1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Common time routines among all ppc machines. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 6 * Paul Mackerras' version and mine for PReP and Pmac. 7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 9 * 10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 11 * to make clock more stable (2.4.0-test5). The only thing 12 * that this code assumes is that the timebases have been synchronized 13 * by firmware on SMP and are never stopped (never do sleep 14 * on SMP then, nap and doze are OK). 15 * 16 * Speeded up do_gettimeofday by getting rid of references to 17 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 18 * 19 * TODO (not necessarily in this file): 20 * - improve precision and reproducibility of timebase frequency 21 * measurement at boot time. 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 */ 29 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/sched.h> 33 #include <linux/sched/clock.h> 34 #include <linux/sched/cputime.h> 35 #include <linux/kernel.h> 36 #include <linux/param.h> 37 #include <linux/string.h> 38 #include <linux/mm.h> 39 #include <linux/interrupt.h> 40 #include <linux/timex.h> 41 #include <linux/kernel_stat.h> 42 #include <linux/time.h> 43 #include <linux/init.h> 44 #include <linux/profile.h> 45 #include <linux/cpu.h> 46 #include <linux/security.h> 47 #include <linux/percpu.h> 48 #include <linux/rtc.h> 49 #include <linux/jiffies.h> 50 #include <linux/posix-timers.h> 51 #include <linux/irq.h> 52 #include <linux/delay.h> 53 #include <linux/irq_work.h> 54 #include <linux/of_clk.h> 55 #include <linux/suspend.h> 56 #include <linux/processor.h> 57 #include <linux/mc146818rtc.h> 58 #include <linux/platform_device.h> 59 60 #include <asm/trace.h> 61 #include <asm/interrupt.h> 62 #include <asm/io.h> 63 #include <asm/nvram.h> 64 #include <asm/cache.h> 65 #include <asm/machdep.h> 66 #include <linux/uaccess.h> 67 #include <asm/time.h> 68 #include <asm/irq.h> 69 #include <asm/div64.h> 70 #include <asm/smp.h> 71 #include <asm/vdso_datapage.h> 72 #include <asm/firmware.h> 73 #include <asm/mce.h> 74 75 /* powerpc clocksource/clockevent code */ 76 77 #include <linux/clockchips.h> 78 #include <linux/timekeeper_internal.h> 79 80 static u64 timebase_read(struct clocksource *); 81 static struct clocksource clocksource_timebase = { 82 .name = "timebase", 83 .rating = 400, 84 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 85 .mask = CLOCKSOURCE_MASK(64), 86 .read = timebase_read, 87 .vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER, 88 }; 89 90 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 91 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 92 EXPORT_SYMBOL_GPL(decrementer_max); /* for KVM HDEC */ 93 94 static int decrementer_set_next_event(unsigned long evt, 95 struct clock_event_device *dev); 96 static int decrementer_shutdown(struct clock_event_device *evt); 97 98 struct clock_event_device decrementer_clockevent = { 99 .name = "decrementer", 100 .rating = 200, 101 .irq = 0, 102 .set_next_event = decrementer_set_next_event, 103 .set_state_oneshot_stopped = decrementer_shutdown, 104 .set_state_shutdown = decrementer_shutdown, 105 .tick_resume = decrementer_shutdown, 106 .features = CLOCK_EVT_FEAT_ONESHOT | 107 CLOCK_EVT_FEAT_C3STOP, 108 }; 109 EXPORT_SYMBOL(decrementer_clockevent); 110 111 /* 112 * This always puts next_tb beyond now, so the clock event will never fire 113 * with the usual comparison, no need for a separate test for stopped. 