xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 0661cb2a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common time routines among all ppc machines.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6  * Paul Mackerras' version and mine for PReP and Pmac.
7  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9  *
10  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11  * to make clock more stable (2.4.0-test5). The only thing
12  * that this code assumes is that the timebases have been synchronized
13  * by firmware on SMP and are never stopped (never do sleep
14  * on SMP then, nap and doze are OK).
15  *
16  * Speeded up do_gettimeofday by getting rid of references to
17  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18  *
19  * TODO (not necessarily in this file):
20  * - improve precision and reproducibility of timebase frequency
21  * measurement at boot time.
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  */
29 
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/interrupt.h>
39 #include <linux/timex.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/time.h>
42 #include <linux/init.h>
43 #include <linux/profile.h>
44 #include <linux/cpu.h>
45 #include <linux/security.h>
46 #include <linux/percpu.h>
47 #include <linux/rtc.h>
48 #include <linux/jiffies.h>
49 #include <linux/posix-timers.h>
50 #include <linux/irq.h>
51 #include <linux/delay.h>
52 #include <linux/irq_work.h>
53 #include <linux/of_clk.h>
54 #include <linux/suspend.h>
55 #include <linux/sched/cputime.h>
56 #include <linux/sched/clock.h>
57 #include <linux/processor.h>
58 #include <asm/trace.h>
59 
60 #include <asm/interrupt.h>
61 #include <asm/io.h>
62 #include <asm/nvram.h>
63 #include <asm/cache.h>
64 #include <asm/machdep.h>
65 #include <linux/uaccess.h>
66 #include <asm/time.h>
67 #include <asm/prom.h>
68 #include <asm/irq.h>
69 #include <asm/div64.h>
70 #include <asm/smp.h>
71 #include <asm/vdso_datapage.h>
72 #include <asm/firmware.h>
73 #include <asm/asm-prototypes.h>
74 
75 /* powerpc clocksource/clockevent code */
76 
77 #include <linux/clockchips.h>
78 #include <linux/timekeeper_internal.h>
79 
80 static u64 timebase_read(struct clocksource *);
81 static struct clocksource clocksource_timebase = {
82 	.name         = "timebase",
83 	.rating       = 400,
84 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
85 	.mask         = CLOCKSOURCE_MASK(64),
86 	.read         = timebase_read,
87 	.vdso_clock_mode	= VDSO_CLOCKMODE_ARCHTIMER,
88 };
89 
90 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
91 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
92 
93 static int decrementer_set_next_event(unsigned long evt,
94 				      struct clock_event_device *dev);
95 static int decrementer_shutdown(struct clock_event_device *evt);
96 
97 struct clock_event_device decrementer_clockevent = {
98 	.name			= "decrementer",
99 	.rating			= 200,
100 	.irq			= 0,
101 	.set_next_event		= decrementer_set_next_event,
102 	.set_state_oneshot_stopped = decrementer_shutdown,
103 	.set_state_shutdown	= decrementer_shutdown,
104 	.tick_resume		= decrementer_shutdown,
105 	.features		= CLOCK_EVT_FEAT_ONESHOT |
106 				  CLOCK_EVT_FEAT_C3STOP,
107 };
108 EXPORT_SYMBOL(decrementer_clockevent);
109 
110 DEFINE_PER_CPU(u64, decrementers_next_tb);
111 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
112 
113 #define XSEC_PER_SEC (1024*1024)
114 
115 #ifdef CONFIG_PPC64
116 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
117 #else
118 /* compute ((xsec << 12) * max) >> 32 */
119 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
120 #endif
121 
122 unsigned long tb_ticks_per_jiffy;
123 unsigned long tb_ticks_per_usec = 100; /* sane default */
124 EXPORT_SYMBOL(tb_ticks_per_usec);
125 unsigned long tb_ticks_per_sec;
126 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
127 
128 DEFINE_SPINLOCK(rtc_lock);
129 EXPORT_SYMBOL_GPL(rtc_lock);
130 
131 static u64 tb_to_ns_scale __read_mostly;
132 static unsigned tb_to_ns_shift __read_mostly;
133 static u64 boot_tb __read_mostly;
134 
135 extern struct timezone sys_tz;
136 static long timezone_offset;
137 
138 unsigned long ppc_proc_freq;
139 EXPORT_SYMBOL_GPL(ppc_proc_freq);
140 unsigned long ppc_tb_freq;
141 EXPORT_SYMBOL_GPL(ppc_tb_freq);
142 
143 bool tb_invalid;
144 
145 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
146 /*
147  * Factor for converting from cputime_t (timebase ticks) to
148  * microseconds. This is stored as 0.64 fixed-point binary fraction.
