xref: /openbmc/linux/arch/powerpc/kernel/smp.c (revision faa16bc4)
1 /*
2  * SMP support for ppc.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5  * deal of code from the sparc and intel versions.
6  *
7  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8  *
9  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17 
18 #undef DEBUG
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/topology.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/spinlock.h>
29 #include <linux/cache.h>
30 #include <linux/err.h>
31 #include <linux/device.h>
32 #include <linux/cpu.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/profile.h>
36 #include <linux/processor.h>
37 
38 #include <asm/ptrace.h>
39 #include <linux/atomic.h>
40 #include <asm/irq.h>
41 #include <asm/hw_irq.h>
42 #include <asm/kvm_ppc.h>
43 #include <asm/dbell.h>
44 #include <asm/page.h>
45 #include <asm/pgtable.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/kexec.h>
60 #include <asm/asm-prototypes.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/ftrace.h>
63 
64 #ifdef DEBUG
65 #include <asm/udbg.h>
66 #define DBG(fmt...) udbg_printf(fmt)
67 #else
68 #define DBG(fmt...)
69 #endif
70 
71 #ifdef CONFIG_HOTPLUG_CPU
72 /* State of each CPU during hotplug phases */
73 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
74 #endif
75 
76 struct thread_info *secondary_ti;
77 
78 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
79 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
80 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
81 
82 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
83 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
84 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
85 
86 /* SMP operations for this machine */
87 struct smp_ops_t *smp_ops;
88 
89 /* Can't be static due to PowerMac hackery */
90 volatile unsigned int cpu_callin_map[NR_CPUS];
91 
92 int smt_enabled_at_boot = 1;
93 
94 /*
95  * Returns 1 if the specified cpu should be brought up during boot.
96  * Used to inhibit booting threads if they've been disabled or
97  * limited on the command line
98  */
99 int smp_generic_cpu_bootable(unsigned int nr)
100 {
101 	/* Special case - we inhibit secondary thread startup
102 	 * during boot if the user requests it.
103 	 */
104 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
105 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
106 			return 0;
107 		if (smt_enabled_at_boot
108 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
109 			return 0;
110 	}
111 
112 	return 1;
113 }
114 
115 
116 #ifdef CONFIG_PPC64
117 int smp_generic_kick_cpu(int nr)
118 {
119 	if (nr < 0 || nr >= nr_cpu_ids)
120 		return -EINVAL;
121 
122 	/*
123 	 * The processor is currently spinning, waiting for the
124 	 * cpu_start field to become non-zero After we set cpu_start,
125 	 * the processor will continue on to secondary_start
126 	 */
127 	if (!paca_ptrs[nr]->cpu_start) {
128 		paca_ptrs[nr]->cpu_start = 1;
129 		smp_mb();
130 		return 0;
131 	}
132 
133 #ifdef CONFIG_HOTPLUG_CPU
134 	/*
135 	 * Ok it's not there, so it might be soft-unplugged, let's
136 	 * try to bring it back
137 	 */
138 	generic_set_cpu_up(nr);
139 	smp_wmb();
140 	smp_send_reschedule(nr);
141 #endif /* CONFIG_HOTPLUG_CPU */
142 
143 	return 0;
144 }
145 #endif /* CONFIG_PPC64 */
146 
147 static irqreturn_t call_function_action(int irq, void *data)
148 {
149 	generic_smp_call_function_interrupt();
150 	return IRQ_HANDLED;
151 }
152 
153 static irqreturn_t reschedule_action(int irq, void *data)
154 {
155 	scheduler_ipi();
156 	return IRQ_HANDLED;
157 }
158 
159 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
160 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
161 {
162 	timer_broadcast_interrupt();
163 	return IRQ_HANDLED;
164 }
165 #endif
166 
167 #ifdef CONFIG_NMI_IPI
168 static irqreturn_t nmi_ipi_action(int irq, void *data)
169 {
170 	smp_handle_nmi_ipi(get_irq_regs());
171 	return IRQ_HANDLED;
172 }
173 #endif
174 
175 static irq_handler_t smp_ipi_action[] = {
176 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
177 	[PPC_MSG_RESCHEDULE] = reschedule_action,
178 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
179 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
180 #endif
181 #ifdef CONFIG_NMI_IPI
182 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
183 #endif
184 };
185 
186 /*
187  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
188  * than going through the call function infrastructure, and strongly
189  * serialized, so it is more appropriate for debugging.