114 */ 115 #define DEC_CLOCKEVENT_STOPPED ~0ULL 116 DEFINE_PER_CPU(u64, decrementers_next_tb) = DEC_CLOCKEVENT_STOPPED; 117 EXPORT_SYMBOL_GPL(decrementers_next_tb); 118 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 119 120 #define XSEC_PER_SEC (1024*1024) 121 122 #ifdef CONFIG_PPC64 123 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 124 #else 125 /* compute ((xsec << 12) * max) >> 32 */ 126 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 127 #endif 128 129 unsigned long tb_ticks_per_jiffy; 130 unsigned long tb_ticks_per_usec = 100; /* sane default */ 131 EXPORT_SYMBOL(tb_ticks_per_usec); 132 unsigned long tb_ticks_per_sec; 133 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 134 135 DEFINE_SPINLOCK(rtc_lock); 136 EXPORT_SYMBOL_GPL(rtc_lock); 137 138 static u64 tb_to_ns_scale __read_mostly; 139 static unsigned tb_to_ns_shift __read_mostly; 140 static u64 boot_tb __read_mostly; 141 142 extern struct timezone sys_tz; 143 static long timezone_offset; 144 145 unsigned long ppc_proc_freq; 146 EXPORT_SYMBOL_GPL(ppc_proc_freq); 147 unsigned long ppc_tb_freq; 148 EXPORT_SYMBOL_GPL(ppc_tb_freq); 149 150 bool tb_invalid; 151 152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 153 /* 154 * Factor for converting from cputime_t (timebase ticks) to 155 * microseconds. This is stored as 0.64 fixed-point binary fraction. 156 */ 157 u64 __cputime_usec_factor; 158 EXPORT_SYMBOL(__cputime_usec_factor); 159 160 static void calc_cputime_factors(void) 161 { 162 struct div_result res; 163 164 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 165 __cputime_usec_factor = res.result_low; 166 } 167 168 /* 169 * Read the SPURR on systems that have it, otherwise the PURR, 170 * or if that doesn't exist return the timebase value passed in. 171 */ 172 static inline unsigned long read_spurr(unsigned long tb) 173 { 174 if (cpu_has_feature(CPU_FTR_SPURR)) 175 return mfspr(SPRN_SPURR); 176 if (cpu_has_feature(CPU_FTR_PURR)) 177 return mfspr(SPRN_PURR); 178 return tb; 179 } 180 181 /* 182 * Account time for a transition between system, hard irq 183 * or soft irq state. 184 */ 185 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 186 unsigned long now, unsigned long stime) 187 { 188 unsigned long stime_scaled = 0; 189 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 190 unsigned long nowscaled, deltascaled; 191 unsigned long utime, utime_scaled; 192 193 nowscaled = read_spurr(now); 194 deltascaled = nowscaled - acct->startspurr; 195 acct->startspurr = nowscaled; 196 utime = acct->utime - acct->utime_sspurr; 197 acct->utime_sspurr = acct->utime; 198 199 /* 200 * Because we don't read the SPURR on every kernel entry/exit, 201 * deltascaled includes both user and system SPURR ticks. 202 * Apportion these ticks to system SPURR ticks and user 203 * SPURR ticks in the same ratio as the system time (delta) 204 * and user time (udelta) values obtained from the timebase 205 * over the same interval. The system ticks get accounted here; 206 * the user ticks get saved up in paca->user_time_scaled to be 207 * used by account_process_tick. 208 */ 209 stime_scaled = stime; 210 utime_scaled = utime; 211 if (deltascaled != stime + utime) { 212 if (utime) { 213 stime_scaled = deltascaled * stime / (stime + utime); 214 utime_scaled = deltascaled - stime_scaled; 215 } else { 216 stime_scaled = deltascaled; 217 } 218 } 219 acct->utime_scaled += utime_scaled; 220 #endif 221 222 return stime_scaled; 223 } 224 225 static unsigned long vtime_delta(struct cpu_accounting_data *acct, 226 unsigned long *stime_scaled, 227 unsigned long *steal_time) 228 { 229 unsigned long now, stime; 230 231 WARN_ON_ONCE(!irqs_disabled()); 232 233 now = mftb(); 234 stime = now - acct->starttime; 235 acct->starttime = now; 236 237 *stime_scaled = vtime_delta_scaled(acct, now, stime); 