1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SMP support for ppc. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 6 * deal of code from the sparc and intel versions. 7 * 8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 9 * 10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 12 */ 13 14 #undef DEBUG 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/sched/topology.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/init.h> 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/err.h> 28 #include <linux/device.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/profile.h> 33 #include <linux/processor.h> 34 #include <linux/random.h> 35 #include <linux/stackprotector.h> 36 37 #include <asm/ptrace.h> 38 #include <linux/atomic.h> 39 #include <asm/irq.h> 40 #include <asm/hw_irq.h> 41 #include <asm/kvm_ppc.h> 42 #include <asm/dbell.h> 43 #include <asm/page.h> 44 #include <asm/pgtable.h> 45 #include <asm/prom.h> 46 #include <asm/smp.h> 47 #include <asm/time.h> 48 #include <asm/machdep.h> 49 #include <asm/cputhreads.h> 50 #include <asm/cputable.h> 51 #include <asm/mpic.h> 52 #include <asm/vdso_datapage.h> 53 #ifdef CONFIG_PPC64 54 #include <asm/paca.h> 55 #endif 56 #include <asm/vdso.h> 57 #include <asm/debug.h> 58 #include <asm/kexec.h> 59 #include <asm/asm-prototypes.h> 60 #include <asm/cpu_has_feature.h> 61 #include <asm/ftrace.h> 62 63 #ifdef DEBUG 64 #include <asm/udbg.h> 65 #define DBG(fmt...) udbg_printf(fmt) 66 #else 67 #define DBG(fmt...) 68 #endif 69 70 #ifdef CONFIG_HOTPLUG_CPU 71 /* State of each CPU during hotplug phases */ 72 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 73 #endif 74 75 struct task_struct *secondary_current; 76 bool has_big_cores; 77 78 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 79 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); 80 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 81 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 82 83 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 84 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 85 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 86 EXPORT_SYMBOL_GPL(has_big_cores); 87 88 #define MAX_THREAD_LIST_SIZE 8 89 #define THREAD_GROUP_SHARE_L1 1 90 struct thread_groups { 91 unsigned int property; 92 unsigned int nr_groups; 93 unsigned int threads_per_group; 94 unsigned int thread_list[MAX_THREAD_LIST_SIZE]; 95 }; 96 97 /* 98 * On big-cores system, cpu_l1_cache_map for each CPU corresponds to 99 * the set its siblings that share the L1-cache. 100 */ 101 DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map); 102 103 /* SMP operations for this machine */ 104 struct smp_ops_t *smp_ops; 105 106 /* Can't be static due to PowerMac hackery */ 107 volatile unsigned int cpu_callin_map[NR_CPUS]; 108 109 int smt_enabled_at_boot = 1; 110 111 /* 112 * Returns 1 if the specified cpu should be brought up during boot. 113 * Used to inhibit booting threads if they've been disabled or 114 * limited on the command line 115 */ 116 int smp_generic_cpu_bootable(unsigned int nr) 117 { 118 /* Special case - we inhibit secondary thread startup 119 * during boot if the user requests it. 120 */ 121 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 122 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 123 return 0; 124 if (smt_enabled_at_boot 125 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 126 return 0; 127 } 128 129 return 1; 130 } 131 132 133 #ifdef CONFIG_PPC64 134 int smp_generic_kick_cpu(int nr) 135 { 136 if (nr < 0 || nr >= nr_cpu_ids) 137 return -EINVAL; 138 139 /* 140 * The processor is currently spinning, waiting for the 141 * cpu_start field to become non-zero After we set cpu_start, 142 * the processor will continue on to secondary_start 143 */ 144 if (!paca_ptrs[nr]->cpu_start) { 145 paca_ptrs[nr]->cpu_start = 1; 146 smp_mb(); 147 return 0; 148 } 149 150 #ifdef CONFIG_HOTPLUG_CPU 151 /* 152 * Ok it's not there, so it might be soft-unplugged, let's 153 * try to bring it back 154 */ 155 generic_set_cpu_up(nr); 156 smp_wmb(); 157 smp_send_reschedule(nr); 158 #endif /* CONFIG_HOTPLUG_CPU */ 159 160 return 0; 161 } 162 #endif /* CONFIG_PPC64 */ 163 164 static irqreturn_t call_function_action(int irq, void *data) 165 { 166 generic_smp_call_function_interrupt(); 167 return IRQ_HANDLED; 168 } 169 170 static irqreturn_t reschedule_action(int irq, void *data) 171 { 172 scheduler_ipi(); 173 return IRQ_HANDLED; 174 } 175 176 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 177 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 178 { 