1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Common time routines among all ppc machines. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 6 * Paul Mackerras' version and mine for PReP and Pmac. 7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 9 * 10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 11 * to make clock more stable (2.4.0-test5). The only thing 12 * that this code assumes is that the timebases have been synchronized 13 * by firmware on SMP and are never stopped (never do sleep 14 * on SMP then, nap and doze are OK). 15 * 16 * Speeded up do_gettimeofday by getting rid of references to 17 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 18 * 19 * TODO (not necessarily in this file): 20 * - improve precision and reproducibility of timebase frequency 21 * measurement at boot time. 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 */ 29 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/sched.h> 33 #include <linux/sched/clock.h> 34 #include <linux/kernel.h> 35 #include <linux/param.h> 36 #include <linux/string.h> 37 #include <linux/mm.h> 38 #include <linux/interrupt.h> 39 #include <linux/timex.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/time.h> 42 #include <linux/init.h> 43 #include <linux/profile.h> 44 #include <linux/cpu.h> 45 #include <linux/security.h> 46 #include <linux/percpu.h> 47 #include <linux/rtc.h> 48 #include <linux/jiffies.h> 49 #include <linux/posix-timers.h> 50 #include <linux/irq.h> 51 #include <linux/delay.h> 52 #include <linux/irq_work.h> 53 #include <linux/of_clk.h> 54 #include <linux/suspend.h> 55 #include <linux/sched/cputime.h> 56 #include <linux/sched/clock.h> 57 #include <linux/processor.h> 58 #include <asm/trace.h> 59 60 #include <asm/interrupt.h> 61 #include <asm/io.h> 62 #include <asm/nvram.h> 63 #include <asm/cache.h> 64 #include <asm/machdep.h> 65 #include <linux/uaccess.h> 66 #include <asm/time.h> 67 #include <asm/prom.h> 68 #include <asm/irq.h> 69 #include <asm/div64.h> 70 #include <asm/smp.h> 71 #include <asm/vdso_datapage.h> 72 #include <asm/firmware.h> 73 #include <asm/asm-prototypes.h> 74 75 /* powerpc clocksource/clockevent code */ 76 77 #include <linux/clockchips.h> 78 #include <linux/timekeeper_internal.h> 79 80 static u64 timebase_read(struct clocksource *); 81 static struct clocksource clocksource_timebase = { 82 .name = "timebase", 83 .rating = 400, 84 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 85 .mask = CLOCKSOURCE_MASK(64), 86 .read = timebase_read, 87 .vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER, 88 }; 89 90 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF 91 u64 decrementer_max = DECREMENTER_DEFAULT_MAX; 92 93 static int decrementer_set_next_event(unsigned long evt, 94 struct clock_event_device *dev); 95 static int decrementer_shutdown(struct clock_event_device *evt); 96 97 struct clock_event_device decrementer_clockevent = { 98 .name = "decrementer", 99 .rating = 200, 100 .irq = 0, 101 .set_next_event = decrementer_set_next_event, 102 .set_state_oneshot_stopped = decrementer_shutdown, 103 .set_state_shutdown = decrementer_shutdown, 104 .tick_resume = decrementer_shutdown, 105 .features = CLOCK_EVT_FEAT_ONESHOT | 106 CLOCK_EVT_FEAT_C3STOP, 107 }; 108 EXPORT_SYMBOL(decrementer_clockevent); 109 110 DEFINE_PER_CPU(u64, decrementers_next_tb); 111 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 112 113 #define XSEC_PER_SEC (1024*1024) 114 115 #ifdef CONFIG_PPC64 116 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 117 #else 118 /* compute ((xsec << 12) * max) >> 32 */ 119 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 120 #endif 121 122 unsigned long tb_ticks_per_jiffy; 123 unsigned long tb_ticks_per_usec = 100; /* sane default */ 124 EXPORT_SYMBOL(tb_ticks_per_usec); 125 unsigned long tb_ticks_per_sec; 126 