238 239 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && 240 firmware_has_feature(FW_FEATURE_SPLPAR)) 241 *steal_time = pseries_calculate_stolen_time(now); 242 else 243 *steal_time = 0; 244 245 return stime; 246 } 247 248 static void vtime_delta_kernel(struct cpu_accounting_data *acct, 249 unsigned long *stime, unsigned long *stime_scaled) 250 { 251 unsigned long steal_time; 252 253 *stime = vtime_delta(acct, stime_scaled, &steal_time); 254 *stime -= min(*stime, steal_time); 255 acct->steal_time += steal_time; 256 } 257 258 void vtime_account_kernel(struct task_struct *tsk) 259 { 260 struct cpu_accounting_data *acct = get_accounting(tsk); 261 unsigned long stime, stime_scaled; 262 263 vtime_delta_kernel(acct, &stime, &stime_scaled); 264 265 if (tsk->flags & PF_VCPU) { 266 acct->gtime += stime; 267 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 268 acct->utime_scaled += stime_scaled; 269 #endif 270 } else { 271 acct->stime += stime; 272 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 273 acct->stime_scaled += stime_scaled; 274 #endif 275 } 276 } 277 EXPORT_SYMBOL_GPL(vtime_account_kernel); 278 279 void vtime_account_idle(struct task_struct *tsk) 280 { 281 unsigned long stime, stime_scaled, steal_time; 282 struct cpu_accounting_data *acct = get_accounting(tsk); 283 284 stime = vtime_delta(acct, &stime_scaled, &steal_time); 285 acct->idle_time += stime + steal_time; 286 } 287 288 static void vtime_account_irq_field(struct cpu_accounting_data *acct, 289 unsigned long *field) 290 { 291 unsigned long stime, stime_scaled; 292 293 vtime_delta_kernel(acct, &stime, &stime_scaled); 294 *field += stime; 295 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 296 acct->stime_scaled += stime_scaled; 297 #endif 298 } 299 300 void vtime_account_softirq(struct task_struct *tsk) 301 { 302 struct cpu_accounting_data *acct = get_accounting(tsk); 303 vtime_account_irq_field(acct, &acct->softirq_time); 304 } 305 306 void vtime_account_hardirq(struct task_struct *tsk) 307 { 308 struct cpu_accounting_data *acct = get_accounting(tsk); 309 vtime_account_irq_field(acct, &acct->hardirq_time); 310 } 311 312 static void vtime_flush_scaled(struct task_struct *tsk, 313 struct cpu_accounting_data *acct) 314 { 315 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 316 if (acct->utime_scaled) 317 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 318 if (acct->stime_scaled) 319 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 320 321 acct->utime_scaled = 0; 322 acct->utime_sspurr = 0; 323 acct->stime_scaled = 0; 324 #endif 325 } 326 327 /* 328 * Account the whole cputime accumulated in the paca 329 * Must be called with interrupts disabled. 330 * Assumes that vtime_account_kernel/idle() has been called 331 * recently (i.e. since the last entry from usermode) so that 332 * get_paca()->user_time_scaled is up to date. 333 */ 334 void vtime_flush(struct task_struct *tsk) 335 { 336 struct cpu_accounting_data *acct = get_accounting(tsk); 337 338 if (acct->utime) 339 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 340 341 if (acct->gtime) 342 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 343 344 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 345 account_steal_time(cputime_to_nsecs(acct->steal_time)); 346 acct->steal_time = 0; 347 } 348 349 if (acct->idle_time) 350 account_idle_time(cputime_to_nsecs(acct->idle_time)); 351 352 if (acct->stime) 353 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 354 CPUTIME_SYSTEM); 355 356 if (acct->hardirq_time) 357 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 358 CPUTIME_IRQ); 359 if (acct->softirq_time) 360 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 361 CPUTIME_SOFTIRQ); 362 363 vtime_flush_scaled(tsk, acct); 364 365 acct->utime = 0; 366 acct->gtime = 0; 367 acct->idle_time = 0; 368 acct->stime = 0; 369 acct->hardirq_time = 0; 370 acct->softirq_time = 0; 371 } 372 373 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 374 #define calc_cputime_factors() 375 #endif 376 377 void __delay(unsigned long loops) 378 { 379 unsigned long start; 380 381 spin_begin(); 382 if (tb_invalid) { 383 /* 384 * TB is in error state and isn't ticking anymore. 