179 timer_broadcast_interrupt(); 180 return IRQ_HANDLED; 181 } 182 #endif 183 184 #ifdef CONFIG_NMI_IPI 185 static irqreturn_t nmi_ipi_action(int irq, void *data) 186 { 187 smp_handle_nmi_ipi(get_irq_regs()); 188 return IRQ_HANDLED; 189 } 190 #endif 191 192 static irq_handler_t smp_ipi_action[] = { 193 [PPC_MSG_CALL_FUNCTION] = call_function_action, 194 [PPC_MSG_RESCHEDULE] = reschedule_action, 195 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 196 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 197 #endif 198 #ifdef CONFIG_NMI_IPI 199 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 200 #endif 201 }; 202 203 /* 204 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 205 * than going through the call function infrastructure, and strongly 206 * serialized, so it is more appropriate for debugging. 207 */ 208 const char *smp_ipi_name[] = { 209 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 210 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 211 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 212 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 213 #endif 214 #ifdef CONFIG_NMI_IPI 215 [PPC_MSG_NMI_IPI] = "nmi ipi", 216 #endif 217 }; 218 219 /* optional function to request ipi, for controllers with >= 4 ipis */ 220 int smp_request_message_ipi(int virq, int msg) 221 { 222 int err; 223 224 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 225 return -EINVAL; 226 #ifndef CONFIG_NMI_IPI 227 if (msg == PPC_MSG_NMI_IPI) 228 return 1; 229 #endif 230 231 err = request_irq(virq, smp_ipi_action[msg], 232 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 233 smp_ipi_name[msg], NULL); 234 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 235 virq, smp_ipi_name[msg], err); 236 237 return err; 238 } 239 240 #ifdef CONFIG_PPC_SMP_MUXED_IPI 241 struct cpu_messages { 242 long messages; /* current messages */ 243 }; 244 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 245 246 void smp_muxed_ipi_set_message(int cpu, int msg) 247 { 248 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 249 char *message = (char *)&info->messages; 250 251 /* 252 * Order previous accesses before accesses in the IPI handler. 253 */ 254 smp_mb(); 255 message[msg] = 1; 256 } 257 258 void smp_muxed_ipi_message_pass(int cpu, int msg) 259 { 260 smp_muxed_ipi_set_message(cpu, msg); 261 262 /* 263 * cause_ipi functions are required to include a full barrier 264 * before doing whatever causes the IPI. 265 */ 266 smp_ops->cause_ipi(cpu); 267 } 268 269 #ifdef __BIG_ENDIAN__ 270 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 271 #else 272 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 273 #endif 274 275 irqreturn_t smp_ipi_demux(void) 276 { 277 mb(); /* order any irq clear */ 278 279 return smp_ipi_demux_relaxed(); 280 } 281 282 /* sync-free variant. Callers should ensure synchronization */ 283 irqreturn_t smp_ipi_demux_relaxed(void) 284 { 285 struct cpu_messages *info; 286 unsigned long all; 287 288 info = this_cpu_ptr(&ipi_message); 289 do { 290 all = xchg(&info->messages, 0); 291 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 292 /* 293 * Must check for PPC_MSG_RM_HOST_ACTION messages 294 * before PPC_MSG_CALL_FUNCTION messages because when 295 * a VM is destroyed, we call kick_all_cpus_sync() 296 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 297 * messages have completed before we free any VCPUs. 298 */ 299 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 300 kvmppc_xics_ipi_action(); 301 #endif 302 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 303 generic_smp_call_function_interrupt(); 304 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 305 scheduler_ipi(); 306 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 307 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 308 timer_broadcast_interrupt(); 309 #endif 310 #ifdef CONFIG_NMI_IPI 311 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 312 nmi_ipi_action(0, NULL); 313 #endif 314 } while (info->messages); 315 316 return IRQ_HANDLED; 317 } 318 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 319 320 static inline void do_message_pass(int cpu, int msg) 321 { 322 if (smp_ops->message_pass) 323 smp_ops->message_pass(cpu, msg); 324 #ifdef CONFIG_PPC_SMP_MUXED_IPI 325 else 326 smp_muxed_ipi_message_pass(cpu, msg); 327 #endif 328 } 329 330 void smp_send_reschedule(int cpu) 331 { 332 if (likely(smp_ops)) 333 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 334 } 335 EXPORT_SYMBOL_GPL(smp_send_reschedule); 336 337 void arch_send_call_function_single_ipi(int cpu) 338 { 339 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 340 } 341 342 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 343 { 344 unsigned int cpu; 345 346 for_each_cpu(cpu, mask) 347 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 348 } 349 350 #ifdef CONFIG_NMI_IPI 351 352 /* 353 * "NMI IPI" system. 