xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 06c6fad9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common time routines among all ppc machines.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6  * Paul Mackerras' version and mine for PReP and Pmac.
7  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9  *
10  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11  * to make clock more stable (2.4.0-test5). The only thing
12  * that this code assumes is that the timebases have been synchronized
13  * by firmware on SMP and are never stopped (never do sleep
14  * on SMP then, nap and doze are OK).
15  *
16  * Speeded up do_gettimeofday by getting rid of references to
17  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18  *
19  * TODO (not necessarily in this file):
20  * - improve precision and reproducibility of timebase frequency
21  * measurement at boot time.
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  */
29 
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/interrupt.h>
39 #include <linux/timex.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/time.h>
42 #include <linux/init.h>
43 #include <linux/profile.h>
44 #include <linux/cpu.h>
45 #include <linux/security.h>
46 #include <linux/percpu.h>
47 #include <linux/rtc.h>
48 #include <linux/jiffies.h>
49 #include <linux/posix-timers.h>
50 #include <linux/irq.h>
51 #include <linux/delay.h>
52 #include <linux/irq_work.h>
53 #include <linux/of_clk.h>
54 #include <linux/suspend.h>
55 #include <linux/sched/cputime.h>
56 #include <linux/sched/clock.h>
57 #include <linux/processor.h>
58 #include <asm/trace.h>
59 
60 #include <asm/interrupt.h>
61 #include <asm/io.h>
62 #include <asm/nvram.h>
63 #include <asm/cache.h>
64 #include <asm/machdep.h>
65 #include <linux/uaccess.h>
66 #include <asm/time.h>
67 #include <asm/prom.h>
68 #include <asm/irq.h>
69 #include <asm/div64.h>
70 #include <asm/smp.h>
71 #include <asm/vdso_datapage.h>
72 #include <asm/firmware.h>
73 #include <asm/asm-prototypes.h>
74 
75 /* powerpc clocksource/clockevent code */
76 
77 #include <linux/clockchips.h>
78 #include <linux/timekeeper_internal.h>
79 
80 static u64 timebase_read(struct clocksource *);
81 static struct clocksource clocksource_timebase = {
82 	.name         = "timebase",
83 	.rating       = 400,
84 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
85 	.mask         = CLOCKSOURCE_MASK(64),
86 	.read         = timebase_read,
87 	.vdso_clock_mode	= VDSO_CLOCKMODE_ARCHTIMER,
88 };
89 
90 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
91 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
92 
93 static int decrementer_set_next_event(unsigned long evt,
94 				      struct clock_event_device *dev);
95 static int decrementer_shutdown(struct clock_event_device *evt);
96 
97 struct clock_event_device decrementer_clockevent = {
98 	.name			= "decrementer",
99 	.rating			= 200,
100 	.irq			= 0,
101 	.set_next_event		= decrementer_set_next_event,
102 	.set_state_oneshot_stopped = decrementer_shutdown,
103 	.set_state_shutdown	= decrementer_shutdown,
104 	.tick_resume		= decrementer_shutdown,
105 	.features		= CLOCK_EVT_FEAT_ONESHOT |
106 				  CLOCK_EVT_FEAT_C3STOP,
107 };
108 EXPORT_SYMBOL(decrementer_clockevent);
109 
110 DEFINE_PER_CPU(u64, decrementers_next_tb);
111 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
112 
113 #define XSEC_PER_SEC (1024*1024)
114 
115 #ifdef CONFIG_PPC64
116 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
117 #else
118 /* compute ((xsec << 12) * max) >> 32 */
119 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
120 #endif
121 
122 unsigned long tb_ticks_per_jiffy;
123 unsigned long tb_ticks_per_usec = 100; /* sane default */
124 EXPORT_SYMBOL(tb_ticks_per_usec);
125 unsigned long tb_ticks_per_sec;
126 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
127 
128 DEFINE_SPINLOCK(rtc_lock);
129 EXPORT_SYMBOL_GPL(rtc_lock);
130 
131 static u64 tb_to_ns_scale __read_mostly;
132 static unsigned tb_to_ns_shift __read_mostly;
133 static u64 boot_tb __read_mostly;
134 
135 extern struct timezone sys_tz;
136 static long timezone_offset;
137 
138 unsigned long ppc_proc_freq;
139 EXPORT_SYMBOL_GPL(ppc_proc_freq);
140 unsigned long ppc_tb_freq;
141 EXPORT_SYMBOL_GPL(ppc_tb_freq);
142 
143 bool tb_invalid;
144 
145 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
146 /*
147  * Factor for converting from cputime_t (timebase ticks) to
148  * microseconds. This is stored as 0.64 fixed-point binary fraction.