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 127 128 DEFINE_SPINLOCK(rtc_lock); 129 EXPORT_SYMBOL_GPL(rtc_lock); 130 131 static u64 tb_to_ns_scale __read_mostly; 132 static unsigned tb_to_ns_shift __read_mostly; 133 static u64 boot_tb __read_mostly; 134 135 extern struct timezone sys_tz; 136 static long timezone_offset; 137 138 unsigned long ppc_proc_freq; 139 EXPORT_SYMBOL_GPL(ppc_proc_freq); 140 unsigned long ppc_tb_freq; 141 EXPORT_SYMBOL_GPL(ppc_tb_freq); 142 143 bool tb_invalid; 144 145 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 146 /* 147 * Factor for converting from cputime_t (timebase ticks) to 148 * microseconds. This is stored as 0.64 fixed-point binary fraction. 149 */ 150 u64 __cputime_usec_factor; 151 EXPORT_SYMBOL(__cputime_usec_factor); 152 153 #ifdef CONFIG_PPC_SPLPAR 154 void (*dtl_consumer)(struct dtl_entry *, u64); 155 #endif 156 157 static void calc_cputime_factors(void) 158 { 159 struct div_result res; 160 161 div128_by_32(1000000, 0, tb_ticks_per_sec, &res); 162 __cputime_usec_factor = res.result_low; 163 } 164 165 /* 166 * Read the SPURR on systems that have it, otherwise the PURR, 167 * or if that doesn't exist return the timebase value passed in. 168 */ 169 static inline unsigned long read_spurr(unsigned long tb) 170 { 171 if (cpu_has_feature(CPU_FTR_SPURR)) 172 return mfspr(SPRN_SPURR); 173 if (cpu_has_feature(CPU_FTR_PURR)) 174 return mfspr(SPRN_PURR); 175 return tb; 176 } 177 178 #ifdef CONFIG_PPC_SPLPAR 179 180 #include <asm/dtl.h> 181 182 /* 183 * Scan the dispatch trace log and count up the stolen time. 184 * Should be called with interrupts disabled. 185 */ 186 static u64 scan_dispatch_log(u64 stop_tb) 187 { 188 u64 i = local_paca->dtl_ridx; 189 struct dtl_entry *dtl = local_paca->dtl_curr; 190 struct dtl_entry *dtl_end = local_paca->dispatch_log_end; 191 struct lppaca *vpa = local_paca->lppaca_ptr; 192 u64 tb_delta; 193 u64 stolen = 0; 194 u64 dtb; 195 196 if (!dtl) 197 return 0; 198 199 if (i == be64_to_cpu(vpa->dtl_idx)) 200 return 0; 201 while (i < be64_to_cpu(vpa->dtl_idx)) { 202 dtb = be64_to_cpu(dtl->timebase); 203 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) + 204 be32_to_cpu(dtl->ready_to_enqueue_time); 205 barrier(); 206 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { 207 /* buffer has overflowed */ 208 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; 209 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); 210 continue; 211 } 212 if (dtb > stop_tb) 213 break; 214 if (dtl_consumer) 215 dtl_consumer(dtl, i); 216 stolen += tb_delta; 217 ++i; 218 ++dtl; 219 if (dtl == dtl_end) 220 dtl = local_paca->dispatch_log; 221 } 222 local_paca->dtl_ridx = i; 223 local_paca->dtl_curr = dtl; 224 return stolen; 225 } 226 227 /* 228 * Accumulate stolen time by scanning the dispatch trace log. 229 * Called on entry from user mode. 230 */ 231 void notrace accumulate_stolen_time(void) 232 { 233 u64 sst, ust; 234 struct cpu_accounting_data *acct = &local_paca->accounting; 235 236 sst = scan_dispatch_log(acct->starttime_user); 237 ust = scan_dispatch_log(acct->starttime); 238 acct->stime -= sst; 239 acct->utime -= ust; 240 acct->steal_time += ust + sst; 241 } 242 243 static inline u64 calculate_stolen_time(u64 stop_tb) 244 { 245 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) 246 return 0; 247 248 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) 249 return scan_dispatch_log(stop_tb); 250 251 return 0; 252 } 253 254 #else /* CONFIG_PPC_SPLPAR */ 255 static inline u64 calculate_stolen_time(u64 stop_tb) 256 { 257 return 0; 258 } 259 260 #endif /* CONFIG_PPC_SPLPAR */ 261 262 /* 263 * Account time for a transition between system, hard irq 264 * or soft irq state. 