354 * 355 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 356 * a running system. They can be used for crash, debug, halt/reboot, etc. 357 * 358 * The IPI call waits with interrupts disabled until all targets enter the 359 * NMI handler, then returns. Subsequent IPIs can be issued before targets 360 * have returned from their handlers, so there is no guarantee about 361 * concurrency or re-entrancy. 362 * 363 * A new NMI can be issued before all targets exit the handler. 364 * 365 * The IPI call may time out without all targets entering the NMI handler. 366 * In that case, there is some logic to recover (and ignore subsequent 367 * NMI interrupts that may eventually be raised), but the platform interrupt 368 * handler may not be able to distinguish this from other exception causes, 369 * which may cause a crash. 370 */ 371 372 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 373 static struct cpumask nmi_ipi_pending_mask; 374 static bool nmi_ipi_busy = false; 375 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 376 377 static void nmi_ipi_lock_start(unsigned long *flags) 378 { 379 raw_local_irq_save(*flags); 380 hard_irq_disable(); 381 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 382 raw_local_irq_restore(*flags); 383 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 384 raw_local_irq_save(*flags); 385 hard_irq_disable(); 386 } 387 } 388 389 static void nmi_ipi_lock(void) 390 { 391 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 392 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 393 } 394 395 static void nmi_ipi_unlock(void) 396 { 397 smp_mb(); 398 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1); 399 atomic_set(&__nmi_ipi_lock, 0); 400 } 401 402 static void nmi_ipi_unlock_end(unsigned long *flags) 403 { 404 nmi_ipi_unlock(); 405 raw_local_irq_restore(*flags); 406 } 407 408 /* 409 * Platform NMI handler calls this to ack 410 */ 411 int smp_handle_nmi_ipi(struct pt_regs *regs) 412 { 413 void (*fn)(struct pt_regs *) = NULL; 414 unsigned long flags; 415 int me = raw_smp_processor_id(); 416 int ret = 0; 417 418 /* 419 * Unexpected NMIs are possible here because the interrupt may not 420 * be able to distinguish NMI IPIs from other types of NMIs, or 421 * because the caller may have timed out. 422 */ 423 nmi_ipi_lock_start(&flags); 424 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { 425 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 426 fn = READ_ONCE(nmi_ipi_function); 427 WARN_ON_ONCE(!fn); 428 ret = 1; 429 } 430 nmi_ipi_unlock_end(&flags); 431 432 if (fn) 433 fn(regs); 434 435 return ret; 436 } 437 438 static void do_smp_send_nmi_ipi(int cpu, bool safe) 439 { 440 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 441 return; 442 443 if (cpu >= 0) { 444 do_message_pass(cpu, PPC_MSG_NMI_IPI); 445 } else { 446 int c; 447 448 for_each_online_cpu(c) { 449 if (c == raw_smp_processor_id()) 450 continue; 451 do_message_pass(c, PPC_MSG_NMI_IPI); 452 } 453 } 454 } 455 456 /* 457 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 458 * - fn is the target callback function. 459 * - delay_us > 0 is the delay before giving up waiting for targets to 460 * begin executing the handler, == 0 specifies indefinite delay. 461 */ 462 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), 463 u64 delay_us, bool safe) 464 { 465 unsigned long flags; 466 int me = raw_smp_processor_id(); 467 int ret = 1; 468 469 BUG_ON(cpu == me); 470 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 471 472 if (unlikely(!smp_ops)) 473 return 0; 474 475 nmi_ipi_lock_start(&flags); 476 while (nmi_ipi_busy) { 477 nmi_ipi_unlock_end(&flags); 478 spin_until_cond(!nmi_ipi_busy); 479 nmi_ipi_lock_start(&flags); 480 } 481 nmi_ipi_busy = true; 482 nmi_ipi_function = fn; 483 484 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); 485 486 if (cpu < 0) { 487 /* ALL_OTHERS */ 488 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 489 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 490 } else { 491 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 492 } 493 494 nmi_ipi_unlock(); 495 496 /* Interrupts remain hard disabled */ 497 498 do_smp_send_nmi_ipi(cpu, safe); 499 500 nmi_ipi_lock(); 501 /* nmi_ipi_busy is set here, so unlock/lock is okay */ 502 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 503 nmi_ipi_unlock(); 504 udelay(1); 505 nmi_ipi_lock(); 506 if (delay_us) { 507 delay_us--; 508 if (!delay_us) 509 break; 510 } 511 } 512 513 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 514 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ 515 ret = 0; 516 cpumask_clear(&nmi_ipi_pending_mask); 517 } 518 519 nmi_ipi_function = NULL; 520 nmi_ipi_busy = false; 521 522 nmi_ipi_unlock_end(&flags); 523 524 return ret; 525 } 526 527 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 528 { 529 return __smp_send_nmi_ipi(cpu, fn, delay_us, false); 530 } 531 532 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 533 { 534 return __smp_send_nmi_ipi(cpu, fn, delay_us, true); 535 } 536 #endif /* CONFIG_NMI_IPI */ 537 538 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 539 void tick_broadcast(const struct cpumask *mask) 540 { 541 unsigned int cpu; 542 543 for_each_cpu(cpu, mask) 544 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 545 } 546 #endif 547 548 #ifdef CONFIG_DEBUGGER 549 void debugger_ipi_callback(struct pt_regs *regs) 550 { 551 debugger_ipi(regs); 552 } 553 554 void smp_send_debugger_break(void) 555 { 556 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 557 } 558 #endif 559 560 #ifdef CONFIG_KEXEC_CORE 561 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 562 { 563 int cpu; 564 565 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 566 if (kdump_in_progress() && crash_wake_offline) { 567 for_each_present_cpu(cpu) { 568 if (cpu_online(cpu)) 569 continue; 570 /* 571 * crash_ipi_callback will wait for 572 * all cpus, including offline CPUs. 573 * We don't care about nmi_ipi_function. 574 * Offline cpus will jump straight into 575 * crash_ipi_callback, we can skip the 576 * entire NMI dance and waiting for 577 * cpus to clear pending mask, etc. 578 */ 579 do_smp_send_nmi_ipi(cpu, false); 580 } 581 } 582 } 583 #endif 584 585 #ifdef CONFIG_NMI_IPI 586 static void nmi_stop_this_cpu(struct pt_regs *regs) 587 { 588 /* 589 * IRQs are already hard disabled by the smp_handle_nmi_ipi. 590 */ 591 spin_begin(); 592 while (1) 593 spin_cpu_relax(); 594 } 595 596 void smp_send_stop(void) 597 { 598 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); 599 } 600 601 #else /* CONFIG_NMI_IPI */ 602 603 static void stop_this_cpu(void *dummy) 604 { 605 hard_irq_disable(); 606 spin_begin(); 607 while (1) 608 spin_cpu_relax(); 609 } 610 611 void smp_send_stop(void) 612 { 613 static bool stopped = false; 614 615 /* 616 * Prevent waiting on csd lock from a previous smp_send_stop. 617 * This is racy, but in general callers try to do the right 618 * thing and only fire off one smp_send_stop (e.g., see 619 * kernel/panic.c) 620 */ 621 if (stopped) 622 return; 623 624 stopped = true; 625 626 smp_call_function(stop_this_cpu, NULL, 0); 627 } 628 #endif /* CONFIG_NMI_IPI */ 629 630 struct task_struct *current_set[NR_CPUS]; 631 632 static void smp_store_cpu_info(int id) 633 { 634 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 635 #ifdef CONFIG_PPC_FSL_BOOK3E 636 per_cpu(next_tlbcam_idx, id) 637 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 638 #endif 639 } 640 641 /* 642 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 643 * rather than just passing around the cpumask we pass around a function that 644 * returns the that cpumask for the given CPU. 645 */ 646 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 647 { 648 cpumask_set_cpu(i, get_cpumask(j)); 649 cpumask_set_cpu(j, get_cpumask(i)); 650 } 651 652 #ifdef CONFIG_HOTPLUG_CPU 653 static void set_cpus_unrelated(int i, int j, 654 struct cpumask *(*get_cpumask)(int)) 655 { 656 cpumask_clear_cpu(i, get_cpumask(j)); 657 cpumask_clear_cpu(j, get_cpumask(i)); 658 } 659 #endif 660 661 /* 662 * parse_thread_groups: Parses the "ibm,thread-groups" device tree 663 * property for the CPU device node @dn and stores 664 * the parsed output in the thread_groups 665 * structure @tg if the ibm,thread-groups[0] 666 * matches @property. 667 * 668 * @dn: The device node of the CPU device. 669 * @tg: Pointer to a thread group structure into which the parsed 670 * output of "ibm,thread-groups" is stored. 671 * @property: The property of the thread-group that the caller is 672 * interested in. 673 * 674 * ibm,thread-groups[0..N-1] array defines which group of threads in 675 * the CPU-device node can be grouped together based on the property. 676 * 677 * ibm,thread-groups[0] tells us the property based on which the 678 * threads are being grouped together. If this value is 1, it implies 679 * that the threads in the same group share L1, translation cache. 