190  */
191 const char *smp_ipi_name[] = {
192 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
193 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
194 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
195 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
196 #endif
197 #ifdef CONFIG_NMI_IPI
198 	[PPC_MSG_NMI_IPI] = "nmi ipi",
199 #endif
200 };
201 
202 /* optional function to request ipi, for controllers with >= 4 ipis */
203 int smp_request_message_ipi(int virq, int msg)
204 {
205 	int err;
206 
207 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
208 		return -EINVAL;
209 #ifndef CONFIG_NMI_IPI
210 	if (msg == PPC_MSG_NMI_IPI)
211 		return 1;
212 #endif
213 
214 	err = request_irq(virq, smp_ipi_action[msg],
215 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
216 			  smp_ipi_name[msg], NULL);
217 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
218 		virq, smp_ipi_name[msg], err);
219 
220 	return err;
221 }
222 
223 #ifdef CONFIG_PPC_SMP_MUXED_IPI
224 struct cpu_messages {
225 	long messages;			/* current messages */
226 };
227 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
228 
229 void smp_muxed_ipi_set_message(int cpu, int msg)
230 {
231 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
232 	char *message = (char *)&info->messages;
233 
234 	/*
235 	 * Order previous accesses before accesses in the IPI handler.
236 	 */
237 	smp_mb();
238 	message[msg] = 1;
239 }
240 
241 void smp_muxed_ipi_message_pass(int cpu, int msg)
242 {
243 	smp_muxed_ipi_set_message(cpu, msg);
244 
245 	/*
246 	 * cause_ipi functions are required to include a full barrier
247 	 * before doing whatever causes the IPI.
248 	 */
249 	smp_ops->cause_ipi(cpu);
250 }
251 
252 #ifdef __BIG_ENDIAN__
253 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
254 #else
255 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
256 #endif
257 
258 irqreturn_t smp_ipi_demux(void)
259 {
260 	mb();	/* order any irq clear */
261 
262 	return smp_ipi_demux_relaxed();
263 }
264 
265 /* sync-free variant. Callers should ensure synchronization */
266 irqreturn_t smp_ipi_demux_relaxed(void)
267 {
268 	struct cpu_messages *info;
269 	unsigned long all;
270 
271 	info = this_cpu_ptr(&ipi_message);
272 	do {
273 		all = xchg(&info->messages, 0);
274 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
275 		/*
276 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
277 		 * before PPC_MSG_CALL_FUNCTION messages because when
278 		 * a VM is destroyed, we call kick_all_cpus_sync()
279 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
280 		 * messages have completed before we free any VCPUs.
281 		 */
282 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
283 			kvmppc_xics_ipi_action();
284 #endif
285 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
286 			generic_smp_call_function_interrupt();
287 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
288 			scheduler_ipi();
289 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
290 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
291 			timer_broadcast_interrupt();
292 #endif
293 #ifdef CONFIG_NMI_IPI
294 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
295 			nmi_ipi_action(0, NULL);
296 #endif
297 	} while (info->messages);
298 
299 	return IRQ_HANDLED;
300 }
301 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
302 
303 static inline void do_message_pass(int cpu, int msg)
304 {
305 	if (smp_ops->message_pass)
306 		smp_ops->message_pass(cpu, msg);
307 #ifdef CONFIG_PPC_SMP_MUXED_IPI
308 	else
309 		smp_muxed_ipi_message_pass(cpu, msg);
310 #endif
311 }
312 
313 void smp_send_reschedule(int cpu)
314 {
315 	if (likely(smp_ops))
316 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
317 }
318 EXPORT_SYMBOL_GPL(smp_send_reschedule);
319 
320 void arch_send_call_function_single_ipi(int cpu)
321 {
322 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
323 }
324 
325 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
326 {
327 	unsigned int cpu;
328 
329 	for_each_cpu(cpu, mask)
330 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
331 }
332 
333 #ifdef CONFIG_NMI_IPI
334 
335 /*
336  * "NMI IPI" system.
337  *
338  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
339  * a running system. They can be used for crash, debug, halt/reboot, etc.
340  *
341  * NMI IPIs are globally single threaded. No more than one in progress at
342  * any time.