265 */ 266 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct, 267 unsigned long now, unsigned long stime) 268 { 269 unsigned long stime_scaled = 0; 270 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 271 unsigned long nowscaled, deltascaled; 272 unsigned long utime, utime_scaled; 273 274 nowscaled = read_spurr(now); 275 deltascaled = nowscaled - acct->startspurr; 276 acct->startspurr = nowscaled; 277 utime = acct->utime - acct->utime_sspurr; 278 acct->utime_sspurr = acct->utime; 279 280 /* 281 * Because we don't read the SPURR on every kernel entry/exit, 282 * deltascaled includes both user and system SPURR ticks. 283 * Apportion these ticks to system SPURR ticks and user 284 * SPURR ticks in the same ratio as the system time (delta) 285 * and user time (udelta) values obtained from the timebase 286 * over the same interval. The system ticks get accounted here; 287 * the user ticks get saved up in paca->user_time_scaled to be 288 * used by account_process_tick. 289 */ 290 stime_scaled = stime; 291 utime_scaled = utime; 292 if (deltascaled != stime + utime) { 293 if (utime) { 294 stime_scaled = deltascaled * stime / (stime + utime); 295 utime_scaled = deltascaled - stime_scaled; 296 } else { 297 stime_scaled = deltascaled; 298 } 299 } 300 acct->utime_scaled += utime_scaled; 301 #endif 302 303 return stime_scaled; 304 } 305 306 static unsigned long vtime_delta(struct cpu_accounting_data *acct, 307 unsigned long *stime_scaled, 308 unsigned long *steal_time) 309 { 310 unsigned long now, stime; 311 312 WARN_ON_ONCE(!irqs_disabled()); 313 314 now = mftb(); 315 stime = now - acct->starttime; 316 acct->starttime = now; 317 318 *stime_scaled = vtime_delta_scaled(acct, now, stime); 319 320 *steal_time = calculate_stolen_time(now); 321 322 return stime; 323 } 324 325 static void vtime_delta_kernel(struct cpu_accounting_data *acct, 326 unsigned long *stime, unsigned long *stime_scaled) 327 { 328 unsigned long steal_time; 329 330 *stime = vtime_delta(acct, stime_scaled, &steal_time); 331 *stime -= min(*stime, steal_time); 332 acct->steal_time += steal_time; 333 } 334 335 void vtime_account_kernel(struct task_struct *tsk) 336 { 337 struct cpu_accounting_data *acct = get_accounting(tsk); 338 unsigned long stime, stime_scaled; 339 340 vtime_delta_kernel(acct, &stime, &stime_scaled); 341 342 if (tsk->flags & PF_VCPU) { 343 acct->gtime += stime; 344 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 345 acct->utime_scaled += stime_scaled; 346 #endif 347 } else { 348 acct->stime += stime; 349 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 350 acct->stime_scaled += stime_scaled; 351 #endif 352 } 353 } 354 EXPORT_SYMBOL_GPL(vtime_account_kernel); 355 356 void vtime_account_idle(struct task_struct *tsk) 357 { 358 unsigned long stime, stime_scaled, steal_time; 359 struct cpu_accounting_data *acct = get_accounting(tsk); 360 361 stime = vtime_delta(acct, &stime_scaled, &steal_time); 362 acct->idle_time += stime + steal_time; 363 } 364 365 static void vtime_account_irq_field(struct cpu_accounting_data *acct, 366 unsigned long *field) 367 { 368 unsigned long stime, stime_scaled; 369 370 vtime_delta_kernel(acct, &stime, &stime_scaled); 371 *field += stime; 372 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 373 acct->stime_scaled += stime_scaled; 374 #endif 375 } 376 377 void vtime_account_softirq(struct task_struct *tsk) 378 { 379 struct cpu_accounting_data *acct = get_accounting(tsk); 380 vtime_account_irq_field(acct, &acct->softirq_time); 381 } 382 383 void vtime_account_hardirq(struct task_struct *tsk) 384 { 385 struct cpu_accounting_data *acct = get_accounting(tsk); 386 vtime_account_irq_field(acct, &acct->hardirq_time); 387 } 388 389 static void vtime_flush_scaled(struct task_struct *tsk, 390 struct cpu_accounting_data *acct) 391 { 392 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 393 if (acct->utime_scaled) 394 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled); 395 if (acct->stime_scaled) 396 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled); 397 398 acct->utime_scaled = 0; 399 acct->utime_sspurr = 0; 400 acct->stime_scaled = 0; 401 #endif 402 } 403 404 /* 405 * Account the whole cputime accumulated in the paca 406 * Must be called with interrupts disabled. 