149  */
150 u64 __cputime_usec_factor;
151 EXPORT_SYMBOL(__cputime_usec_factor);
152 
153 #ifdef CONFIG_PPC_SPLPAR
154 void (*dtl_consumer)(struct dtl_entry *, u64);
155 #endif
156 
157 static void calc_cputime_factors(void)
158 {
159 	struct div_result res;
160 
161 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
162 	__cputime_usec_factor = res.result_low;
163 }
164 
165 /*
166  * Read the SPURR on systems that have it, otherwise the PURR,
167  * or if that doesn't exist return the timebase value passed in.
168  */
169 static inline unsigned long read_spurr(unsigned long tb)
170 {
171 	if (cpu_has_feature(CPU_FTR_SPURR))
172 		return mfspr(SPRN_SPURR);
173 	if (cpu_has_feature(CPU_FTR_PURR))
174 		return mfspr(SPRN_PURR);
175 	return tb;
176 }
177 
178 #ifdef CONFIG_PPC_SPLPAR
179 
180 #include <asm/dtl.h>
181 
182 /*
183  * Scan the dispatch trace log and count up the stolen time.
184  * Should be called with interrupts disabled.
185  */
186 static u64 scan_dispatch_log(u64 stop_tb)
187 {
188 	u64 i = local_paca->dtl_ridx;
189 	struct dtl_entry *dtl = local_paca->dtl_curr;
190 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
191 	struct lppaca *vpa = local_paca->lppaca_ptr;
192 	u64 tb_delta;
193 	u64 stolen = 0;
194 	u64 dtb;
195 
196 	if (!dtl)
197 		return 0;
198 
199 	if (i == be64_to_cpu(vpa->dtl_idx))
200 		return 0;
201 	while (i < be64_to_cpu(vpa->dtl_idx)) {
202 		dtb = be64_to_cpu(dtl->timebase);
203 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
204 			be32_to_cpu(dtl->ready_to_enqueue_time);
205 		barrier();
206 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
207 			/* buffer has overflowed */
208 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
209 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
210 			continue;
211 		}
212 		if (dtb > stop_tb)
213 			break;
214 		if (dtl_consumer)
215 			dtl_consumer(dtl, i);
216 		stolen += tb_delta;
217 		++i;
218 		++dtl;
219 		if (dtl == dtl_end)
220 			dtl = local_paca->dispatch_log;
221 	}
222 	local_paca->dtl_ridx = i;
223 	local_paca->dtl_curr = dtl;
224 	return stolen;
225 }
226 
227 /*
228  * Accumulate stolen time by scanning the dispatch trace log.
229  * Called on entry from user mode.
230  */
231 void notrace accumulate_stolen_time(void)
232 {
233 	u64 sst, ust;
234 	unsigned long save_irq_soft_mask = irq_soft_mask_return();
235 	struct cpu_accounting_data *acct = &local_paca->accounting;
236 
237 	/* We are called early in the exception entry, before
238 	 * soft/hard_enabled are sync'ed to the expected state
239 	 * for the exception. We are hard disabled but the PACA
240 	 * needs to reflect that so various debug stuff doesn't
241 	 * complain
242 	 */
243 	irq_soft_mask_set(IRQS_DISABLED);
244 
245 	sst = scan_dispatch_log(acct->starttime_user);
246 	ust = scan_dispatch_log(acct->starttime);
247 	acct->stime -= sst;
248 	acct->utime -= ust;
249 	acct->steal_time += ust + sst;
250 
251 	irq_soft_mask_set(save_irq_soft_mask);
252 }
253 
254 static inline u64 calculate_stolen_time(u64 stop_tb)
255 {
256 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
257 		return 0;
258 
259 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
260 		return scan_dispatch_log(stop_tb);
261 
262 	return 0;
263 }
264 
265 #else /* CONFIG_PPC_SPLPAR */
266 static inline u64 calculate_stolen_time(u64 stop_tb)
267 {
268 	return 0;
269 }
270 
271 #endif /* CONFIG_PPC_SPLPAR */
272 
273 /*
274  * Account time for a transition between system, hard irq
275  * or soft irq state.