343  *
344  * The IPI call waits with interrupts disabled until all targets enter the
345  * NMI handler, then the call returns.
346  *
347  * No new NMI can be initiated until targets exit the handler.
348  *
349  * The IPI call may time out without all targets entering the NMI handler.
350  * In that case, there is some logic to recover (and ignore subsequent
351  * NMI interrupts that may eventually be raised), but the platform interrupt
352  * handler may not be able to distinguish this from other exception causes,
353  * which may cause a crash.
354  */
355 
356 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
357 static struct cpumask nmi_ipi_pending_mask;
358 static int nmi_ipi_busy_count = 0;
359 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
360 
361 static void nmi_ipi_lock_start(unsigned long *flags)
362 {
363 	raw_local_irq_save(*flags);
364 	hard_irq_disable();
365 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
366 		raw_local_irq_restore(*flags);
367 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
368 		raw_local_irq_save(*flags);
369 		hard_irq_disable();
370 	}
371 }
372 
373 static void nmi_ipi_lock(void)
374 {
375 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
376 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
377 }
378 
379 static void nmi_ipi_unlock(void)
380 {
381 	smp_mb();
382 	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
383 	atomic_set(&__nmi_ipi_lock, 0);
384 }
385 
386 static void nmi_ipi_unlock_end(unsigned long *flags)
387 {
388 	nmi_ipi_unlock();
389 	raw_local_irq_restore(*flags);
390 }
391 
392 /*
393  * Platform NMI handler calls this to ack
394  */
395 int smp_handle_nmi_ipi(struct pt_regs *regs)
396 {
397 	void (*fn)(struct pt_regs *);
398 	unsigned long flags;
399 	int me = raw_smp_processor_id();
400 	int ret = 0;
401 
402 	/*
403 	 * Unexpected NMIs are possible here because the interrupt may not
404 	 * be able to distinguish NMI IPIs from other types of NMIs, or
405 	 * because the caller may have timed out.
406 	 */
407 	nmi_ipi_lock_start(&flags);
408 	if (!nmi_ipi_busy_count)
409 		goto out;
410 	if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
411 		goto out;
412 
413 	fn = nmi_ipi_function;
414 	if (!fn)
415 		goto out;
416 
417 	cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
418 	nmi_ipi_busy_count++;
419 	nmi_ipi_unlock();
420 
421 	ret = 1;
422 
423 	fn(regs);
424 
425 	nmi_ipi_lock();
426 	nmi_ipi_busy_count--;
427 out:
428 	nmi_ipi_unlock_end(&flags);
429 
430 	return ret;
431 }
432 
433 static void do_smp_send_nmi_ipi(int cpu, bool safe)
434 {
435 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
436 		return;
437 
438 	if (cpu >= 0) {
439 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
440 	} else {
441 		int c;
442 
443 		for_each_online_cpu(c) {
444 			if (c == raw_smp_processor_id())
445 				continue;
446 			do_message_pass(c, PPC_MSG_NMI_IPI);
447 		}
448 	}
449 }
450 
451 void smp_flush_nmi_ipi(u64 delay_us)
452 {
453 	unsigned long flags;
454 
455 	nmi_ipi_lock_start(&flags);
456 	while (nmi_ipi_busy_count) {
457 		nmi_ipi_unlock_end(&flags);
458 		udelay(1);
459 		if (delay_us) {
460 			delay_us--;
461 			if (!delay_us)
462 				return;
463 		}
464 		nmi_ipi_lock_start(&flags);
465 	}
466 	nmi_ipi_unlock_end(&flags);
467 }
468 
469 /*
470  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
471  * - fn is the target callback function.
472  * - delay_us > 0 is the delay before giving up waiting for targets to
473  *   enter the handler, == 0 specifies indefinite delay.