407 * Assumes that vtime_account_kernel/idle() has been called 408 * recently (i.e. since the last entry from usermode) so that 409 * get_paca()->user_time_scaled is up to date. 410 */ 411 void vtime_flush(struct task_struct *tsk) 412 { 413 struct cpu_accounting_data *acct = get_accounting(tsk); 414 415 if (acct->utime) 416 account_user_time(tsk, cputime_to_nsecs(acct->utime)); 417 418 if (acct->gtime) 419 account_guest_time(tsk, cputime_to_nsecs(acct->gtime)); 420 421 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) { 422 account_steal_time(cputime_to_nsecs(acct->steal_time)); 423 acct->steal_time = 0; 424 } 425 426 if (acct->idle_time) 427 account_idle_time(cputime_to_nsecs(acct->idle_time)); 428 429 if (acct->stime) 430 account_system_index_time(tsk, cputime_to_nsecs(acct->stime), 431 CPUTIME_SYSTEM); 432 433 if (acct->hardirq_time) 434 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time), 435 CPUTIME_IRQ); 436 if (acct->softirq_time) 437 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time), 438 CPUTIME_SOFTIRQ); 439 440 vtime_flush_scaled(tsk, acct); 441 442 acct->utime = 0; 443 acct->gtime = 0; 444 acct->idle_time = 0; 445 acct->stime = 0; 446 acct->hardirq_time = 0; 447 acct->softirq_time = 0; 448 } 449 450 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 451 #define calc_cputime_factors() 452 #endif 453 454 void __delay(unsigned long loops) 455 { 456 unsigned long start; 457 458 spin_begin(); 459 if (tb_invalid) { 460 /* 461 * TB is in error state and isn't ticking anymore. 462 * HMI handler was unable to recover from TB error. 463 * Return immediately, so that kernel won't get stuck here. 464 */ 465 spin_cpu_relax(); 466 } else { 467 start = mftb(); 468 while (mftb() - start < loops) 469 spin_cpu_relax(); 470 } 471 spin_end(); 472 } 473 EXPORT_SYMBOL(__delay); 474 475 void udelay(unsigned long usecs) 476 { 477 __delay(tb_ticks_per_usec * usecs); 478 } 479 EXPORT_SYMBOL(udelay); 480 481 #ifdef CONFIG_SMP 482 unsigned long profile_pc(struct pt_regs *regs) 483 { 484 unsigned long pc = instruction_pointer(regs); 485 486 if (in_lock_functions(pc)) 487 return regs->link; 488 489 return pc; 490 } 491 EXPORT_SYMBOL(profile_pc); 492 #endif 493 494 #ifdef CONFIG_IRQ_WORK 495 496 /* 497 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable... 498 */ 499 #ifdef CONFIG_PPC64 500 static inline void set_irq_work_pending_flag(void) 501 { 502 asm volatile("stb %0,%1(13)" : : 503 "r" (1), 504 "i" (offsetof(struct paca_struct, irq_work_pending))); 505 } 506 507 static inline void clear_irq_work_pending(void) 508 { 509 asm volatile("stb %0,%1(13)" : : 510 "r" (0), 511 "i" (offsetof(struct paca_struct, irq_work_pending))); 512 } 513 514 #else /* 32-bit */ 515 516 DEFINE_PER_CPU(u8, irq_work_pending); 517 518 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1) 519 #define test_irq_work_pending() __this_cpu_read(irq_work_pending) 520 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0) 521 522 #endif /* 32 vs 64 bit */ 523 524 void arch_irq_work_raise(void) 525 { 526 /* 527 * 64-bit code that uses irq soft-mask can just cause an immediate 528 * interrupt here that gets soft masked, if this is called under 529 * local_irq_disable(). It might be possible to prevent that happening 530 * by noticing interrupts are disabled and setting decrementer pending 531 * to be replayed when irqs are enabled. The problem there is that 532 * tracing can call irq_work_raise, including in code that does low 533 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on) 534 * which could get tangled up if we're messing with the same state 535 * here. 536 */ 537 preempt_disable(); 538 set_irq_work_pending_flag(); 539 set_dec(1); 540 preempt_enable(); 541 } 542 543 #else /* CONFIG_IRQ_WORK */ 544 545 #define test_irq_work_pending() 0 546 #define clear_irq_work_pending() 547 548 #endif /* CONFIG_IRQ_WORK */ 549 550 /* 551 * timer_interrupt - gets called when the decrementer overflows, 552 * with interrupts disabled. 