276  */
277 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
278 					unsigned long now, unsigned long stime)
279 {
280 	unsigned long stime_scaled = 0;
281 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
282 	unsigned long nowscaled, deltascaled;
283 	unsigned long utime, utime_scaled;
284 
285 	nowscaled = read_spurr(now);
286 	deltascaled = nowscaled - acct->startspurr;
287 	acct->startspurr = nowscaled;
288 	utime = acct->utime - acct->utime_sspurr;
289 	acct->utime_sspurr = acct->utime;
290 
291 	/*
292 	 * Because we don't read the SPURR on every kernel entry/exit,
293 	 * deltascaled includes both user and system SPURR ticks.
294 	 * Apportion these ticks to system SPURR ticks and user
295 	 * SPURR ticks in the same ratio as the system time (delta)
296 	 * and user time (udelta) values obtained from the timebase
297 	 * over the same interval.  The system ticks get accounted here;
298 	 * the user ticks get saved up in paca->user_time_scaled to be
299 	 * used by account_process_tick.
300 	 */
301 	stime_scaled = stime;
302 	utime_scaled = utime;
303 	if (deltascaled != stime + utime) {
304 		if (utime) {
305 			stime_scaled = deltascaled * stime / (stime + utime);
306 			utime_scaled = deltascaled - stime_scaled;
307 		} else {
308 			stime_scaled = deltascaled;
309 		}
310 	}
311 	acct->utime_scaled += utime_scaled;
312 #endif
313 
314 	return stime_scaled;
315 }
316 
317 static unsigned long vtime_delta(struct cpu_accounting_data *acct,
318 				 unsigned long *stime_scaled,
319 				 unsigned long *steal_time)
320 {
321 	unsigned long now, stime;
322 
323 	WARN_ON_ONCE(!irqs_disabled());
324 
325 	now = mftb();
326 	stime = now - acct->starttime;
327 	acct->starttime = now;
328 
329 	*stime_scaled = vtime_delta_scaled(acct, now, stime);
330 
331 	*steal_time = calculate_stolen_time(now);
332 
333 	return stime;
334 }
335 
336 static void vtime_delta_kernel(struct cpu_accounting_data *acct,
337 			       unsigned long *stime, unsigned long *stime_scaled)
338 {
339 	unsigned long steal_time;
340 
341 	*stime = vtime_delta(acct, stime_scaled, &steal_time);
342 	*stime -= min(*stime, steal_time);
343 	acct->steal_time += steal_time;
344 }
345 
346 void vtime_account_kernel(struct task_struct *tsk)
347 {
348 	struct cpu_accounting_data *acct = get_accounting(tsk);
349 	unsigned long stime, stime_scaled;
350 
351 	vtime_delta_kernel(acct, &stime, &stime_scaled);
352 
353 	if (tsk->flags & PF_VCPU) {
354 		acct->gtime += stime;
355 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
356 		acct->utime_scaled += stime_scaled;
357 #endif
358 	} else {
359 		acct->stime += stime;
360 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
361 		acct->stime_scaled += stime_scaled;
362 #endif
363 	}
364 }
365 EXPORT_SYMBOL_GPL(vtime_account_kernel);
366 
367 void vtime_account_idle(struct task_struct *tsk)
368 {
369 	unsigned long stime, stime_scaled, steal_time;
370 	struct cpu_accounting_data *acct = get_accounting(tsk);
371 
372 	stime = vtime_delta(acct, &stime_scaled, &steal_time);
373 	acct->idle_time += stime + steal_time;
374 }
375 
376 static void vtime_account_irq_field(struct cpu_accounting_data *acct,
377 				    unsigned long *field)
378 {
379 	unsigned long stime, stime_scaled;
380 
381 	vtime_delta_kernel(acct, &stime, &stime_scaled);
382 	*field += stime;
383 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
384 	acct->stime_scaled += stime_scaled;
385 #endif
386 }
387 
388 void vtime_account_softirq(struct task_struct *tsk)
389 {
390 	struct cpu_accounting_data *acct = get_accounting(tsk);
391 	vtime_account_irq_field(acct, &acct->softirq_time);
392 }
393 
394 void vtime_account_hardirq(struct task_struct *tsk)
395 {
396 	struct cpu_accounting_data *acct = get_accounting(tsk);
397 	vtime_account_irq_field(acct, &acct->hardirq_time);
398 }
399 
400 static void vtime_flush_scaled(struct task_struct *tsk,
401 			       struct cpu_accounting_data *acct)
402 {
403 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
404 	if (acct->utime_scaled)
405 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
406 	if (acct->stime_scaled)
407 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
408 
409 	acct->utime_scaled = 0;
410 	acct->utime_sspurr = 0;
411 	acct->stime_scaled = 0;
412 #endif
413 }
414 
415 /*
416  * Account the whole cputime accumulated in the paca
417  * Must be called with interrupts disabled.