474  */
475 int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us, bool safe)
476 {
477 	unsigned long flags;
478 	int me = raw_smp_processor_id();
479 	int ret = 1;
480 
481 	BUG_ON(cpu == me);
482 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
483 
484 	if (unlikely(!smp_ops))
485 		return 0;
486 
487 	/* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
488 	nmi_ipi_lock_start(&flags);
489 	while (nmi_ipi_busy_count) {
490 		nmi_ipi_unlock_end(&flags);
491 		spin_until_cond(nmi_ipi_busy_count == 0);
492 		nmi_ipi_lock_start(&flags);
493 	}
494 
495 	nmi_ipi_function = fn;
496 
497 	if (cpu < 0) {
498 		/* ALL_OTHERS */
499 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
500 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
501 	} else {
502 		/* cpumask starts clear */
503 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
504 	}
505 	nmi_ipi_busy_count++;
506 	nmi_ipi_unlock();
507 
508 	do_smp_send_nmi_ipi(cpu, safe);
509 
510 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
511 		udelay(1);
512 		if (delay_us) {
513 			delay_us--;
514 			if (!delay_us)
515 				break;
516 		}
517 	}
518 
519 	nmi_ipi_lock();
520 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
521 		/* Could not gather all CPUs */
522 		ret = 0;
523 		cpumask_clear(&nmi_ipi_pending_mask);
524 	}
525 	nmi_ipi_busy_count--;
526 	nmi_ipi_unlock_end(&flags);
527 
528 	return ret;
529 }
530 
531 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
532 {
533 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
534 }
535 
536 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
537 {
538 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
539 }
540 #endif /* CONFIG_NMI_IPI */
541 
542 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
543 void tick_broadcast(const struct cpumask *mask)
544 {
545 	unsigned int cpu;
546 
547 	for_each_cpu(cpu, mask)
548 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
549 }
550 #endif
551 
552 #ifdef CONFIG_DEBUGGER
553 void debugger_ipi_callback(struct pt_regs *regs)
554 {
555 	debugger_ipi(regs);
556 }
557 
558 void smp_send_debugger_break(void)
559 {
560 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
561 }
562 #endif
563 
564 #ifdef CONFIG_KEXEC_CORE
565 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
566 {
567 	int cpu;
568 
569 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
570 	if (kdump_in_progress() && crash_wake_offline) {
571 		for_each_present_cpu(cpu) {
572 			if (cpu_online(cpu))
573 				continue;
574 			/*
575 			 * crash_ipi_callback will wait for
576 			 * all cpus, including offline CPUs.
577 			 * We don't care about nmi_ipi_function.
578 			 * Offline cpus will jump straight into
579 			 * crash_ipi_callback, we can skip the
580 			 * entire NMI dance and waiting for
581 			 * cpus to clear pending mask, etc.
582 			 */
583 			do_smp_send_nmi_ipi(cpu, false);
584 		}
585 	}
586 }
587 #endif
588 
589 #ifdef CONFIG_NMI_IPI
590 static void nmi_stop_this_cpu(struct pt_regs *regs)
591 {
592 	/*
593 	 * This is a special case because it never returns, so the NMI IPI
594 	 * handling would never mark it as done, which makes any later
595 	 * smp_send_nmi_ipi() call spin forever. Mark it done now.
596 	 *
597 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
598 	 */
599 	nmi_ipi_lock();
600 	nmi_ipi_busy_count--;
601 	nmi_ipi_unlock();
602 
603 	/* Remove this CPU */
604 	set_cpu_online(smp_processor_id(), false);
605 
606 	spin_begin();
607 	while (1)
608 		spin_cpu_relax();
609 }
610 
611 void smp_send_stop(void)
612 {
613 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
614 }
615 
616 #else /* CONFIG_NMI_IPI */
617 
618 static void stop_this_cpu(void *dummy)
619 {
620 	/* Remove this CPU */
621 	set_cpu_online(smp_processor_id(), false);
622 
623 	hard_irq_disable();
624 	spin_begin();
625 	while (1)
626 		spin_cpu_relax();
627 }
628 
629 void smp_send_stop(void)
630 {
631 	static bool stopped = false;
632 
633 	/*
634 	 * Prevent waiting on csd lock from a previous smp_send_stop.
635 	 * This is racy, but in general callers try to do the right
636 	 * thing and only fire off one smp_send_stop (e.g., see
637 	 * kernel/panic.c)
638 	 */
639 	if (stopped)
640 		return;
641 
642 	stopped = true;
643 
644 	smp_call_function(stop_this_cpu, NULL, 0);
645 }
646 #endif /* CONFIG_NMI_IPI */
647 
648 struct thread_info *current_set[NR_CPUS];
649 
650 static void smp_store_cpu_info(int id)
651 {
652 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
653 #ifdef CONFIG_PPC_FSL_BOOK3E
654 	per_cpu(next_tlbcam_idx, id)
655 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
656 #endif
657 }
658 
659 /*
660  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
661  * rather than just passing around the cpumask we pass around a function that
662  * returns the that cpumask for the given CPU.