149  */
150 u64 __cputime_usec_factor;
151 EXPORT_SYMBOL(__cputime_usec_factor);
152 
153 #ifdef CONFIG_PPC_SPLPAR
154 void (*dtl_consumer)(struct dtl_entry *, u64);
155 #endif
156 
157 static void calc_cputime_factors(void)
158 {
159 	struct div_result res;
160 
161 	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
162 	__cputime_usec_factor = res.result_low;
163 }
164 
165 /*
166  * Read the SPURR on systems that have it, otherwise the PURR,
167  * or if that doesn't exist return the timebase value passed in.
168  */
169 static inline unsigned long read_spurr(unsigned long tb)
170 {
171 	if (cpu_has_feature(CPU_FTR_SPURR))
172 		return mfspr(SPRN_SPURR);
173 	if (cpu_has_feature(CPU_FTR_PURR))
174 		return mfspr(SPRN_PURR);
175 	return tb;
176 }
177 
178 #ifdef CONFIG_PPC_SPLPAR
179 
180 #include <asm/dtl.h>
181 
182 /*
183  * Scan the dispatch trace log and count up the stolen time.
184  * Should be called with interrupts disabled.
185  */
186 static u64 scan_dispatch_log(u64 stop_tb)
187 {
188 	u64 i = local_paca->dtl_ridx;
189 	struct dtl_entry *dtl = local_paca->dtl_curr;
190 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
191 	struct lppaca *vpa = local_paca->lppaca_ptr;
192 	u64 tb_delta;
193 	u64 stolen = 0;
194 	u64 dtb;
195 
196 	if (!dtl)
197 		return 0;
198 
199 	if (i == be64_to_cpu(vpa->dtl_idx))
200 		return 0;
201 	while (i < be64_to_cpu(vpa->dtl_idx)) {
202 		dtb = be64_to_cpu(dtl->timebase);
203 		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
204 			be32_to_cpu(dtl->ready_to_enqueue_time);
205 		barrier();
206 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
207 			/* buffer has overflowed */
208 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
209 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
210 			continue;
211 		}
212 		if (dtb > stop_tb)
213 			break;
214 		if (dtl_consumer)
215 			dtl_consumer(dtl, i);
216 		stolen += tb_delta;
217 		++i;
218 		++dtl;
219 		if (dtl == dtl_end)
220 			dtl = local_paca->dispatch_log;
221 	}
222 	local_paca->dtl_ridx = i;
223 	local_paca->dtl_curr = dtl;
224 	return stolen;
225 }
226 
227 /*
228  * Accumulate stolen time by scanning the dispatch trace log.
229  * Called on entry from user mode.
230  */
231 void notrace accumulate_stolen_time(void)
232 {
233 	u64 sst, ust;
234 	struct cpu_accounting_data *acct = &local_paca->accounting;
235 
236 	sst = scan_dispatch_log(acct->starttime_user);
237 	ust = scan_dispatch_log(acct->starttime);
238 	acct->stime -= sst;
239 	acct->utime -= ust;
240 	acct->steal_time += ust + sst;
241 }
242 
243 static inline u64 calculate_stolen_time(u64 stop_tb)
244 {
245 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
246 		return 0;
247 
248 	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
249 		return scan_dispatch_log(stop_tb);
250 
251 	return 0;
252 }
253 
254 #else /* CONFIG_PPC_SPLPAR */
255 static inline u64 calculate_stolen_time(u64 stop_tb)
256 {
257 	return 0;
258 }
259 
260 #endif /* CONFIG_PPC_SPLPAR */
261 
262 /*
263  * Account time for a transition between system, hard irq
264  * or soft irq state.