418  * Assumes that vtime_account_kernel/idle() has been called
419  * recently (i.e. since the last entry from usermode) so that
420  * get_paca()->user_time_scaled is up to date.
421  */
422 void vtime_flush(struct task_struct *tsk)
423 {
424 	struct cpu_accounting_data *acct = get_accounting(tsk);
425 
426 	if (acct->utime)
427 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
428 
429 	if (acct->gtime)
430 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
431 
432 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
433 		account_steal_time(cputime_to_nsecs(acct->steal_time));
434 		acct->steal_time = 0;
435 	}
436 
437 	if (acct->idle_time)
438 		account_idle_time(cputime_to_nsecs(acct->idle_time));
439 
440 	if (acct->stime)
441 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
442 					  CPUTIME_SYSTEM);
443 
444 	if (acct->hardirq_time)
445 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
446 					  CPUTIME_IRQ);
447 	if (acct->softirq_time)
448 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
449 					  CPUTIME_SOFTIRQ);
450 
451 	vtime_flush_scaled(tsk, acct);
452 
453 	acct->utime = 0;
454 	acct->gtime = 0;
455 	acct->idle_time = 0;
456 	acct->stime = 0;
457 	acct->hardirq_time = 0;
458 	acct->softirq_time = 0;
459 }
460 
461 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
462 #define calc_cputime_factors()
463 #endif
464 
465 void __delay(unsigned long loops)
466 {
467 	unsigned long start;
468 
469 	spin_begin();
470 	if (tb_invalid) {
471 		/*
472 		 * TB is in error state and isn't ticking anymore.
473 		 * HMI handler was unable to recover from TB error.
474 		 * Return immediately, so that kernel won't get stuck here.
475 		 */
476 		spin_cpu_relax();
477 	} else {
478 		start = mftb();
479 		while (mftb() - start < loops)
480 			spin_cpu_relax();
481 	}
482 	spin_end();
483 }
484 EXPORT_SYMBOL(__delay);
485 
486 void udelay(unsigned long usecs)
487 {
488 	__delay(tb_ticks_per_usec * usecs);
489 }
490 EXPORT_SYMBOL(udelay);
491 
492 #ifdef CONFIG_SMP
493 unsigned long profile_pc(struct pt_regs *regs)
494 {
495 	unsigned long pc = instruction_pointer(regs);
496 
497 	if (in_lock_functions(pc))
498 		return regs->link;
499 
500 	return pc;
501 }
502 EXPORT_SYMBOL(profile_pc);
503 #endif
504 
505 #ifdef CONFIG_IRQ_WORK
506 
507 /*
508  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
509  */
510 #ifdef CONFIG_PPC64
511 static inline void set_irq_work_pending_flag(void)
512 {
513 	asm volatile("stb %0,%1(13)" : :
514 		"r" (1),
515 		"i" (offsetof(struct paca_struct, irq_work_pending)));
516 }
517 
518 static inline void clear_irq_work_pending(void)
519 {
520 	asm volatile("stb %0,%1(13)" : :
521 		"r" (0),
522 		"i" (offsetof(struct paca_struct, irq_work_pending)));
523 }
524 
525 #else /* 32-bit */
526 
527 DEFINE_PER_CPU(u8, irq_work_pending);
528 
529 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
530 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
531 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
532 
533 #endif /* 32 vs 64 bit */
534 
535 void arch_irq_work_raise(void)
536 {
537 	/*
538 	 * 64-bit code that uses irq soft-mask can just cause an immediate
539 	 * interrupt here that gets soft masked, if this is called under
540 	 * local_irq_disable(). It might be possible to prevent that happening
541 	 * by noticing interrupts are disabled and setting decrementer pending
542 	 * to be replayed when irqs are enabled. The problem there is that
543 	 * tracing can call irq_work_raise, including in code that does low
544 	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
545 	 * which could get tangled up if we're messing with the same state
546 	 * here.