385 * HMI handler was unable to recover from TB error. 386 * Return immediately, so that kernel won't get stuck here. 387 */ 388 spin_cpu_relax(); 389 } else { 390 start = mftb(); 391 while (mftb() - start < loops) 392 spin_cpu_relax(); 393 } 394 spin_end(); 395 } 396 EXPORT_SYMBOL(__delay); 397 398 void udelay(unsigned long usecs) 399 { 400 __delay(tb_ticks_per_usec * usecs); 401 } 402 EXPORT_SYMBOL(udelay); 403 404 #ifdef CONFIG_SMP 405 unsigned long profile_pc(struct pt_regs *regs) 406 { 407 unsigned long pc = instruction_pointer(regs); 408 409 if (in_lock_functions(pc)) 410 return regs->link; 411 412 return pc; 413 } 414 EXPORT_SYMBOL(profile_pc); 415 #endif 416 417 #ifdef CONFIG_IRQ_WORK 418 419 /* 420 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 421 */ 422 #ifdef CONFIG_PPC64 423 static inline unsigned long test_irq_work_pending(void) 424 { 425 unsigned long x; 426 427 asm volatile("lbz %0,%1(13)" 428 : "=r" (x) 429 : "i" (offsetof(struct paca_struct, irq_work_pending))); 430 return x; 431 } 432 433 static inline void set_irq_work_pending_flag(void) 434 { 435 asm volatile("stb %0,%1(13)" : : 436 "r" (1), 437 "i" (offsetof(struct paca_struct, irq_work_pending))); 438 } 439 440 static inline void clear_irq_work_pending(void) 441 { 442 asm volatile("stb %0,%1(13)" : : 443 "r" (0), 444 "i" (offsetof(struct paca_struct, irq_work_pending))); 445 } 446 447 #else /* 32-bit */ 448 449 DEFINE_PER_CPU(u8, irq_work_pending); 450 451 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 452 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 453 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 454 455 #endif /* 32 vs 64 bit */ 456 457 void arch_irq_work_raise(void) 458 { 459 /* 460 * 64-bit code that uses irq soft-mask can just cause an immediate 461 * interrupt here that gets soft masked, if this is called under 462 * local_irq_disable(). It might be possible to prevent that happening 463 * by noticing interrupts are disabled and setting decrementer pending 464 * to be replayed when irqs are enabled. The problem there is that 465 * tracing can call irq_work_raise, including in code that does low 466 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on) 467 * which could get tangled up if we're messing with the same state 468 * here. 469 */ 470 preempt_disable(); 471 set_irq_work_pending_flag(); 472 set_dec(1); 473 preempt_enable(); 474 } 475 476 static void set_dec_or_work(u64 val) 477 { 478 set_dec(val); 479 /* We may have raced with new irq work */ 480 if (unlikely(test_irq_work_pending())) 481 set_dec(1); 482 } 483 484 #else /* CONFIG_IRQ_WORK */ 485 486 #define test_irq_work_pending() 0 487 #define clear_irq_work_pending() 488 489 static void set_dec_or_work(u64 val) 490 { 491 set_dec(val); 492 } 493 #endif /* CONFIG_IRQ_WORK */ 494 495 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 496 void timer_rearm_host_dec(u64 now) 497 { 498 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 499 500 WARN_ON_ONCE(!arch_irqs_disabled()); 501 WARN_ON_ONCE(mfmsr() & MSR_EE); 502 503 if (now >= *next_tb) { 504 local_paca->irq_happened |= PACA_IRQ_DEC; 505 } else { 506 now = *next_tb - now; 507 if (now > decrementer_max) 508 now = decrementer_max; 509 set_dec_or_work(now); 510 } 511 } 512 EXPORT_SYMBOL_GPL(timer_rearm_host_dec); 513 #endif 514 515 /* 516 * timer_interrupt - gets called when the decrementer overflows, 517 * with interrupts disabled. 