265  */
266 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
267 					unsigned long now, unsigned long stime)
268 {
269 	unsigned long stime_scaled = 0;
270 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
271 	unsigned long nowscaled, deltascaled;
272 	unsigned long utime, utime_scaled;
273 
274 	nowscaled = read_spurr(now);
275 	deltascaled = nowscaled - acct->startspurr;
276 	acct->startspurr = nowscaled;
277 	utime = acct->utime - acct->utime_sspurr;
278 	acct->utime_sspurr = acct->utime;
279 
280 	/*
281 	 * Because we don't read the SPURR on every kernel entry/exit,
282 	 * deltascaled includes both user and system SPURR ticks.
283 	 * Apportion these ticks to system SPURR ticks and user
284 	 * SPURR ticks in the same ratio as the system time (delta)
285 	 * and user time (udelta) values obtained from the timebase
286 	 * over the same interval.  The system ticks get accounted here;
287 	 * the user ticks get saved up in paca->user_time_scaled to be
288 	 * used by account_process_tick.
289 	 */
290 	stime_scaled = stime;
291 	utime_scaled = utime;
292 	if (deltascaled != stime + utime) {
293 		if (utime) {
294 			stime_scaled = deltascaled * stime / (stime + utime);
295 			utime_scaled = deltascaled - stime_scaled;
296 		} else {
297 			stime_scaled = deltascaled;
298 		}
299 	}
300 	acct->utime_scaled += utime_scaled;
301 #endif
302 
303 	return stime_scaled;
304 }
305 
306 static unsigned long vtime_delta(struct cpu_accounting_data *acct,
307 				 unsigned long *stime_scaled,
308 				 unsigned long *steal_time)
309 {
310 	unsigned long now, stime;
311 
312 	WARN_ON_ONCE(!irqs_disabled());
313 
314 	now = mftb();
315 	stime = now - acct->starttime;
316 	acct->starttime = now;
317 
318 	*stime_scaled = vtime_delta_scaled(acct, now, stime);
319 
320 	*steal_time = calculate_stolen_time(now);
321 
322 	return stime;
323 }
324 
325 static void vtime_delta_kernel(struct cpu_accounting_data *acct,
326 			       unsigned long *stime, unsigned long *stime_scaled)
327 {
328 	unsigned long steal_time;
329 
330 	*stime = vtime_delta(acct, stime_scaled, &steal_time);
331 	*stime -= min(*stime, steal_time);
332 	acct->steal_time += steal_time;
333 }
334 
335 void vtime_account_kernel(struct task_struct *tsk)
336 {
337 	struct cpu_accounting_data *acct = get_accounting(tsk);
338 	unsigned long stime, stime_scaled;
339 
340 	vtime_delta_kernel(acct, &stime, &stime_scaled);
341 
342 	if (tsk->flags & PF_VCPU) {
343 		acct->gtime += stime;
344 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
345 		acct->utime_scaled += stime_scaled;
346 #endif
347 	} else {
348 		acct->stime += stime;
349 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
350 		acct->stime_scaled += stime_scaled;
351 #endif
352 	}
353 }
354 EXPORT_SYMBOL_GPL(vtime_account_kernel);
355 
356 void vtime_account_idle(struct task_struct *tsk)
357 {
358 	unsigned long stime, stime_scaled, steal_time;
359 	struct cpu_accounting_data *acct = get_accounting(tsk);
360 
361 	stime = vtime_delta(acct, &stime_scaled, &steal_time);
362 	acct->idle_time += stime + steal_time;
363 }
364 
365 static void vtime_account_irq_field(struct cpu_accounting_data *acct,
366 				    unsigned long *field)
367 {
368 	unsigned long stime, stime_scaled;
369 
370 	vtime_delta_kernel(acct, &stime, &stime_scaled);
371 	*field += stime;
372 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
373 	acct->stime_scaled += stime_scaled;
374 #endif
375 }
376 
377 void vtime_account_softirq(struct task_struct *tsk)
378 {
379 	struct cpu_accounting_data *acct = get_accounting(tsk);
380 	vtime_account_irq_field(acct, &acct->softirq_time);
381 }
382 
383 void vtime_account_hardirq(struct task_struct *tsk)
384 {
385 	struct cpu_accounting_data *acct = get_accounting(tsk);
386 	vtime_account_irq_field(acct, &acct->hardirq_time);
387 }
388 
389 static void vtime_flush_scaled(struct task_struct *tsk,
390 			       struct cpu_accounting_data *acct)
391 {
392 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
393 	if (acct->utime_scaled)
394 		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
395 	if (acct->stime_scaled)
396 		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
397 
398 	acct->utime_scaled = 0;
399 	acct->utime_sspurr = 0;
400 	acct->stime_scaled = 0;
401 #endif
402 }
403 
404 /*
405  * Account the whole cputime accumulated in the paca
406  * Must be called with interrupts disabled.