547 	 */
548 	preempt_disable();
549 	set_irq_work_pending_flag();
550 	set_dec(1);
551 	preempt_enable();
552 }
553 
554 #else  /* CONFIG_IRQ_WORK */
555 
556 #define test_irq_work_pending()	0
557 #define clear_irq_work_pending()
558 
559 #endif /* CONFIG_IRQ_WORK */
560 
561 /*
562  * timer_interrupt - gets called when the decrementer overflows,
563  * with interrupts disabled.
564  */
565 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
566 {
567 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
568 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
569 	struct pt_regs *old_regs;
570 	u64 now;
571 
572 	/*
573 	 * Some implementations of hotplug will get timer interrupts while
574 	 * offline, just ignore these.
575 	 */
576 	if (unlikely(!cpu_online(smp_processor_id()))) {
577 		set_dec(decrementer_max);
578 		return;
579 	}
580 
581 	/* Ensure a positive value is written to the decrementer, or else
582 	 * some CPUs will continue to take decrementer exceptions. When the
583 	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
584 	 * 31 bits, which is about 4 seconds on most systems, which gives
585 	 * the watchdog a chance of catching timer interrupt hard lockups.
586 	 */
587 	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
588 		set_dec(0x7fffffff);
589 	else
590 		set_dec(decrementer_max);
591 
592 	/* Conditionally hard-enable interrupts now that the DEC has been
593 	 * bumped to its maximum value
594 	 */
595 	may_hard_irq_enable();
596 
597 
598 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
599 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
600 		do_IRQ(regs);
601 #endif
602 
603 	old_regs = set_irq_regs(regs);
604 
605 	trace_timer_interrupt_entry(regs);
606 
607 	if (test_irq_work_pending()) {
608 		clear_irq_work_pending();
609 		irq_work_run();
610 	}
611 
612 	now = get_tb();
613 	if (now >= *next_tb) {
614 		*next_tb = ~(u64)0;
615 		if (evt->event_handler)
616 			evt->event_handler(evt);
617 		__this_cpu_inc(irq_stat.timer_irqs_event);
618 	} else {
619 		now = *next_tb - now;
620 		if (now <= decrementer_max)
621 			set_dec(now);
622 		/* We may have raced with new irq work */
623 		if (test_irq_work_pending())
624 			set_dec(1);
625 		__this_cpu_inc(irq_stat.timer_irqs_others);
626 	}
627 
628 	trace_timer_interrupt_exit(regs);
629 
630 	set_irq_regs(old_regs);
631 }
632 EXPORT_SYMBOL(timer_interrupt);
633 
634 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
635 void timer_broadcast_interrupt(void)
636 {
637 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
638 
639 	*next_tb = ~(u64)0;
640 	tick_receive_broadcast();
641 	__this_cpu_inc(irq_stat.broadcast_irqs_event);
642 }
643 #endif
644 
645 #ifdef CONFIG_SUSPEND
646 static void generic_suspend_disable_irqs(void)
647 {
648 	/* Disable the decrementer, so that it doesn't interfere
649 	 * with suspending.