518 */ 519 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt) 520 { 521 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 522 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 523 struct pt_regs *old_regs; 524 u64 now; 525 526 /* 527 * Some implementations of hotplug will get timer interrupts while 528 * offline, just ignore these. 529 */ 530 if (unlikely(!cpu_online(smp_processor_id()))) { 531 set_dec(decrementer_max); 532 return; 533 } 534 535 /* Conditionally hard-enable interrupts. */ 536 if (should_hard_irq_enable()) { 537 /* 538 * Ensure a positive value is written to the decrementer, or 539 * else some CPUs will continue to take decrementer exceptions. 540 * When the PPC_WATCHDOG (decrementer based) is configured, 541 * keep this at most 31 bits, which is about 4 seconds on most 542 * systems, which gives the watchdog a chance of catching timer 543 * interrupt hard lockups. 544 */ 545 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 546 set_dec(0x7fffffff); 547 else 548 set_dec(decrementer_max); 549 550 do_hard_irq_enable(); 551 } 552 553 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 554 if (atomic_read(&ppc_n_lost_interrupts) != 0) 555 __do_IRQ(regs); 556 #endif 557 558 old_regs = set_irq_regs(regs); 559 560 trace_timer_interrupt_entry(regs); 561 562 if (test_irq_work_pending()) { 563 clear_irq_work_pending(); 564 mce_run_irq_context_handlers(); 565 irq_work_run(); 566 } 567 568 now = get_tb(); 569 if (now >= *next_tb) { 570 evt->event_handler(evt); 571 __this_cpu_inc(irq_stat.timer_irqs_event); 572 } else { 573 now = *next_tb - now; 574 if (now > decrementer_max) 575 now = decrementer_max; 576 set_dec_or_work(now); 577 __this_cpu_inc(irq_stat.timer_irqs_others); 578 } 579 580 trace_timer_interrupt_exit(regs); 581 582 set_irq_regs(old_regs); 583 } 584 EXPORT_SYMBOL(timer_interrupt); 585 586 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 587 void timer_broadcast_interrupt(void) 588 { 589 tick_receive_broadcast(); 590 __this_cpu_inc(irq_stat.broadcast_irqs_event); 591 } 592 #endif 593 594 #ifdef CONFIG_SUSPEND 595 /* Overrides the weak version in kernel/power/main.c */ 596 void arch_suspend_disable_irqs(void) 597 { 598 if (ppc_md.suspend_disable_irqs) 599 ppc_md.suspend_disable_irqs(); 600 601 /* Disable the decrementer, so that it doesn't interfere 602 * with suspending. 603 */ 604 605 set_dec(decrementer_max); 606 local_irq_disable(); 607 set_dec(decrementer_max); 608 } 609 610 /* Overrides the weak version in kernel/power/main.c */ 611 void arch_suspend_enable_irqs(void) 612 { 613 local_irq_enable(); 614 615 if (ppc_md.suspend_enable_irqs) 616 ppc_md.suspend_enable_irqs(); 617 } 618 #endif 619 620 unsigned long long tb_to_ns(unsigned long long ticks) 621 { 622 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 623 } 624 EXPORT_SYMBOL_GPL(tb_to_ns); 625 626 /* 627 * Scheduler clock - returns current time in nanosec units. 628 * 629 * Note: mulhdu(a, b) (multiply high double unsigned) returns 630 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 631 * are 64-bit unsigned numbers. 632 */ 633 notrace unsigned long long sched_clock(void) 634 { 635 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 636 } 637 638 639 #ifdef CONFIG_PPC_PSERIES 640 641 /* 642 * Running clock - attempts to give a view of time passing for a virtualised 643 * kernels. 