407  * Assumes that vtime_account_kernel/idle() has been called
408  * recently (i.e. since the last entry from usermode) so that
409  * get_paca()->user_time_scaled is up to date.
410  */
411 void vtime_flush(struct task_struct *tsk)
412 {
413 	struct cpu_accounting_data *acct = get_accounting(tsk);
414 
415 	if (acct->utime)
416 		account_user_time(tsk, cputime_to_nsecs(acct->utime));
417 
418 	if (acct->gtime)
419 		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
420 
421 	if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
422 		account_steal_time(cputime_to_nsecs(acct->steal_time));
423 		acct->steal_time = 0;
424 	}
425 
426 	if (acct->idle_time)
427 		account_idle_time(cputime_to_nsecs(acct->idle_time));
428 
429 	if (acct->stime)
430 		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
431 					  CPUTIME_SYSTEM);
432 
433 	if (acct->hardirq_time)
434 		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
435 					  CPUTIME_IRQ);
436 	if (acct->softirq_time)
437 		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
438 					  CPUTIME_SOFTIRQ);
439 
440 	vtime_flush_scaled(tsk, acct);
441 
442 	acct->utime = 0;
443 	acct->gtime = 0;
444 	acct->idle_time = 0;
445 	acct->stime = 0;
446 	acct->hardirq_time = 0;
447 	acct->softirq_time = 0;
448 }
449 
450 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
451 #define calc_cputime_factors()
452 #endif
453 
454 void __delay(unsigned long loops)
455 {
456 	unsigned long start;
457 
458 	spin_begin();
459 	if (tb_invalid) {
460 		/*
461 		 * TB is in error state and isn't ticking anymore.
462 		 * HMI handler was unable to recover from TB error.
463 		 * Return immediately, so that kernel won't get stuck here.
464 		 */
465 		spin_cpu_relax();
466 	} else {
467 		start = mftb();
468 		while (mftb() - start < loops)
469 			spin_cpu_relax();
470 	}
471 	spin_end();
472 }
473 EXPORT_SYMBOL(__delay);
474 
475 void udelay(unsigned long usecs)
476 {
477 	__delay(tb_ticks_per_usec * usecs);
478 }
479 EXPORT_SYMBOL(udelay);
480 
481 #ifdef CONFIG_SMP
482 unsigned long profile_pc(struct pt_regs *regs)
483 {
484 	unsigned long pc = instruction_pointer(regs);
485 
486 	if (in_lock_functions(pc))
487 		return regs->link;
488 
489 	return pc;
490 }
491 EXPORT_SYMBOL(profile_pc);
492 #endif
493 
494 #ifdef CONFIG_IRQ_WORK
495 
496 /*
497  * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
498  */
499 #ifdef CONFIG_PPC64
500 static inline void set_irq_work_pending_flag(void)
501 {
502 	asm volatile("stb %0,%1(13)" : :
503 		"r" (1),
504 		"i" (offsetof(struct paca_struct, irq_work_pending)));
505 }
506 
507 static inline void clear_irq_work_pending(void)
508 {
509 	asm volatile("stb %0,%1(13)" : :
510 		"r" (0),
511 		"i" (offsetof(struct paca_struct, irq_work_pending)));
512 }
513 
514 #else /* 32-bit */
515 
516 DEFINE_PER_CPU(u8, irq_work_pending);
517 
518 #define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
519 #define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
520 #define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
521 
522 #endif /* 32 vs 64 bit */
523 
524 void arch_irq_work_raise(void)
525 {
526 	/*
527 	 * 64-bit code that uses irq soft-mask can just cause an immediate
528 	 * interrupt here that gets soft masked, if this is called under
529 	 * local_irq_disable(). It might be possible to prevent that happening
530 	 * by noticing interrupts are disabled and setting decrementer pending
531 	 * to be replayed when irqs are enabled. The problem there is that
532 	 * tracing can call irq_work_raise, including in code that does low
533 	 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
534 	 * which could get tangled up if we're messing with the same state
535 	 * here.