680 * 681 * ibm,thread-groups[1] tells us how many such thread groups exist. 682 * 683 * ibm,thread-groups[2] tells us the number of threads in each such 684 * group. 685 * 686 * ibm,thread-groups[3..N-1] is the list of threads identified by 687 * "ibm,ppc-interrupt-server#s" arranged as per their membership in 688 * the grouping. 689 * 690 * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it 691 * implies that there are 2 groups of 4 threads each, where each group 692 * of threads share L1, translation cache. 693 * 694 * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8} 695 * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10, 696 * 11, 12} structure 697 * 698 * Returns 0 on success, -EINVAL if the property does not exist, 699 * -ENODATA if property does not have a value, and -EOVERFLOW if the 700 * property data isn't large enough. 701 */ 702 static int parse_thread_groups(struct device_node *dn, 703 struct thread_groups *tg, 704 unsigned int property) 705 { 706 int i; 707 u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE]; 708 u32 *thread_list; 709 size_t total_threads; 710 int ret; 711 712 ret = of_property_read_u32_array(dn, "ibm,thread-groups", 713 thread_group_array, 3); 714 if (ret) 715 return ret; 716 717 tg->property = thread_group_array[0]; 718 tg->nr_groups = thread_group_array[1]; 719 tg->threads_per_group = thread_group_array[2]; 720 if (tg->property != property || 721 tg->nr_groups < 1 || 722 tg->threads_per_group < 1) 723 return -ENODATA; 724 725 total_threads = tg->nr_groups * tg->threads_per_group; 726 727 ret = of_property_read_u32_array(dn, "ibm,thread-groups", 728 thread_group_array, 729 3 + total_threads); 730 if (ret) 731 return ret; 732 733 thread_list = &thread_group_array[3]; 734 735 for (i = 0 ; i < total_threads; i++) 736 tg->thread_list[i] = thread_list[i]; 737 738 return 0; 739 } 740 741 /* 742 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list 743 * that @cpu belongs to. 744 * 745 * @cpu : The logical CPU whose thread group is being searched. 746 * @tg : The thread-group structure of the CPU node which @cpu belongs 747 * to. 748 * 749 * Returns the index to tg->thread_list that points to the the start 750 * of the thread_group that @cpu belongs to. 751 * 752 * Returns -1 if cpu doesn't belong to any of the groups pointed to by 753 * tg->thread_list. 754 */ 755 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) 756 { 757 int hw_cpu_id = get_hard_smp_processor_id(cpu); 758 int i, j; 759 760 for (i = 0; i < tg->nr_groups; i++) { 761 int group_start = i * tg->threads_per_group; 762 763 for (j = 0; j < tg->threads_per_group; j++) { 764 int idx = group_start + j; 765 766 if (tg->thread_list[idx] == hw_cpu_id) 767 return group_start; 768 } 769 } 770 771 return -1; 772 } 773 774 static int init_cpu_l1_cache_map(int cpu) 775 776 { 777 struct device_node *dn = of_get_cpu_node(cpu, NULL); 778 struct thread_groups tg = {.property = 0, 779 .nr_groups = 0, 780 .threads_per_group = 0}; 781 int first_thread = cpu_first_thread_sibling(cpu); 782 int i, cpu_group_start = -1, err = 0; 783 784 if (!dn) 785 return -ENODATA; 786 787 err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1); 788 if (err) 789 goto out; 790 791 zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu), 792 GFP_KERNEL, 793 cpu_to_node(cpu)); 794 795 cpu_group_start = get_cpu_thread_group_start(cpu, &tg); 796 797 if (unlikely(cpu_group_start == -1)) { 798 WARN_ON_ONCE(1); 799 err = -ENODATA; 800 goto out; 801 } 802 803 for (i = first_thread; i < first_thread + threads_per_core; i++) { 804 int i_group_start = get_cpu_thread_group_start(i, &tg); 805 806 if (unlikely(i_group_start == -1)) { 807 WARN_ON_ONCE(1); 808 err = -ENODATA; 809 goto out; 810 } 811 812 if (i_group_start == cpu_group_start) 813 cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu)); 814 } 815 816 out: 817 of_node_put(dn); 818 return err; 819 } 820 821 static int init_big_cores(void) 822 { 823 int cpu; 824 825 for_each_possible_cpu(cpu) { 826 int err = init_cpu_l1_cache_map(cpu); 827 828 if (err) 829 return err; 830 831 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), 832 GFP_KERNEL, 833 cpu_to_node(cpu)); 834 } 835 836 has_big_cores = true; 837 return 0; 838 } 839 840 void __init smp_prepare_cpus(unsigned int max_cpus) 841 { 842 unsigned int cpu; 843 844 DBG("smp_prepare_cpus\n"); 845 846 /* 847 * setup_cpu may need to be called on the boot cpu. We havent 848 * spun any cpus up but lets be paranoid. 