644 * Uses the VTB register if available otherwise a next best guess. 645 */ 646 unsigned long long running_clock(void) 647 { 648 /* 649 * Don't read the VTB as a host since KVM does not switch in host 650 * timebase into the VTB when it takes a guest off the CPU, reading the 651 * VTB would result in reading 'last switched out' guest VTB. 652 * 653 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 654 * would be unsafe to rely only on the #ifdef above. 655 */ 656 if (firmware_has_feature(FW_FEATURE_LPAR) && 657 cpu_has_feature(CPU_FTR_ARCH_207S)) 658 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 659 660 /* 661 * This is a next best approximation without a VTB. 662 * On a host which is running bare metal there should never be any stolen 663 * time and on a host which doesn't do any virtualisation TB *should* equal 664 * VTB so it makes no difference anyway. 665 */ 666 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 667 } 668 #endif 669 670 static int __init get_freq(char *name, int cells, unsigned long *val) 671 { 672 struct device_node *cpu; 673 const __be32 *fp; 674 int found = 0; 675 676 /* The cpu node should have timebase and clock frequency properties */ 677 cpu = of_find_node_by_type(NULL, "cpu"); 678 679 if (cpu) { 680 fp = of_get_property(cpu, name, NULL); 681 if (fp) { 682 found = 1; 683 *val = of_read_ulong(fp, cells); 684 } 685 686 of_node_put(cpu); 687 } 688 689 return found; 690 } 691 692 static void start_cpu_decrementer(void) 693 { 694 #ifdef CONFIG_BOOKE_OR_40x 695 unsigned int tcr; 696 697 /* Clear any pending timer interrupts */ 698 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 699 700 tcr = mfspr(SPRN_TCR); 701 /* 702 * The watchdog may have already been enabled by u-boot. So leave 703 * TRC[WP] (Watchdog Period) alone. 704 */ 705 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 706 tcr |= TCR_DIE; /* Enable decrementer */ 707 mtspr(SPRN_TCR, tcr); 708 #endif 709 } 710 711 void __init generic_calibrate_decr(void) 712 { 713 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 714 715 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 716 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 717 718 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 719 "(not found)\n"); 720 } 721 722 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 723 724 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 725 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 726 727 printk(KERN_ERR "WARNING: Estimating processor frequency " 728 "(not found)\n"); 729 } 730 } 731 732 int update_persistent_clock64(struct timespec64 now) 733 { 734 struct rtc_time tm; 735 736 if (!ppc_md.set_rtc_time) 737 return -ENODEV; 738 739 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 740 741 return ppc_md.set_rtc_time(&tm); 742 } 743 744 static void __read_persistent_clock(struct timespec64 *ts) 745 { 746 struct rtc_time tm; 747 static int first = 1; 748 749 ts->tv_nsec = 0; 750 /* XXX this is a little fragile but will work okay in the short term */ 751 if (first) { 752 first = 0; 753 if (ppc_md.time_init) 754 timezone_offset = ppc_md.time_init(); 755 756 /* get_boot_time() isn't guaranteed to be safe to call late */ 757 if (ppc_md.get_boot_time) { 758 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 759 return; 760 } 761 } 762 if (!ppc_md.get_rtc_time) { 763 ts->tv_sec = 0; 764 return; 765 } 766 ppc_md.get_rtc_time(&tm); 767 768 ts->tv_sec = rtc_tm_to_time64(&tm); 769 } 770 771 void read_persistent_clock64(struct timespec64 *ts) 772 { 773 __read_persistent_clock(ts); 774 775 /* Sanitize it in case real time clock is set below EPOCH */ 776 if (ts->tv_sec < 0) { 777 ts->tv_sec = 0; 778 ts->tv_nsec = 0; 779 } 780 781 } 782 783 /* clocksource code */ 784 static notrace u64 timebase_read(struct clocksource *cs) 785 { 786 return (u64)get_tb(); 787 } 788 789 static void __init clocksource_init(void) 790 { 791 struct clocksource *clock = &clocksource_timebase; 792 793 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 794 printk(KERN_ERR "clocksource: %s is already registered\n", 795 clock->name); 796 return; 797 } 798 799 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 800 clock->name, clock->mult, clock->shift); 801 } 802 803 static int decrementer_set_next_event(unsigned long evt, 804 struct clock_event_device *dev) 805 { 806 __this_cpu_write(decrementers_next_tb, get_tb() + evt); 807 set_dec_or_work(evt); 808 809 return 0; 810 } 811 812 static int decrementer_shutdown(struct clock_event_device *dev) 813 { 814 __this_cpu_write(decrementers_next_tb, DEC_CLOCKEVENT_STOPPED); 815 set_dec_or_work(decrementer_max); 816 817 return 0; 818 } 819 820 static void register_decrementer_clockevent(int cpu) 821 { 822 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 823 824 *dec = decrementer_clockevent; 825 dec->cpumask = cpumask_of(cpu); 826 827 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 828 829 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 830 dec->name, dec->mult, dec->shift, cpu); 831 832 /* Set values for KVM, see kvm_emulate_dec() */ 833 decrementer_clockevent.mult = dec->mult; 834 decrementer_clockevent.shift = dec->shift; 835 } 836 837 static void enable_large_decrementer(void) 838 { 839 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 840 return; 841 842 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 843 return; 844 845 /* 846 * If we're running as the hypervisor we need to enable the LD manually 847 * otherwise firmware should have done it for us. 848 */ 849 if (cpu_has_feature(CPU_FTR_HVMODE)) 850 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 851 } 852 853 static void __init set_decrementer_max(void) 854 { 855 struct device_node *cpu; 856 u32 bits = 32; 857 858 /* Prior to ISAv3 the decrementer is always 32 bit */ 859 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 860 return; 861 862 cpu = of_find_node_by_type(NULL, "cpu"); 863 864 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 865 if (bits > 64 || bits < 32) { 866 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 867 bits = 32; 868 } 869 870 /* calculate the signed maximum given this many bits */ 871 decrementer_max = (1ul << (bits - 1)) - 1; 872 } 873 874 of_node_put(cpu); 875 876 pr_info("time_init: %u bit decrementer (max: %llx)\n", 877 bits, decrementer_max); 878 } 879 880 static void __init init_decrementer_clockevent(void) 881 { 882 register_decrementer_clockevent(smp_processor_id()); 883 } 884 885 void secondary_cpu_time_init(void) 886 { 887 /* Enable and test the large decrementer for this cpu */ 888 enable_large_decrementer(); 889 890 /* Start the decrementer on CPUs that have manual control 891 * such as BookE 892 */ 893 start_cpu_decrementer(); 894 895 /* FIME: Should make unrelated change to move snapshot_timebase 896 * call here ! */ 897 register_decrementer_clockevent(smp_processor_id()); 898 } 899 900 /* This function is only called on the boot processor */ 901 void __init time_init(void) 902 { 903 struct div_result res; 904 u64 scale; 905 unsigned shift; 906 907 /* Normal PowerPC with timebase register */ 908 ppc_md.calibrate_decr(); 909 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 910 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 911 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 912 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 913 914 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 915 tb_ticks_per_sec = ppc_tb_freq; 916 tb_ticks_per_usec = ppc_tb_freq / 1000000; 917 calc_cputime_factors(); 918 919 /* 920 * Compute scale factor for sched_clock. 