536 	 */
537 	preempt_disable();
538 	set_irq_work_pending_flag();
539 	set_dec(1);
540 	preempt_enable();
541 }
542 
543 #else  /* CONFIG_IRQ_WORK */
544 
545 #define test_irq_work_pending()	0
546 #define clear_irq_work_pending()
547 
548 #endif /* CONFIG_IRQ_WORK */
549 
550 /*
551  * timer_interrupt - gets called when the decrementer overflows,
552  * with interrupts disabled.
553  */
554 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
555 {
556 	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
557 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
558 	struct pt_regs *old_regs;
559 	u64 now;
560 
561 	/*
562 	 * Some implementations of hotplug will get timer interrupts while
563 	 * offline, just ignore these.
564 	 */
565 	if (unlikely(!cpu_online(smp_processor_id()))) {
566 		set_dec(decrementer_max);
567 		return;
568 	}
569 
570 	/* Ensure a positive value is written to the decrementer, or else
571 	 * some CPUs will continue to take decrementer exceptions. When the
572 	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
573 	 * 31 bits, which is about 4 seconds on most systems, which gives
574 	 * the watchdog a chance of catching timer interrupt hard lockups.
575 	 */
576 	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
577 		set_dec(0x7fffffff);
578 	else
579 		set_dec(decrementer_max);
580 
581 	/* Conditionally hard-enable interrupts now that the DEC has been
582 	 * bumped to its maximum value
583 	 */
584 	may_hard_irq_enable();
585 
586 
587 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
588 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
589 		do_IRQ(regs);
590 #endif
591 
592 	old_regs = set_irq_regs(regs);
593 
594 	trace_timer_interrupt_entry(regs);
595 
596 	if (test_irq_work_pending()) {
597 		clear_irq_work_pending();
598 		irq_work_run();
599 	}
600 
601 	now = get_tb();
602 	if (now >= *next_tb) {
603 		*next_tb = ~(u64)0;
604 		if (evt->event_handler)
605 			evt->event_handler(evt);
606 		__this_cpu_inc(irq_stat.timer_irqs_event);
607 	} else {
608 		now = *next_tb - now;
609 		if (now <= decrementer_max)
610 			set_dec(now);
611 		/* We may have raced with new irq work */
612 		if (test_irq_work_pending())
613 			set_dec(1);
614 		__this_cpu_inc(irq_stat.timer_irqs_others);
615 	}
616 
617 	trace_timer_interrupt_exit(regs);
618 
619 	set_irq_regs(old_regs);
620 }
621 EXPORT_SYMBOL(timer_interrupt);
622 
623 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
624 void timer_broadcast_interrupt(void)
625 {
626 	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
627 
628 	*next_tb = ~(u64)0;
629 	tick_receive_broadcast();
630 	__this_cpu_inc(irq_stat.broadcast_irqs_event);
631 }
632 #endif
633 
634 #ifdef CONFIG_SUSPEND
635 static void generic_suspend_disable_irqs(void)
636 {
637 	/* Disable the decrementer, so that it doesn't interfere
638 	 * with suspending.
639 	 */
640 
641 	set_dec(decrementer_max);
642 	local_irq_disable();
643 	set_dec(decrementer_max);
644 }
645 
646 static void generic_suspend_enable_irqs(void)
647 {
648 	local_irq_enable();
649 }
650 
651 /* Overrides the weak version in kernel/power/main.c */
652 void arch_suspend_disable_irqs(void)
653 {
654 	if (ppc_md.suspend_disable_irqs)
655 		ppc_md.suspend_disable_irqs();
656 	generic_suspend_disable_irqs();
657 }
658 
659 /* Overrides the weak version in kernel/power/main.c */
660 void arch_suspend_enable_irqs(void)
661 {
662 	generic_suspend_enable_irqs();
663 	if (ppc_md.suspend_enable_irqs)
664 		ppc_md.suspend_enable_irqs();
665 }
666 #endif
667 
668 unsigned long long tb_to_ns(unsigned long long ticks)
669 {
670 	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
671 }
672 EXPORT_SYMBOL_GPL(tb_to_ns);
673 
674 /*
675  * Scheduler clock - returns current time in nanosec units.