849 */ 850 BUG_ON(boot_cpuid != smp_processor_id()); 851 852 /* Fixup boot cpu */ 853 smp_store_cpu_info(boot_cpuid); 854 cpu_callin_map[boot_cpuid] = 1; 855 856 for_each_possible_cpu(cpu) { 857 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 858 GFP_KERNEL, cpu_to_node(cpu)); 859 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 860 GFP_KERNEL, cpu_to_node(cpu)); 861 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 862 GFP_KERNEL, cpu_to_node(cpu)); 863 /* 864 * numa_node_id() works after this. 865 */ 866 if (cpu_present(cpu)) { 867 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 868 set_cpu_numa_mem(cpu, 869 local_memory_node(numa_cpu_lookup_table[cpu])); 870 } 871 } 872 873 /* Init the cpumasks so the boot CPU is related to itself */ 874 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 875 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 876 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 877 878 init_big_cores(); 879 if (has_big_cores) { 880 cpumask_set_cpu(boot_cpuid, 881 cpu_smallcore_mask(boot_cpuid)); 882 } 883 884 if (smp_ops && smp_ops->probe) 885 smp_ops->probe(); 886 } 887 888 void smp_prepare_boot_cpu(void) 889 { 890 BUG_ON(smp_processor_id() != boot_cpuid); 891 #ifdef CONFIG_PPC64 892 paca_ptrs[boot_cpuid]->__current = current; 893 #endif 894 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 895 current_set[boot_cpuid] = current; 896 } 897 898 #ifdef CONFIG_HOTPLUG_CPU 899 900 int generic_cpu_disable(void) 901 { 902 unsigned int cpu = smp_processor_id(); 903 904 if (cpu == boot_cpuid) 905 return -EBUSY; 906 907 set_cpu_online(cpu, false); 908 #ifdef CONFIG_PPC64 909 vdso_data->processorCount--; 910 #endif 911 /* Update affinity of all IRQs previously aimed at this CPU */ 912 irq_migrate_all_off_this_cpu(); 913 914 /* 915 * Depending on the details of the interrupt controller, it's possible 916 * that one of the interrupts we just migrated away from this CPU is 917 * actually already pending on this CPU. If we leave it in that state 918 * the interrupt will never be EOI'ed, and will never fire again. So 919 * temporarily enable interrupts here, to allow any pending interrupt to 920 * be received (and EOI'ed), before we take this CPU offline. 921 */ 922 local_irq_enable(); 923 mdelay(1); 924 local_irq_disable(); 925 926 return 0; 927 } 928 929 void generic_cpu_die(unsigned int cpu) 930 { 931 int i; 932 933 for (i = 0; i < 100; i++) { 934 smp_rmb(); 935 if (is_cpu_dead(cpu)) 936 return; 937 msleep(100); 938 } 939 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 940 } 941 942 void generic_set_cpu_dead(unsigned int cpu) 943 { 944 per_cpu(cpu_state, cpu) = CPU_DEAD; 945 } 946 947 /* 948 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 949 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 950 * which makes the delay in generic_cpu_die() not happen. 951 */ 952 void generic_set_cpu_up(unsigned int cpu) 953 { 954 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 955 } 956 957 int generic_check_cpu_restart(unsigned int cpu) 958 { 959 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 960 } 961 962 int is_cpu_dead(unsigned int cpu) 963 { 964 return per_cpu(cpu_state, cpu) == CPU_DEAD; 965 } 966 967 static bool secondaries_inhibited(void) 968 { 969 return kvm_hv_mode_active(); 970 } 971 972 #else /* HOTPLUG_CPU */ 973 974 #define secondaries_inhibited() 0 975 976 #endif 977 978 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 979 { 980 #ifdef CONFIG_PPC64 981 paca_ptrs[cpu]->__current = idle; 982 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + 983 THREAD_SIZE - STACK_FRAME_OVERHEAD; 984 #endif 985 idle->cpu = cpu; 986 secondary_current = current_set[cpu] = idle; 987 } 988 989 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 990 { 991 int rc, c; 992 993 /* 994 * Don't allow secondary threads to come online if inhibited 995 */ 996 if (threads_per_core > 1 && secondaries_inhibited() && 997 cpu_thread_in_subcore(cpu)) 998 return -EBUSY; 999 1000 if (smp_ops == NULL || 1001 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 1002 return -EINVAL; 1003 1004 cpu_idle_thread_init(cpu, tidle); 1005 1006 /* 1007 * The platform might need to allocate resources prior to bringing 1008 * up the CPU 1009 */ 1010 if (smp_ops->prepare_cpu) { 1011 rc = smp_ops->prepare_cpu(cpu); 1012 if (rc) 1013 return rc; 1014 } 1015 1016 /* Make sure callin-map entry is 0 (can be leftover a CPU 1017 * hotplug 1018 */ 1019 cpu_callin_map[cpu] = 0; 1020 1021 /* The information for processor bringup must 1022 * be written out to main store before we release 1023 * the processor. 