921 * The calibrate_decr() function has set tb_ticks_per_sec, 922 * which is the timebase frequency. 923 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 924 * the 128-bit result as a 64.64 fixed-point number. 925 * We then shift that number right until it is less than 1.0, 926 * giving us the scale factor and shift count to use in 927 * sched_clock(). 928 */ 929 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 930 scale = res.result_low; 931 for (shift = 0; res.result_high != 0; ++shift) { 932 scale = (scale >> 1) | (res.result_high << 63); 933 res.result_high >>= 1; 934 } 935 tb_to_ns_scale = scale; 936 tb_to_ns_shift = shift; 937 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 938 boot_tb = get_tb(); 939 940 /* If platform provided a timezone (pmac), we correct the time */ 941 if (timezone_offset) { 942 sys_tz.tz_minuteswest = -timezone_offset / 60; 943 sys_tz.tz_dsttime = 0; 944 } 945 946 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 947 948 /* initialise and enable the large decrementer (if we have one) */ 949 set_decrementer_max(); 950 enable_large_decrementer(); 951 952 /* Start the decrementer on CPUs that have manual control 953 * such as BookE 954 */ 955 start_cpu_decrementer(); 956 957 /* Register the clocksource */ 958 clocksource_init(); 959 960 init_decrementer_clockevent(); 961 tick_setup_hrtimer_broadcast(); 962 963 of_clk_init(NULL); 964 enable_sched_clock_irqtime(); 965 } 966 967 /* 968 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 969 * result. 970 */ 971 void div128_by_32(u64 dividend_high, u64 dividend_low, 972 unsigned divisor, struct div_result *dr) 973 { 974 unsigned long a, b, c, d; 975 unsigned long w, x, y, z; 976 u64 ra, rb, rc; 977 978 a = dividend_high >> 32; 979 b = dividend_high & 0xffffffff; 980 c = dividend_low >> 32; 981 d = dividend_low & 0xffffffff; 982 983 w = a / divisor; 984 ra = ((u64)(a - (w * divisor)) << 32) + b; 985 986 rb = ((u64) do_div(ra, divisor) << 32) + c; 987 x = ra; 988 989 rc = ((u64) do_div(rb, divisor) << 32) + d; 990 y = rb; 991 992 do_div(rc, divisor); 993 z = rc; 994 995 dr->result_high = ((u64)w << 32) + x; 996 dr->result_low = ((u64)y << 32) + z; 997 998 } 999 1000 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1001 void calibrate_delay(void) 1002 { 1003 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1004 * as the number of __delay(1) in a jiffy, so make it so 1005 */ 1006 loops_per_jiffy = tb_ticks_per_jiffy; 1007 } 1008 1009 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1010 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1011 { 1012 ppc_md.get_rtc_time(tm); 1013 return 0; 1014 } 1015 1016 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1017 { 1018 if (!ppc_md.set_rtc_time) 1019 return -EOPNOTSUPP; 1020 1021 if (ppc_md.set_rtc_time(tm) < 0) 1022 return -EOPNOTSUPP; 1023 1024 return 0; 1025 } 1026 1027 static const struct rtc_class_ops rtc_generic_ops = { 1028 .read_time = rtc_generic_get_time, 1029 .set_time = rtc_generic_set_time, 1030 }; 1031 1032 static int __init rtc_init(void) 1033 { 1034 struct platform_device *pdev; 1035 1036 if (!ppc_md.get_rtc_time) 1037 return -ENODEV; 1038 1039 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1040 &rtc_generic_ops, 1041 sizeof(rtc_generic_ops)); 1042 1043 return PTR_ERR_OR_ZERO(pdev); 1044 } 1045 1046 device_initcall(rtc_init); 1047 #endif 1048