663  */
664 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
665 {
666 	cpumask_set_cpu(i, get_cpumask(j));
667 	cpumask_set_cpu(j, get_cpumask(i));
668 }
669 
670 #ifdef CONFIG_HOTPLUG_CPU
671 static void set_cpus_unrelated(int i, int j,
672 		struct cpumask *(*get_cpumask)(int))
673 {
674 	cpumask_clear_cpu(i, get_cpumask(j));
675 	cpumask_clear_cpu(j, get_cpumask(i));
676 }
677 #endif
678 
679 void __init smp_prepare_cpus(unsigned int max_cpus)
680 {
681 	unsigned int cpu;
682 
683 	DBG("smp_prepare_cpus\n");
684 
685 	/*
686 	 * setup_cpu may need to be called on the boot cpu. We havent
687 	 * spun any cpus up but lets be paranoid.
688 	 */
689 	BUG_ON(boot_cpuid != smp_processor_id());
690 
691 	/* Fixup boot cpu */
692 	smp_store_cpu_info(boot_cpuid);
693 	cpu_callin_map[boot_cpuid] = 1;
694 
695 	for_each_possible_cpu(cpu) {
696 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
697 					GFP_KERNEL, cpu_to_node(cpu));
698 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
699 					GFP_KERNEL, cpu_to_node(cpu));
700 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
701 					GFP_KERNEL, cpu_to_node(cpu));
702 		/*
703 		 * numa_node_id() works after this.
704 		 */
705 		if (cpu_present(cpu)) {
706 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
707 			set_cpu_numa_mem(cpu,
708 				local_memory_node(numa_cpu_lookup_table[cpu]));
709 		}
710 	}
711 
712 	/* Init the cpumasks so the boot CPU is related to itself */
713 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
714 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
715 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
716 
717 	if (smp_ops && smp_ops->probe)
718 		smp_ops->probe();
719 }
720 
721 void smp_prepare_boot_cpu(void)
722 {
723 	BUG_ON(smp_processor_id() != boot_cpuid);
724 #ifdef CONFIG_PPC64
725 	paca_ptrs[boot_cpuid]->__current = current;
726 #endif
727 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
728 	current_set[boot_cpuid] = task_thread_info(current);
729 }
730 
731 #ifdef CONFIG_HOTPLUG_CPU
732 
733 int generic_cpu_disable(void)
734 {
735 	unsigned int cpu = smp_processor_id();
736 
737 	if (cpu == boot_cpuid)
738 		return -EBUSY;
739 
740 	set_cpu_online(cpu, false);
741 #ifdef CONFIG_PPC64
742 	vdso_data->processorCount--;
743 #endif
744 	/* Update affinity of all IRQs previously aimed at this CPU */
745 	irq_migrate_all_off_this_cpu();
746 
747 	/*
748 	 * Depending on the details of the interrupt controller, it's possible
749 	 * that one of the interrupts we just migrated away from this CPU is
750 	 * actually already pending on this CPU. If we leave it in that state
751 	 * the interrupt will never be EOI'ed, and will never fire again. So
752 	 * temporarily enable interrupts here, to allow any pending interrupt to
753 	 * be received (and EOI'ed), before we take this CPU offline.
754 	 */
755 	local_irq_enable();
756 	mdelay(1);
757 	local_irq_disable();
758 
759 	return 0;
760 }
761 
762 void generic_cpu_die(unsigned int cpu)
763 {
764 	int i;
765 
766 	for (i = 0; i < 100; i++) {
767 		smp_rmb();
768 		if (is_cpu_dead(cpu))
769 			return;
770 		msleep(100);
771 	}
772 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
773 }
774 
775 void generic_set_cpu_dead(unsigned int cpu)
776 {
777 	per_cpu(cpu_state, cpu) = CPU_DEAD;
778 }
779 
780 /*
781  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
782  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
783  * which makes the delay in generic_cpu_die() not happen.