1024 */ 1025 smp_mb(); 1026 1027 /* wake up cpus */ 1028 DBG("smp: kicking cpu %d\n", cpu); 1029 rc = smp_ops->kick_cpu(cpu); 1030 if (rc) { 1031 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 1032 return rc; 1033 } 1034 1035 /* 1036 * wait to see if the cpu made a callin (is actually up). 1037 * use this value that I found through experimentation. 1038 * -- Cort 1039 */ 1040 if (system_state < SYSTEM_RUNNING) 1041 for (c = 50000; c && !cpu_callin_map[cpu]; c--) 1042 udelay(100); 1043 #ifdef CONFIG_HOTPLUG_CPU 1044 else 1045 /* 1046 * CPUs can take much longer to come up in the 1047 * hotplug case. Wait five seconds. 1048 */ 1049 for (c = 5000; c && !cpu_callin_map[cpu]; c--) 1050 msleep(1); 1051 #endif 1052 1053 if (!cpu_callin_map[cpu]) { 1054 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 1055 return -ENOENT; 1056 } 1057 1058 DBG("Processor %u found.\n", cpu); 1059 1060 if (smp_ops->give_timebase) 1061 smp_ops->give_timebase(); 1062 1063 /* Wait until cpu puts itself in the online & active maps */ 1064 spin_until_cond(cpu_online(cpu)); 1065 1066 return 0; 1067 } 1068 1069 /* Return the value of the reg property corresponding to the given 1070 * logical cpu. 1071 */ 1072 int cpu_to_core_id(int cpu) 1073 { 1074 struct device_node *np; 1075 const __be32 *reg; 1076 int id = -1; 1077 1078 np = of_get_cpu_node(cpu, NULL); 1079 if (!np) 1080 goto out; 1081 1082 reg = of_get_property(np, "reg", NULL); 1083 if (!reg) 1084 goto out; 1085 1086 id = be32_to_cpup(reg); 1087 out: 1088 of_node_put(np); 1089 return id; 1090 } 1091 EXPORT_SYMBOL_GPL(cpu_to_core_id); 1092 1093 /* Helper routines for cpu to core mapping */ 1094 int cpu_core_index_of_thread(int cpu) 1095 { 1096 return cpu >> threads_shift; 1097 } 1098 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 1099 1100 int cpu_first_thread_of_core(int core) 1101 { 1102 return core << threads_shift; 1103 } 1104 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 1105 1106 /* Must be called when no change can occur to cpu_present_mask, 1107 * i.e. during cpu online or offline. 1108 */ 1109 static struct device_node *cpu_to_l2cache(int cpu) 1110 { 1111 struct device_node *np; 1112 struct device_node *cache; 1113 1114 if (!cpu_present(cpu)) 1115 return NULL; 1116 1117 np = of_get_cpu_node(cpu, NULL); 1118 if (np == NULL) 1119 return NULL; 1120 1121 cache = of_find_next_cache_node(np); 1122 1123 of_node_put(np); 1124 1125 return cache; 1126 } 1127 1128 static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int)) 1129 { 1130 struct device_node *l2_cache, *np; 1131 int i; 1132 1133 l2_cache = cpu_to_l2cache(cpu); 1134 if (!l2_cache) 1135 return false; 1136 1137 for_each_cpu(i, cpu_online_mask) { 1138 /* 1139 * when updating the marks the current CPU has not been marked 1140 * online, but we need to update the cache masks 1141 */ 1142 np = cpu_to_l2cache(i); 1143 if (!np) 1144 continue; 1145 1146 if (np == l2_cache) 1147 set_cpus_related(cpu, i, mask_fn); 1148 1149 of_node_put(np); 1150 } 1151 of_node_put(l2_cache); 1152 1153 return true; 1154 } 1155 1156 #ifdef CONFIG_HOTPLUG_CPU 1157 static void remove_cpu_from_masks(int cpu) 1158 { 1159 int i; 1160 1161 /* NB: cpu_core_mask is a superset of the others */ 1162 for_each_cpu(i, cpu_core_mask(cpu)) { 1163 set_cpus_unrelated(cpu, i, cpu_core_mask); 1164 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 1165 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 1166 if (has_big_cores) 1167 set_cpus_unrelated(cpu, i, cpu_smallcore_mask); 1168 } 1169 } 1170 #endif 1171 1172 static inline void add_cpu_to_smallcore_masks(int cpu) 1173 { 1174 struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu); 1175 int i, first_thread = cpu_first_thread_sibling(cpu); 1176 1177 if (!has_big_cores) 1178 return; 1179 1180 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); 1181 1182 for (i = first_thread; i < first_thread + threads_per_core; i++) { 1183 if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map)) 1184 set_cpus_related(i, cpu, cpu_smallcore_mask); 1185 } 1186 } 1187 1188 static void add_cpu_to_masks(int cpu) 1189 { 1190 int first_thread = cpu_first_thread_sibling(cpu); 1191 int chipid = cpu_to_chip_id(cpu); 1192 int i; 1193 1194 /* 1195 * This CPU will not be in the online mask yet so we need to manually 1196 * add it to it's own thread sibling mask. 1197 */ 1198 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 1199 1200 for (i = first_thread; i < first_thread + threads_per_core; i++) 1201 if (cpu_online(i)) 1202 