650 	 */
651 
652 	set_dec(decrementer_max);
653 	local_irq_disable();
654 	set_dec(decrementer_max);
655 }
656 
657 static void generic_suspend_enable_irqs(void)
658 {
659 	local_irq_enable();
660 }
661 
662 /* Overrides the weak version in kernel/power/main.c */
663 void arch_suspend_disable_irqs(void)
664 {
665 	if (ppc_md.suspend_disable_irqs)
666 		ppc_md.suspend_disable_irqs();
667 	generic_suspend_disable_irqs();
668 }
669 
670 /* Overrides the weak version in kernel/power/main.c */
671 void arch_suspend_enable_irqs(void)
672 {
673 	generic_suspend_enable_irqs();
674 	if (ppc_md.suspend_enable_irqs)
675 		ppc_md.suspend_enable_irqs();
676 }
677 #endif
678 
679 unsigned long long tb_to_ns(unsigned long long ticks)
680 {
681 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
682 }
683 EXPORT_SYMBOL_GPL(tb_to_ns);
684 
685 /*
686  * Scheduler clock - returns current time in nanosec units.
687  *
688  * Note: mulhdu(a, b) (multiply high double unsigned) returns
689  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
690  * are 64-bit unsigned numbers.
691  */
692 notrace unsigned long long sched_clock(void)
693 {
694 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
695 }
696 
697 
698 #ifdef CONFIG_PPC_PSERIES
699 
700 /*
701  * Running clock - attempts to give a view of time passing for a virtualised
702  * kernels.
703  * Uses the VTB register if available otherwise a next best guess.
704  */
705 unsigned long long running_clock(void)
706 {
707 	/*
708 	 * Don't read the VTB as a host since KVM does not switch in host
709 	 * timebase into the VTB when it takes a guest off the CPU, reading the
710 	 * VTB would result in reading 'last switched out' guest VTB.
711 	 *
712 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
713 	 * would be unsafe to rely only on the #ifdef above.
714 	 */
715 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
716 	    cpu_has_feature(CPU_FTR_ARCH_207S))
717 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
718 
719 	/*
720 	 * This is a next best approximation without a VTB.
721 	 * On a host which is running bare metal there should never be any stolen
722 	 * time and on a host which doesn't do any virtualisation TB *should* equal
723 	 * VTB so it makes no difference anyway.
724 	 */
725 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
726 }
727 #endif
728 
729 static int __init get_freq(char *name, int cells, unsigned long *val)
730 {
731 	struct device_node *cpu;
732 	const __be32 *fp;
733 	int found = 0;
734 
735 	/* The cpu node should have timebase and clock frequency properties */
736 	cpu = of_find_node_by_type(NULL, "cpu");
737 
738 	if (cpu) {
739 		fp = of_get_property(cpu, name, NULL);
740 		if (fp) {
741 			found = 1;
742 			*val = of_read_ulong(fp, cells);
743 		}
744 
745 		of_node_put(cpu);
746 	}
747 
748 	return found;
749 }
750 
751 static void start_cpu_decrementer(void)
752 {
753 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
754 	unsigned int tcr;
755 
756 	/* Clear any pending timer interrupts */
757 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
758 
759 	tcr = mfspr(SPRN_TCR);
760 	/*
761 	 * The watchdog may have already been enabled by u-boot. So leave
762 	 * TRC[WP] (Watchdog Period) alone.