784  */
785 void generic_set_cpu_up(unsigned int cpu)
786 {
787 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
788 }
789 
790 int generic_check_cpu_restart(unsigned int cpu)
791 {
792 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
793 }
794 
795 int is_cpu_dead(unsigned int cpu)
796 {
797 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
798 }
799 
800 static bool secondaries_inhibited(void)
801 {
802 	return kvm_hv_mode_active();
803 }
804 
805 #else /* HOTPLUG_CPU */
806 
807 #define secondaries_inhibited()		0
808 
809 #endif
810 
811 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
812 {
813 	struct thread_info *ti = task_thread_info(idle);
814 
815 #ifdef CONFIG_PPC64
816 	paca_ptrs[cpu]->__current = idle;
817 	paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
818 #endif
819 	ti->cpu = cpu;
820 	secondary_ti = current_set[cpu] = ti;
821 }
822 
823 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
824 {
825 	int rc, c;
826 
827 	/*
828 	 * Don't allow secondary threads to come online if inhibited
829 	 */
830 	if (threads_per_core > 1 && secondaries_inhibited() &&
831 	    cpu_thread_in_subcore(cpu))
832 		return -EBUSY;
833 
834 	if (smp_ops == NULL ||
835 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
836 		return -EINVAL;
837 
838 	cpu_idle_thread_init(cpu, tidle);
839 
840 	/*
841 	 * The platform might need to allocate resources prior to bringing
842 	 * up the CPU
843 	 */
844 	if (smp_ops->prepare_cpu) {
845 		rc = smp_ops->prepare_cpu(cpu);
846 		if (rc)
847 			return rc;
848 	}
849 
850 	/* Make sure callin-map entry is 0 (can be leftover a CPU
851 	 * hotplug
852 	 */
853 	cpu_callin_map[cpu] = 0;
854 
855 	/* The information for processor bringup must
856 	 * be written out to main store before we release
857 	 * the processor.
858 	 */
859 	smp_mb();
860 
861 	/* wake up cpus */
862 	DBG("smp: kicking cpu %d\n", cpu);
863 	rc = smp_ops->kick_cpu(cpu);
864 	if (rc) {
865 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
866 		return rc;
867 	}
868 
869 	/*
870 	 * wait to see if the cpu made a callin (is actually up).
871 	 * use this value that I found through experimentation.
872 	 * -- Cort
873 	 */
874 	if (system_state < SYSTEM_RUNNING)
875 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
876 			udelay(100);
877 #ifdef CONFIG_HOTPLUG_CPU
878 	else
879 		/*
880 		 * CPUs can take much longer to come up in the
881 		 * hotplug case.  Wait five seconds.
882 		 */
883 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
884 			msleep(1);
885 #endif
886 
887 	if (!cpu_callin_map[cpu]) {
888 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
889 		return -ENOENT;
890 	}
891 
892 	DBG("Processor %u found.\n", cpu);
893 
894 	if (smp_ops->give_timebase)
895 		smp_ops->give_timebase();
896 
897 	/* Wait until cpu puts itself in the online & active maps */
898 	spin_until_cond(cpu_online(cpu));
899 
900 	return 0;
901 }
902 
903 /* Return the value of the reg property corresponding to the given
904  * logical cpu.
905  */
906 int cpu_to_core_id(int cpu)
907 {
908 	struct device_node *np;
909 	const __be32 *reg;
910 	int id = -1;
911 
912 	np = of_get_cpu_node(cpu, NULL);
913 	if (!np)
914 		goto out;
915 
916 	reg = of_get_property(np, "reg", NULL);
917 	if (!reg)
918 		goto out;
919 
920 	id = be32_to_cpup(reg);
921 out:
922 	of_node_put(np);
923 	return id;
924 }
925 EXPORT_SYMBOL_GPL(cpu_to_core_id);
926 
927 /* Helper routines for cpu to core mapping */
928 int cpu_core_index_of_thread(int cpu)
929 {
930 	return cpu >> threads_shift;
931 }
932 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
933 
934 int cpu_first_thread_of_core(int core)
935 {
936 	return core << threads_shift;
937 }
938 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
939 
940 /* Must be called when no change can occur to cpu_present_mask,
941  * i.e. during cpu online or offline.