676  *
677  * Note: mulhdu(a, b) (multiply high double unsigned) returns
678  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
679  * are 64-bit unsigned numbers.
680  */
681 notrace unsigned long long sched_clock(void)
682 {
683 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
684 }
685 
686 
687 #ifdef CONFIG_PPC_PSERIES
688 
689 /*
690  * Running clock - attempts to give a view of time passing for a virtualised
691  * kernels.
692  * Uses the VTB register if available otherwise a next best guess.
693  */
694 unsigned long long running_clock(void)
695 {
696 	/*
697 	 * Don't read the VTB as a host since KVM does not switch in host
698 	 * timebase into the VTB when it takes a guest off the CPU, reading the
699 	 * VTB would result in reading 'last switched out' guest VTB.
700 	 *
701 	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
702 	 * would be unsafe to rely only on the #ifdef above.
703 	 */
704 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
705 	    cpu_has_feature(CPU_FTR_ARCH_207S))
706 		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
707 
708 	/*
709 	 * This is a next best approximation without a VTB.
710 	 * On a host which is running bare metal there should never be any stolen
711 	 * time and on a host which doesn't do any virtualisation TB *should* equal
712 	 * VTB so it makes no difference anyway.
713 	 */
714 	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
715 }
716 #endif
717 
718 static int __init get_freq(char *name, int cells, unsigned long *val)
719 {
720 	struct device_node *cpu;
721 	const __be32 *fp;
722 	int found = 0;
723 
724 	/* The cpu node should have timebase and clock frequency properties */
725 	cpu = of_find_node_by_type(NULL, "cpu");
726 
727 	if (cpu) {
728 		fp = of_get_property(cpu, name, NULL);
729 		if (fp) {
730 			found = 1;
731 			*val = of_read_ulong(fp, cells);
732 		}
733 
734 		of_node_put(cpu);
735 	}
736 
737 	return found;
738 }
739 
740 static void start_cpu_decrementer(void)
741 {
742 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
743 	unsigned int tcr;
744 
745 	/* Clear any pending timer interrupts */
746 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
747 
748 	tcr = mfspr(SPRN_TCR);
749 	/*
750 	 * The watchdog may have already been enabled by u-boot. So leave
751 	 * TRC[WP] (Watchdog Period) alone.
752 	 */
753 	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
754 	tcr |= TCR_DIE;		/* Enable decrementer */
755 	mtspr(SPRN_TCR, tcr);
756 #endif
757 }
758 
759 void __init generic_calibrate_decr(void)
760 {
761 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
762 
763 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
764 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
765 
766 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
767 				"(not found)\n");
768 	}
769 
770 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
771 
772 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
773 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
774 
775 		printk(KERN_ERR "WARNING: Estimating processor frequency "
776 				"(not found)\n");
777 	}
778 }
779 
780 int update_persistent_clock64(struct timespec64 now)
781 {
782 	struct rtc_time tm;
783 
784 	if (!ppc_md.set_rtc_time)
785 		return -ENODEV;
786 
787 	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
788 
789 	return ppc_md.set_rtc_time(&tm);
790 }
791 
792 static void __read_persistent_clock(struct timespec64 *ts)
793 {
794 	struct rtc_time tm;
795 	static int first = 1;
796 
797 	ts->tv_nsec = 0;
798 	/* XXX this is a litle fragile but will work okay in the short term */
799 	if (first) {
800 		first = 0;
801 		if (ppc_md.time_init)
802 			timezone_offset = ppc_md.time_init();
803 
804 		/* get_boot_time() isn't guaranteed to be safe to call late */
805 		if (ppc_md.get_boot_time) {
806 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
807 			return;
808 		}
809 	}
810 	if (!ppc_md.get_rtc_time) {
811 		ts->tv_sec = 0;
812 		return;
813 	}
814 	ppc_md.get_rtc_time(&tm);
815 
816 	ts->tv_sec = rtc_tm_to_time64(&tm);
817 }
818 
819 void read_persistent_clock64(struct timespec64 *ts)
820 {
821 	__read_persistent_clock(ts);
822 