763 	 */
764 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
765 	tcr |= TCR_DIE;		/* Enable decrementer */
766 	mtspr(SPRN_TCR, tcr);
767 #endif
768 }
769 
770 void __init generic_calibrate_decr(void)
771 {
772 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
773 
774 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
775 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
776 
777 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
778 				"(not found)\n");
779 	}
780 
781 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
782 
783 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
784 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
785 
786 		printk(KERN_ERR "WARNING: Estimating processor frequency "
787 				"(not found)\n");
788 	}
789 }
790 
791 int update_persistent_clock64(struct timespec64 now)
792 {
793 	struct rtc_time tm;
794 
795 	if (!ppc_md.set_rtc_time)
796 		return -ENODEV;
797 
798 	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
799 
800 	return ppc_md.set_rtc_time(&tm);
801 }
802 
803 static void __read_persistent_clock(struct timespec64 *ts)
804 {
805 	struct rtc_time tm;
806 	static int first = 1;
807 
808 	ts->tv_nsec = 0;
809 	/* XXX this is a litle fragile but will work okay in the short term */
810 	if (first) {
811 		first = 0;
812 		if (ppc_md.time_init)
813 			timezone_offset = ppc_md.time_init();
814 
815 		/* get_boot_time() isn't guaranteed to be safe to call late */
816 		if (ppc_md.get_boot_time) {
817 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
818 			return;
819 		}
820 	}
821 	if (!ppc_md.get_rtc_time) {
822 		ts->tv_sec = 0;
823 		return;
824 	}
825 	ppc_md.get_rtc_time(&tm);
826 
827 	ts->tv_sec = rtc_tm_to_time64(&tm);
828 }
829 
830 void read_persistent_clock64(struct timespec64 *ts)
831 {
832 	__read_persistent_clock(ts);
833 
834 	/* Sanitize it in case real time clock is set below EPOCH */
835 	if (ts->tv_sec < 0) {
836 		ts->tv_sec = 0;
837 		ts->tv_nsec = 0;
838 	}
839 
840 }
841 
842 /* clocksource code */
843 static notrace u64 timebase_read(struct clocksource *cs)
844 {
845 	return (u64)get_tb();
846 }
847 
848 static void __init clocksource_init(void)
849 {
850 	struct clocksource *clock = &clocksource_timebase;
851 
852 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
853 		printk(KERN_ERR "clocksource: %s is already registered\n",
854 		       clock->name);
855 		return;
856 	}
857 
858 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
859 	       clock->name, clock->mult, clock->shift);
860 }
861 
862 static int decrementer_set_next_event(unsigned long evt,
863 				      struct clock_event_device *dev)
864 {
865 	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
866 	set_dec(evt);
867 
868 	/* We may have raced with new irq work */
869 	if (test_irq_work_pending())
870 		set_dec(1);
871 
872 	return 0;
873 }
874 
875 static int decrementer_shutdown(struct clock_event_device *dev)
876 {
877 	decrementer_set_next_event(decrementer_max, dev);
878 	return 0;
879 }
880 
881 static void register_decrementer_clockevent(int cpu)
882 {
883 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
884 
885 	*dec = decrementer_clockevent;
886 	dec->cpumask = cpumask_of(cpu);
887 
888 	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
889 
890 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
891 		    dec->name, dec->mult, dec->shift, cpu);
892 
893 	/* Set values for KVM, see kvm_emulate_dec() */
894 	decrementer_clockevent.mult = dec->mult;
895 	decrementer_clockevent.shift = dec->shift;
896 }
897 
898 static void enable_large_decrementer(void)
899 {
900 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
901 		return;
902 
903 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
904 		return;
905 
906 	/*
907 	 * If we're running as the hypervisor we need to enable the LD manually
908 	 * otherwise firmware should have done it for us.
909 	 */
910 	if (cpu_has_feature(CPU_FTR_HVMODE))
911 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
912 }
913 
914 static void __init set_decrementer_max(void)
915 {
916 	struct device_node *cpu;
917 	u32 bits = 32;
918 
919 	/* Prior to ISAv3 the decrementer is always 32 bit */
920 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
921 		return;
922 
923 	cpu = of_find_node_by_type(NULL, "cpu");
924 
925 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
926 		if (bits > 64 || bits < 32) {
927 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
928 			bits = 32;
929 		}
930 
931 		/* calculate the signed maximum given this many bits */
932 		decrementer_max = (1ul << (bits - 1)) - 1;
933 	}
934 
935 	of_node_put(cpu);
936 
937 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
938 		bits, decrementer_max);
939 }
940 
941 static void __init init_decrementer_clockevent(void)
942 {
943 	register_decrementer_clockevent(smp_processor_id());
944 }
945 
946 void secondary_cpu_time_init(void)
947 {
948 	/* Enable and test the large decrementer for this cpu */
949 	enable_large_decrementer();
950 
951 	/* Start the decrementer on CPUs that have manual control
952 	 * such as BookE
953 	 */
954 	start_cpu_decrementer();
955 
956 	/* FIME: Should make unrelatred change to move snapshot_timebase
957 	 * call here ! */
958 	register_decrementer_clockevent(smp_processor_id());
959 }
960 
961 /* This function is only called on the boot processor */
962 void __init time_init(void)
963 {
964 	struct div_result res;
965 	u64 scale;
966 	unsigned shift;
967 
968 	/* Normal PowerPC with timebase register */
969 	ppc_md.calibrate_decr();
970 	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
971 	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
972 	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
973 	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
974 
975 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
976 	tb_ticks_per_sec = ppc_tb_freq;
977 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
978 	calc_cputime_factors();
979 
980 	/*
981 	 * Compute scale factor for sched_clock.
