1) in a jiffy, so make it so
1195 	 */
1196 	loops_per_jiffy = tb_ticks_per_jiffy;
1197 }
1198 
1199 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1200 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1201 {
1202 	ppc_md.get_rtc_time(tm);
1203 	return rtc_valid_tm(tm);
1204 }
1205 
1206 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1207 {
1208 	if (!ppc_md.set_rtc_time)
1209 		return -EOPNOTSUPP;
1210 
1211 	if (ppc_md.set_rtc_time(tm) < 0)
1212 		return -EOPNOTSUPP;
1213 
1214 	return 0;
1215 }
1216 
1217 static const struct rtc_class_ops rtc_generic_ops = {
1218 	.read_time = rtc_generic_get_time,
1219 	.set_time = rtc_generic_set_time,
1220 };
1221 
1222 static int __init rtc_init(void)
1223 {
1224 	struct platform_device *pdev;
1225 
1226 	if (!ppc_md.get_rtc_time)
1227 		return -ENODEV;
1228 
1229 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1230 					     &rtc_generic_ops,
1231 					     sizeof(rtc_generic_ops));
1232 
1233 	return PTR_ERR_OR_ZERO(pdev);
1234 }
1235 
1236 device_initcall(rtc_init);
1237 #endif
1238