823 	/* Sanitize it in case real time clock is set below EPOCH */
824 	if (ts->tv_sec < 0) {
825 		ts->tv_sec = 0;
826 		ts->tv_nsec = 0;
827 	}
828 
829 }
830 
831 /* clocksource code */
832 static notrace u64 timebase_read(struct clocksource *cs)
833 {
834 	return (u64)get_tb();
835 }
836 
837 static void __init clocksource_init(void)
838 {
839 	struct clocksource *clock = &clocksource_timebase;
840 
841 	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
842 		printk(KERN_ERR "clocksource: %s is already registered\n",
843 		       clock->name);
844 		return;
845 	}
846 
847 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
848 	       clock->name, clock->mult, clock->shift);
849 }
850 
851 static int decrementer_set_next_event(unsigned long evt,
852 				      struct clock_event_device *dev)
853 {
854 	__this_cpu_write(decrementers_next_tb, get_tb() + evt);
855 	set_dec(evt);
856 
857 	/* We may have raced with new irq work */
858 	if (test_irq_work_pending())
859 		set_dec(1);
860 
861 	return 0;
862 }
863 
864 static int decrementer_shutdown(struct clock_event_device *dev)
865 {
866 	decrementer_set_next_event(decrementer_max, dev);
867 	return 0;
868 }
869 
870 static void register_decrementer_clockevent(int cpu)
871 {
872 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
873 
874 	*dec = decrementer_clockevent;
875 	dec->cpumask = cpumask_of(cpu);
876 
877 	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
878 
879 	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
880 		    dec->name, dec->mult, dec->shift, cpu);
881 
882 	/* Set values for KVM, see kvm_emulate_dec() */
883 	decrementer_clockevent.mult = dec->mult;
884 	decrementer_clockevent.shift = dec->shift;
885 }
886 
887 static void enable_large_decrementer(void)
888 {
889 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
890 		return;
891 
892 	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
893 		return;
894 
895 	/*
896 	 * If we're running as the hypervisor we need to enable the LD manually
897 	 * otherwise firmware should have done it for us.
898 	 */
899 	if (cpu_has_feature(CPU_FTR_HVMODE))
900 		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
901 }
902 
903 static void __init set_decrementer_max(void)
904 {
905 	struct device_node *cpu;
906 	u32 bits = 32;
907 
908 	/* Prior to ISAv3 the decrementer is always 32 bit */
909 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
910 		return;
911 
912 	cpu = of_find_node_by_type(NULL, "cpu");
913 
914 	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
915 		if (bits > 64 || bits < 32) {
916 			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
917 			bits = 32;
918 		}
919 
920 		/* calculate the signed maximum given this many bits */
921 		decrementer_max = (1ul << (bits - 1)) - 1;
922 	}
923 
924 	of_node_put(cpu);
925 
926 	pr_info("time_init: %u bit decrementer (max: %llx)\n",
927 		bits, decrementer_max);
928 }
929 
930 static void __init init_decrementer_clockevent(void)
931 {
932 	register_decrementer_clockevent(smp_processor_id());
933 }
934 
935 void secondary_cpu_time_init(void)
936 {
937 	/* Enable and test the large decrementer for this cpu */
938 	enable_large_decrementer();
939 
940 	/* Start the decrementer on CPUs that have manual control
941 	 * such as BookE
942 	 */
943 	start_cpu_decrementer();
944 
945 	/* FIME: Should make unrelatred change to move snapshot_timebase
946 	 * call here ! */
947 	register_decrementer_clockevent(smp_processor_id());
948 }
949 
950 /* This function is only called on the boot processor */
951 void __init time_init(void)
952 {
953 	struct div_result res;
954 	u64 scale;
955 	unsigned shift;
956 
957 	/* Normal PowerPC with timebase register */
958 	ppc_md.calibrate_decr();
959 	printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
960 	       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
961 	printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
962 	       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
963 
964 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
965 	tb_ticks_per_sec = ppc_tb_freq;
966 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
967 	calc_cputime_factors();
968 
969 	/*
970 	 * Compute scale factor for sched_clock.