553 */ 554 DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt) 555 { 556 struct clock_event_device *evt = this_cpu_ptr(&decrementers); 557 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 558 struct pt_regs *old_regs; 559 u64 now; 560 561 /* 562 * Some implementations of hotplug will get timer interrupts while 563 * offline, just ignore these. 564 */ 565 if (unlikely(!cpu_online(smp_processor_id()))) { 566 set_dec(decrementer_max); 567 return; 568 } 569 570 /* Ensure a positive value is written to the decrementer, or else 571 * some CPUs will continue to take decrementer exceptions. When the 572 * PPC_WATCHDOG (decrementer based) is configured, keep this at most 573 * 31 bits, which is about 4 seconds on most systems, which gives 574 * the watchdog a chance of catching timer interrupt hard lockups. 575 */ 576 if (IS_ENABLED(CONFIG_PPC_WATCHDOG)) 577 set_dec(0x7fffffff); 578 else 579 set_dec(decrementer_max); 580 581 /* Conditionally hard-enable interrupts now that the DEC has been 582 * bumped to its maximum value 583 */ 584 may_hard_irq_enable(); 585 586 587 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC) 588 if (atomic_read(&ppc_n_lost_interrupts) != 0) 589 do_IRQ(regs); 590 #endif 591 592 old_regs = set_irq_regs(regs); 593 594 trace_timer_interrupt_entry(regs); 595 596 if (test_irq_work_pending()) { 597 clear_irq_work_pending(); 598 irq_work_run(); 599 } 600 601 now = get_tb(); 602 if (now >= *next_tb) { 603 *next_tb = ~(u64)0; 604 if (evt->event_handler) 605 evt->event_handler(evt); 606 __this_cpu_inc(irq_stat.timer_irqs_event); 607 } else { 608 now = *next_tb - now; 609 if (now <= decrementer_max) 610 set_dec(now); 611 /* We may have raced with new irq work */ 612 if (test_irq_work_pending()) 613 set_dec(1); 614 __this_cpu_inc(irq_stat.timer_irqs_others); 615 } 616 617 trace_timer_interrupt_exit(regs); 618 619 set_irq_regs(old_regs); 620 } 621 EXPORT_SYMBOL(timer_interrupt); 622 623 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 624 void timer_broadcast_interrupt(void) 625 { 626 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb); 627 628 *next_tb = ~(u64)0; 629 tick_receive_broadcast(); 630 __this_cpu_inc(irq_stat.broadcast_irqs_event); 631 } 632 #endif 633 634 #ifdef CONFIG_SUSPEND 635 static void generic_suspend_disable_irqs(void) 636 { 637 /* Disable the decrementer, so that it doesn't interfere 638 * with suspending. 639 */ 640 641 set_dec(decrementer_max); 642 local_irq_disable(); 643 set_dec(decrementer_max); 644 } 645 646 static void generic_suspend_enable_irqs(void) 647 { 648 local_irq_enable(); 649 } 650 651 /* Overrides the weak version in kernel/power/main.c */ 652 void arch_suspend_disable_irqs(void) 653 { 654 if (ppc_md.suspend_disable_irqs) 655 ppc_md.suspend_disable_irqs(); 656 generic_suspend_disable_irqs(); 657 } 658 659 /* Overrides the weak version in kernel/power/main.c */ 660 void arch_suspend_enable_irqs(void) 661 { 662 generic_suspend_enable_irqs(); 663 if (ppc_md.suspend_enable_irqs) 664 ppc_md.suspend_enable_irqs(); 665 } 666 #endif 667 668 unsigned long long tb_to_ns(unsigned long long ticks) 669 { 670 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift; 671 } 672 EXPORT_SYMBOL_GPL(tb_to_ns); 673 674 /* 675 * Scheduler clock - returns current time in nanosec units. 676 * 677 * Note: mulhdu(a, b) (multiply high double unsigned) returns 678 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 679 * are 64-bit unsigned numbers. 