982 	 * The calibrate_decr() function has set tb_ticks_per_sec,
983 	 * which is the timebase frequency.
984 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
985 	 * the 128-bit result as a 64.64 fixed-point number.
986 	 * We then shift that number right until it is less than 1.0,
987 	 * giving us the scale factor and shift count to use in
988 	 * sched_clock().
989 	 */
990 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
991 	scale = res.result_low;
992 	for (shift = 0; res.result_high != 0; ++shift) {
993 		scale = (scale >> 1) | (res.result_high << 63);
994 		res.result_high >>= 1;
995 	}
996 	tb_to_ns_scale = scale;
997 	tb_to_ns_shift = shift;
998 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
999 	boot_tb = get_tb();
1000 
1001 	/* If platform provided a timezone (pmac), we correct the time */
1002 	if (timezone_offset) {
1003 		sys_tz.tz_minuteswest = -timezone_offset / 60;
1004 		sys_tz.tz_dsttime = 0;
1005 	}
1006 
1007 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1008 
1009 	/* initialise and enable the large decrementer (if we have one) */
1010 	set_decrementer_max();
1011 	enable_large_decrementer();
1012 
1013 	/* Start the decrementer on CPUs that have manual control
1014 	 * such as BookE
1015 	 */
1016 	start_cpu_decrementer();
1017 
1018 	/* Register the clocksource */
1019 	clocksource_init();
1020 
1021 	init_decrementer_clockevent();
1022 	tick_setup_hrtimer_broadcast();
1023 
1024 	of_clk_init(NULL);
1025 	enable_sched_clock_irqtime();
1026 }
1027 
1028 /*
1029  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1030  * result.
1031  */
1032 void div128_by_32(u64 dividend_high, u64 dividend_low,
1033 		  unsigned divisor, struct div_result *dr)
1034 {
1035 	unsigned long a, b, c, d;
1036 	unsigned long w, x, y, z;
1037 	u64 ra, rb, rc;
1038 
1039 	a = dividend_high >> 32;
1040 	b = dividend_high & 0xffffffff;
1041 	c = dividend_low >> 32;
1042 	d = dividend_low & 0xffffffff;
1043 
1044 	w = a / divisor;
1045 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1046 
1047 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1048 	x = ra;
1049 
1050 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1051 	y = rb;
1052 
1053 	do_div(rc, divisor);
1054 	z = rc;
1055 
1056 	dr->result_high = ((u64)w << 32) + x;
1057 	dr->result_low  = ((u64)y << 32) + z;
1058 
1059 }
1060 
1061 /* We don't need to calibrate delay, we use the CPU timebase for that */
1062 void calibrate_delay(void)
1063 {
1064 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1065 	 * as the number of __delay(1) in a jiffy, so make it so
1066 	 */
1067 	loops_per_jiffy = tb_ticks_per_jiffy;
1068 }
1069 
1070 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1071 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1072 {
1073 	ppc_md.get_rtc_time(tm);
1074 	return 0;
1075 }
1076 
1077 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1078 {
1079 	if (!ppc_md.set_rtc_time)
1080 		return -EOPNOTSUPP;
1081 
1082 	if (ppc_md.set_rtc_time(tm) < 0)
1083 		return -EOPNOTSUPP;
1084 
1085 	return 0;
1086 }
1087 
1088 static const struct rtc_class_ops rtc_generic_ops = {
1089 	.read_time = rtc_generic_get_time,
1090 	.set_time = rtc_generic_set_time,
1091 };
1092 
1093 static int __init rtc_init(void)
1094 {
1095 	struct platform_device *pdev;
1096 
1097 	if (!ppc_md.get_rtc_time)
1098 		return -ENODEV;
1099 
1100 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1101 					     &rtc_generic_ops,
1102 					     sizeof(rtc_generic_ops));
1103 
1104 	return PTR_ERR_OR_ZERO(pdev);
1105 }
1106 
1107 device_initcall(rtc_init);
1108 #endif
1109