971 	 * The calibrate_decr() function has set tb_ticks_per_sec,
972 	 * which is the timebase frequency.
973 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
974 	 * the 128-bit result as a 64.64 fixed-point number.
975 	 * We then shift that number right until it is less than 1.0,
976 	 * giving us the scale factor and shift count to use in
977 	 * sched_clock().
978 	 */
979 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
980 	scale = res.result_low;
981 	for (shift = 0; res.result_high != 0; ++shift) {
982 		scale = (scale >> 1) | (res.result_high << 63);
983 		res.result_high >>= 1;
984 	}
985 	tb_to_ns_scale = scale;
986 	tb_to_ns_shift = shift;
987 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
988 	boot_tb = get_tb();
989 
990 	/* If platform provided a timezone (pmac), we correct the time */
991 	if (timezone_offset) {
992 		sys_tz.tz_minuteswest = -timezone_offset / 60;
993 		sys_tz.tz_dsttime = 0;
994 	}
995 
996 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
997 
998 	/* initialise and enable the large decrementer (if we have one) */
999 	set_decrementer_max();
1000 	enable_large_decrementer();
1001 
1002 	/* Start the decrementer on CPUs that have manual control
1003 	 * such as BookE
1004 	 */
1005 	start_cpu_decrementer();
1006 
1007 	/* Register the clocksource */
1008 	clocksource_init();
1009 
1010 	init_decrementer_clockevent();
1011 	tick_setup_hrtimer_broadcast();
1012 
1013 	of_clk_init(NULL);
1014 	enable_sched_clock_irqtime();
1015 }
1016 
1017 /*
1018  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1019  * result.
1020  */
1021 void div128_by_32(u64 dividend_high, u64 dividend_low,
1022 		  unsigned divisor, struct div_result *dr)
1023 {
1024 	unsigned long a, b, c, d;
1025 	unsigned long w, x, y, z;
1026 	u64 ra, rb, rc;
1027 
1028 	a = dividend_high >> 32;
1029 	b = dividend_high & 0xffffffff;
1030 	c = dividend_low >> 32;
1031 	d = dividend_low & 0xffffffff;
1032 
1033 	w = a / divisor;
1034 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1035 
1036 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1037 	x = ra;
1038 
1039 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1040 	y = rb;
1041 
1042 	do_div(rc, divisor);
1043 	z = rc;
1044 
1045 	dr->result_high = ((u64)w << 32) + x;
1046 	dr->result_low  = ((u64)y << 32) + z;
1047 
1048 }
1049 
1050 /* We don't need to calibrate delay, we use the CPU timebase for that */
1051 void calibrate_delay(void)
1052 {
1053 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
1054 	 * as the number of __delay(1) in a jiffy, so make it so
1055 	 */
1056 	loops_per_jiffy = tb_ticks_per_jiffy;
1057 }
1058 
1059 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
1060 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1061 {
1062 	ppc_md.get_rtc_time(tm);
1063 	return 0;
1064 }
1065 
1066 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1067 {
1068 	if (!ppc_md.set_rtc_time)
1069 		return -EOPNOTSUPP;
1070 
1071 	if (ppc_md.set_rtc_time(tm) < 0)
1072 		return -EOPNOTSUPP;
1073 
1074 	return 0;
1075 }
1076 
1077 static const struct rtc_class_ops rtc_generic_ops = {
1078 	.read_time = rtc_generic_get_time,
1079 	.set_time = rtc_generic_set_time,
1080 };
1081 
1082 static int __init rtc_init(void)
1083 {
1084 	struct platform_device *pdev;
1085 
1086 	if (!ppc_md.get_rtc_time)
1087 		return -ENODEV;
1088 
1089 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1090 					     &rtc_generic_ops,
1091 					     sizeof(rtc_generic_ops));
1092 
1093 	return PTR_ERR_OR_ZERO(pdev);
1094 }
1095 
1096 device_initcall(rtc_init);
1097 #endif
1098