680 */ 681 notrace unsigned long long sched_clock(void) 682 { 683 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 684 } 685 686 687 #ifdef CONFIG_PPC_PSERIES 688 689 /* 690 * Running clock - attempts to give a view of time passing for a virtualised 691 * kernels. 692 * Uses the VTB register if available otherwise a next best guess. 693 */ 694 unsigned long long running_clock(void) 695 { 696 /* 697 * Don't read the VTB as a host since KVM does not switch in host 698 * timebase into the VTB when it takes a guest off the CPU, reading the 699 * VTB would result in reading 'last switched out' guest VTB. 700 * 701 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it 702 * would be unsafe to rely only on the #ifdef above. 703 */ 704 if (firmware_has_feature(FW_FEATURE_LPAR) && 705 cpu_has_feature(CPU_FTR_ARCH_207S)) 706 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 707 708 /* 709 * This is a next best approximation without a VTB. 710 * On a host which is running bare metal there should never be any stolen 711 * time and on a host which doesn't do any virtualisation TB *should* equal 712 * VTB so it makes no difference anyway. 713 */ 714 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL]; 715 } 716 #endif 717 718 static int __init get_freq(char *name, int cells, unsigned long *val) 719 { 720 struct device_node *cpu; 721 const __be32 *fp; 722 int found = 0; 723 724 /* The cpu node should have timebase and clock frequency properties */ 725 cpu = of_find_node_by_type(NULL, "cpu"); 726 727 if (cpu) { 728 fp = of_get_property(cpu, name, NULL); 729 if (fp) { 730 found = 1; 731 *val = of_read_ulong(fp, cells); 732 } 733 734 of_node_put(cpu); 735 } 736 737 return found; 738 } 739 740 static void start_cpu_decrementer(void) 741 { 742 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 743 unsigned int tcr; 744 745 /* Clear any pending timer interrupts */ 746 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 747 748 tcr = mfspr(SPRN_TCR); 749 /* 750 * The watchdog may have already been enabled by u-boot. So leave 751 * TRC[WP] (Watchdog Period) alone. 752 */ 753 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */ 754 tcr |= TCR_DIE; /* Enable decrementer */ 755 mtspr(SPRN_TCR, tcr); 756 #endif 757 } 758 759 void __init generic_calibrate_decr(void) 760 { 761 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 762 763 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 764 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 765 766 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 767 "(not found)\n"); 768 } 769 770 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 771 772 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 773 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 774 775 printk(KERN_ERR "WARNING: Estimating processor frequency " 776 "(not found)\n"); 777 } 778 } 779 780 int update_persistent_clock64(struct timespec64 now) 781 { 782 struct rtc_time tm; 783 784 if (!ppc_md.set_rtc_time) 785 return -ENODEV; 786 787 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm); 788 789 return ppc_md.set_rtc_time(&tm); 790 } 791 792 static void __read_persistent_clock(struct timespec64 *ts) 793 { 794 struct rtc_time tm; 795 static int first = 1; 796 797 ts->tv_nsec = 0; 798 /* XXX this is a litle fragile but will work okay in the short term */ 799 if (first) { 800 first = 0; 801 if (ppc_md.time_init) 802 timezone_offset = ppc_md.time_init(); 803 804 /* get_boot_time() isn't guaranteed to be safe to call late */ 805 if (ppc_md.get_boot_time) { 806 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset; 807 return; 808 } 809 } 810 if (!ppc_md.get_rtc_time) { 811 ts->tv_sec = 0; 812 return; 813 } 814 ppc_md.get_rtc_time(&tm); 815 816 ts->tv_sec = rtc_tm_to_time64(&tm); 817 } 818 819 void read_persistent_clock64(struct timespec64 *ts) 820 { 821 __read_persistent_clock(ts); 822 823 /* Sanitize it in case real time clock is set below EPOCH */ 824 if (ts->tv_sec < 0) { 825 ts->tv_sec = 0; 826 ts->tv_nsec = 0; 827 } 828 829 } 830 831 /* clocksource code */ 832 static notrace u64 timebase_read(struct clocksource *cs) 833 { 834 return (u64)get_tb(); 835 } 836 837 static void __init clocksource_init(void) 838 { 839 struct clocksource *clock = &clocksource_timebase; 840 841 if (clocksource_register_hz(clock, tb_ticks_per_sec)) { 842 printk(KERN_ERR "clocksource: %s is already registered\n", 843 clock->name); 844 return; 845 } 846 847 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 848 clock->name, clock->mult, clock->shift); 849 } 850 851 static int decrementer_set_next_event(unsigned long evt, 852 struct clock_event_device *dev) 853 { 854 __this_cpu_write(decrementers_next_tb, get_tb() + evt); 855 set_dec(evt); 856 857 /* We may have raced with new irq work */ 858 if (test_irq_work_pending()) 859 set_dec(1); 860 861 return 0; 862 } 863 864 static int decrementer_shutdown(struct clock_event_device *dev) 865 { 866 decrementer_set_next_event(decrementer_max, dev); 867 return 0; 868 } 869 870 static void register_decrementer_clockevent(int cpu) 871 { 872 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 873 874 *dec = decrementer_clockevent; 875 dec->cpumask = cpumask_of(cpu); 876 877 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max); 878 879 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n", 880 dec->name, dec->mult, dec->shift, cpu); 881 882 /* Set values for KVM, see kvm_emulate_dec() */ 883 decrementer_clockevent.mult = dec->mult; 884 decrementer_clockevent.shift = dec->shift; 885 } 886 887 static void enable_large_decrementer(void) 888 { 889 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 890 return; 891 892 if (decrementer_max <= DECREMENTER_DEFAULT_MAX) 893 return; 894 895 /* 896 * If we're running as the hypervisor we need to enable the LD manually 897 * otherwise firmware should have done it for us. 898 */ 899 if (cpu_has_feature(CPU_FTR_HVMODE)) 900 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD); 901 } 902 903 static void __init set_decrementer_max(void) 904 { 905 struct device_node *cpu; 906 u32 bits = 32; 907 908 /* Prior to ISAv3 the decrementer is always 32 bit */ 909 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 910 return; 911 912 cpu = of_find_node_by_type(NULL, "cpu"); 913 914 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) { 915 if (bits > 64 || bits < 32) { 916 pr_warn("time_init: firmware supplied invalid ibm,dec-bits"); 917 bits = 32; 918 } 919 920 /* calculate the signed maximum given this many bits */ 921 decrementer_max = (1ul << (bits - 1)) - 1; 922 } 923 924 of_node_put(cpu); 925 926 pr_info("time_init: %u bit decrementer (max: %llx)\n", 927 bits, decrementer_max); 928 } 929 930 static void __init init_decrementer_clockevent(void) 931 { 932 register_decrementer_clockevent(smp_processor_id()); 933 } 934 935 void secondary_cpu_time_init(void) 936 { 937 /* Enable and test the large decrementer for this cpu */ 938 enable_large_decrementer(); 939 940 /* Start the decrementer on CPUs that have manual control 941 * such as BookE 942 */ 943 start_cpu_decrementer(); 944 945 /* FIME: Should make unrelatred change to move snapshot_timebase 946 * call here ! */ 947 register_decrementer_clockevent(smp_processor_id()); 948 } 949 950 /* This function is only called on the boot processor */ 951 void __init time_init(void) 952 { 953 struct div_result res; 954 u64 scale; 955 unsigned shift; 956 957 /* Normal PowerPC with timebase register */ 958 ppc_md.calibrate_decr(); 959 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 960 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 961 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 962 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 963 964 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 965 tb_ticks_per_sec = ppc_tb_freq; 966 tb_ticks_per_usec = ppc_tb_freq / 1000000; 967 calc_cputime_factors(); 968 969 /* 970 * Compute scale factor for sched_clock. 