942  */
943 static struct device_node *cpu_to_l2cache(int cpu)
944 {
945 	struct device_node *np;
946 	struct device_node *cache;
947 
948 	if (!cpu_present(cpu))
949 		return NULL;
950 
951 	np = of_get_cpu_node(cpu, NULL);
952 	if (np == NULL)
953 		return NULL;
954 
955 	cache = of_find_next_cache_node(np);
956 
957 	of_node_put(np);
958 
959 	return cache;
960 }
961 
962 static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
963 {
964 	struct device_node *l2_cache, *np;
965 	int i;
966 
967 	l2_cache = cpu_to_l2cache(cpu);
968 	if (!l2_cache)
969 		return false;
970 
971 	for_each_cpu(i, cpu_online_mask) {
972 		/*
973 		 * when updating the marks the current CPU has not been marked
974 		 * online, but we need to update the cache masks
975 		 */
976 		np = cpu_to_l2cache(i);
977 		if (!np)
978 			continue;
979 
980 		if (np == l2_cache)
981 			set_cpus_related(cpu, i, mask_fn);
982 
983 		of_node_put(np);
984 	}
985 	of_node_put(l2_cache);
986 
987 	return true;
988 }
989 
990 #ifdef CONFIG_HOTPLUG_CPU
991 static void remove_cpu_from_masks(int cpu)
992 {
993 	int i;
994 
995 	/* NB: cpu_core_mask is a superset of the others */
996 	for_each_cpu(i, cpu_core_mask(cpu)) {
997 		set_cpus_unrelated(cpu, i, cpu_core_mask);
998 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
999 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1000 	}
1001 }
1002 #endif
1003 
1004 static void add_cpu_to_masks(int cpu)
1005 {
1006 	int first_thread = cpu_first_thread_sibling(cpu);
1007 	int chipid = cpu_to_chip_id(cpu);
1008 	int i;
1009 
1010 	/*
1011 	 * This CPU will not be in the online mask yet so we need to manually
1012 	 * add it to it's own thread sibling mask.
1013 	 */
1014 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1015 
1016 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1017 		if (cpu_online(i))
1018 			set_cpus_related(i, cpu, cpu_sibling_mask);
1019 
1020 	/*
1021 	 * Copy the thread sibling mask into the cache sibling mask
1022 	 * and mark any CPUs that share an L2 with this CPU.
1023 	 */
1024 	for_each_cpu(i, cpu_sibling_mask(cpu))
1025 		set_cpus_related(cpu, i, cpu_l2_cache_mask);
1026 	update_mask_by_l2(cpu, cpu_l2_cache_mask);
1027 
1028 	/*
1029 	 * Copy the cache sibling mask into core sibling mask and mark
1030 	 * any CPUs on the same chip as this CPU.
1031 	 */
1032 	for_each_cpu(i, cpu_l2_cache_mask(cpu))
1033 		set_cpus_related(cpu, i, cpu_core_mask);
1034 
1035 	if (chipid == -1)
1036 		return;
1037 
1038 	for_each_cpu(i, cpu_online_mask)
1039 		if (cpu_to_chip_id(i) == chipid)
1040 			set_cpus_related(cpu, i, cpu_core_mask);
1041 }
1042 
1043 static bool shared_caches;
1044 
1045 /* Activate a secondary processor. */
1046 void start_secondary(void *unused)
1047 {
1048 	unsigned int cpu = smp_processor_id();
1049 
1050 	mmgrab(&init_mm);
1051 	current->active_mm = &init_mm;
1052 
1053 	smp_store_cpu_info(cpu);
1054 	set_dec(tb_ticks_per_jiffy);
1055 	preempt_disable();
1056 	cpu_callin_map[cpu] = 1;
1057 
1058 	if (smp_ops->setup_cpu)
1059 		smp_ops->setup_cpu(cpu);
1060 	if (smp_ops->take_timebase)
1061 		smp_ops->take_timebase();
1062 
1063 	secondary_cpu_time_init();
1064 
1065 #ifdef CONFIG_PPC64
1066 	if (system_state == SYSTEM_RUNNING)
1067 		vdso_data->processorCount++;
1068 
1069 	vdso_getcpu_init();
1070 #endif
1071 	/* Update topology CPU masks */
1072 	add_cpu_to_masks(cpu);
1073 
1074 	/*
1075 	 * Check for any shared caches. Note that this must be done on a
1076 	 * per-core basis because one core in the pair might be disabled.