971 * The calibrate_decr() function has set tb_ticks_per_sec, 972 * which is the timebase frequency. 973 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 974 * the 128-bit result as a 64.64 fixed-point number. 975 * We then shift that number right until it is less than 1.0, 976 * giving us the scale factor and shift count to use in 977 * sched_clock(). 978 */ 979 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 980 scale = res.result_low; 981 for (shift = 0; res.result_high != 0; ++shift) { 982 scale = (scale >> 1) | (res.result_high << 63); 983 res.result_high >>= 1; 984 } 985 tb_to_ns_scale = scale; 986 tb_to_ns_shift = shift; 987 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 988 boot_tb = get_tb(); 989 990 /* If platform provided a timezone (pmac), we correct the time */ 991 if (timezone_offset) { 992 sys_tz.tz_minuteswest = -timezone_offset / 60; 993 sys_tz.tz_dsttime = 0; 994 } 995 996 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 997 998 /* initialise and enable the large decrementer (if we have one) */ 999 set_decrementer_max(); 1000 enable_large_decrementer(); 1001 1002 /* Start the decrementer on CPUs that have manual control 1003 * such as BookE 1004 */ 1005 start_cpu_decrementer(); 1006 1007 /* Register the clocksource */ 1008 clocksource_init(); 1009 1010 init_decrementer_clockevent(); 1011 tick_setup_hrtimer_broadcast(); 1012 1013 of_clk_init(NULL); 1014 enable_sched_clock_irqtime(); 1015 } 1016 1017 /* 1018 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1019 * result. 1020 */ 1021 void div128_by_32(u64 dividend_high, u64 dividend_low, 1022 unsigned divisor, struct div_result *dr) 1023 { 1024 unsigned long a, b, c, d; 1025 unsigned long w, x, y, z; 1026 u64 ra, rb, rc; 1027 1028 a = dividend_high >> 32; 1029 b = dividend_high & 0xffffffff; 1030 c = dividend_low >> 32; 1031 d = dividend_low & 0xffffffff; 1032 1033 w = a / divisor; 1034 ra = ((u64)(a - (w * divisor)) << 32) + b; 1035 1036 rb = ((u64) do_div(ra, divisor) << 32) + c; 1037 x = ra; 1038 1039 rc = ((u64) do_div(rb, divisor) << 32) + d; 1040 y = rb; 1041 1042 do_div(rc, divisor); 1043 z = rc; 1044 1045 dr->result_high = ((u64)w << 32) + x; 1046 dr->result_low = ((u64)y << 32) + z; 1047 1048 } 1049 1050 /* We don't need to calibrate delay, we use the CPU timebase for that */ 1051 void calibrate_delay(void) 1052 { 1053 /* Some generic code (such as spinlock debug) use loops_per_jiffy 1054 * as the number of __delay(1) in a jiffy, so make it so 1055 */ 1056 loops_per_jiffy = tb_ticks_per_jiffy; 1057 } 1058 1059 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 1060 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 1061 { 1062 ppc_md.get_rtc_time(tm); 1063 return 0; 1064 } 1065 1066 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 1067 { 1068 if (!ppc_md.set_rtc_time) 1069 return -EOPNOTSUPP; 1070 1071 if (ppc_md.set_rtc_time(tm) < 0) 1072 return -EOPNOTSUPP; 1073 1074 return 0; 1075 } 1076 1077 static const struct rtc_class_ops rtc_generic_ops = { 1078 .read_time = rtc_generic_get_time, 1079 .set_time = rtc_generic_set_time, 1080 }; 1081 1082 static int __init rtc_init(void) 1083 { 1084 struct platform_device *pdev; 1085 1086 if (!ppc_md.get_rtc_time) 1087 return -ENODEV; 1088 1089 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 1090 &rtc_generic_ops, 1091 sizeof(rtc_generic_ops)); 1092 1093 return PTR_ERR_OR_ZERO(pdev); 1094 } 1095 1096 device_initcall(rtc_init); 1097 #endif 1098