1077 	 */
1078 	if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
1079 		shared_caches = true;
1080 
1081 	set_numa_node(numa_cpu_lookup_table[cpu]);
1082 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1083 
1084 	smp_wmb();
1085 	notify_cpu_starting(cpu);
1086 	set_cpu_online(cpu, true);
1087 
1088 	local_irq_enable();
1089 
1090 	/* We can enable ftrace for secondary cpus now */
1091 	this_cpu_enable_ftrace();
1092 
1093 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1094 
1095 	BUG();
1096 }
1097 
1098 int setup_profiling_timer(unsigned int multiplier)
1099 {
1100 	return 0;
1101 }
1102 
1103 #ifdef CONFIG_SCHED_SMT
1104 /* cpumask of CPUs with asymetric SMT dependancy */
1105 static int powerpc_smt_flags(void)
1106 {
1107 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1108 
1109 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1110 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1111 		flags |= SD_ASYM_PACKING;
1112 	}
1113 	return flags;
1114 }
1115 #endif
1116 
1117 static struct sched_domain_topology_level powerpc_topology[] = {
1118 #ifdef CONFIG_SCHED_SMT
1119 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1120 #endif
1121 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1122 	{ NULL, },
1123 };
1124 
1125 /*
1126  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1127  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1128  * since the migrated task remains cache hot. We want to take advantage of this
1129  * at the scheduler level so an extra topology level is required.
1130  */
1131 static int powerpc_shared_cache_flags(void)
1132 {
1133 	return SD_SHARE_PKG_RESOURCES;
1134 }
1135 
1136 /*
1137  * We can't just pass cpu_l2_cache_mask() directly because
1138  * returns a non-const pointer and the compiler barfs on that.
1139  */
1140 static const struct cpumask *shared_cache_mask(int cpu)
1141 {
1142 	return cpu_l2_cache_mask(cpu);
1143 }
1144 
1145 static struct sched_domain_topology_level power9_topology[] = {
1146 #ifdef CONFIG_SCHED_SMT
1147 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1148 #endif
1149 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1150 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1151 	{ NULL, },
1152 };
1153 
1154 void __init smp_cpus_done(unsigned int max_cpus)
1155 {
1156 	/*
1157 	 * We are running pinned to the boot CPU, see rest_init().
1158 	 */
1159 	if (smp_ops && smp_ops->setup_cpu)
1160 		smp_ops->setup_cpu(boot_cpuid);
1161 
1162 	if (smp_ops && smp_ops->bringup_done)
1163 		smp_ops->bringup_done();
1164 
1165 	dump_numa_cpu_topology();
1166 
1167 	/*
1168 	 * If any CPU detects that it's sharing a cache with another CPU then
1169 	 * use the deeper topology that is aware of this sharing.
1170 	 */
1171 	if (shared_caches) {
1172 		pr_info("Using shared cache scheduler topology\n");
1173 		set_sched_topology(power9_topology);
1174 	} else {
1175 		pr_info("Using standard scheduler topology\n");
1176 		set_sched_topology(powerpc_topology);
1177 	}
1178 }
1179 
1180 #ifdef CONFIG_HOTPLUG_CPU
1181 int __cpu_disable(void)
1182 {
1183 	int cpu = smp_processor_id();
1184 	int err;
1185 
1186 	if (!smp_ops->cpu_disable)
1187 		return -ENOSYS;
1188 
1189 	this_cpu_disable_ftrace();
1190 
1191 	err = smp_ops->cpu_disable();
1192 	if (err)
1193 		return err;
1194 
1195 	/* Update sibling maps */
1196 	remove_cpu_from_masks(cpu);
1197 
1198 	return 0;
1199 }
1200 
1201 void __cpu_die(unsigned int cpu)
1202 {
1203 	if (smp_ops->cpu_die)
1204 		smp_ops->cpu_die(cpu);
1205 }
1206 
1207 void cpu_die(void)
1208 {
1209 	/*
1210 	 * Disable on the down path. This will be re-enabled by
1211 	 * start_secondary() via start_secondary_resume() below
1212 	 */
1213 	this_cpu_disable_ftrace();
1214 
1215 	if (ppc_md.cpu_die)
1216 		ppc_md.cpu_die();
1217 
1218 	/* If we return, we re-enter start_secondary */
1219 	start_secondary_resume();
1220 }
1221 
1222 #endif
1223