set_cpus_related(i, cpu, cpu_sibling_mask); 1203 1204 add_cpu_to_smallcore_masks(cpu); 1205 /* 1206 * Copy the thread sibling mask into the cache sibling mask 1207 * and mark any CPUs that share an L2 with this CPU. 1208 */ 1209 for_each_cpu(i, cpu_sibling_mask(cpu)) 1210 set_cpus_related(cpu, i, cpu_l2_cache_mask); 1211 update_mask_by_l2(cpu, cpu_l2_cache_mask); 1212 1213 /* 1214 * Copy the cache sibling mask into core sibling mask and mark 1215 * any CPUs on the same chip as this CPU. 1216 */ 1217 for_each_cpu(i, cpu_l2_cache_mask(cpu)) 1218 set_cpus_related(cpu, i, cpu_core_mask); 1219 1220 if (chipid == -1) 1221 return; 1222 1223 for_each_cpu(i, cpu_online_mask) 1224 if (cpu_to_chip_id(i) == chipid) 1225 set_cpus_related(cpu, i, cpu_core_mask); 1226 } 1227 1228 static bool shared_caches; 1229 1230 /* Activate a secondary processor. */ 1231 void start_secondary(void *unused) 1232 { 1233 unsigned int cpu = smp_processor_id(); 1234 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; 1235 1236 mmgrab(&init_mm); 1237 current->active_mm = &init_mm; 1238 1239 smp_store_cpu_info(cpu); 1240 set_dec(tb_ticks_per_jiffy); 1241 preempt_disable(); 1242 cpu_callin_map[cpu] = 1; 1243 1244 if (smp_ops->setup_cpu) 1245 smp_ops->setup_cpu(cpu); 1246 if (smp_ops->take_timebase) 1247 smp_ops->take_timebase(); 1248 1249 secondary_cpu_time_init(); 1250 1251 #ifdef CONFIG_PPC64 1252 if (system_state == SYSTEM_RUNNING) 1253 vdso_data->processorCount++; 1254 1255 vdso_getcpu_init(); 1256 #endif 1257 /* Update topology CPU masks */ 1258 add_cpu_to_masks(cpu); 1259 1260 if (has_big_cores) 1261 sibling_mask = cpu_smallcore_mask; 1262 /* 1263 * Check for any shared caches. Note that this must be done on a 1264 * per-core basis because one core in the pair might be disabled. 1265 */ 1266 if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu))) 1267 shared_caches = true; 1268 1269 set_numa_node(numa_cpu_lookup_table[cpu]); 1270 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1271 1272 smp_wmb(); 1273 notify_cpu_starting(cpu); 1274 set_cpu_online(cpu, true); 1275 1276 boot_init_stack_canary(); 1277 1278 local_irq_enable(); 1279 1280 /* We can enable ftrace for secondary cpus now */ 1281 this_cpu_enable_ftrace(); 1282 1283 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1284 1285 BUG(); 1286 } 1287 1288 int setup_profiling_timer(unsigned int multiplier) 1289 { 1290 return 0; 1291 } 1292 1293 #ifdef CONFIG_SCHED_SMT 1294 /* cpumask of CPUs with asymetric SMT dependancy */ 1295 static int powerpc_smt_flags(void) 1296 { 1297 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1298 1299 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 1300 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 1301 flags |= SD_ASYM_PACKING; 1302 } 1303 return flags; 1304 } 1305 #endif 1306 1307 static struct sched_domain_topology_level powerpc_topology[] = { 1308 #ifdef CONFIG_SCHED_SMT 1309 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1310 #endif 1311 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1312 { NULL, }, 1313 }; 1314 1315 /* 1316 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 1317 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 1318 * since the migrated task remains cache hot. We want to take advantage of this 1319 * at the scheduler level so an extra topology level is required. 1320 */ 1321 static int powerpc_shared_cache_flags(void) 1322 { 1323 return SD_SHARE_PKG_RESOURCES; 1324 } 1325 1326 /* 1327 * We can't just pass cpu_l2_cache_mask() directly because 1328 * returns a non-const pointer and the compiler barfs on that. 1329 */ 1330 static const struct cpumask *shared_cache_mask(int cpu) 1331 { 1332 return cpu_l2_cache_mask(cpu); 1333 } 1334 1335 #ifdef CONFIG_SCHED_SMT 1336 static const struct cpumask *smallcore_smt_mask(int cpu) 1337 { 1338 return cpu_smallcore_mask(cpu); 1339 } 1340 #endif 1341 1342 static struct sched_domain_topology_level power9_topology[] = { 1343 #ifdef CONFIG_SCHED_SMT 1344 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1345 #endif 1346 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, 1347 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1348 { NULL, }, 1349 }; 1350 1351 void __init smp_cpus_done(unsigned int max_cpus) 1352 { 1353 /* 1354 * We are running pinned to the boot CPU, see rest_init(). 1355 */ 1356 if (smp_ops && smp_ops->setup_cpu) 1357 smp_ops->setup_cpu(boot_cpuid); 1358 1359 if (smp_ops && smp_ops->bringup_done) 1360 smp_ops->bringup_done(); 1361 1362 /* 1363 * On a shared LPAR, associativity needs to be requested. 1364 * Hence, get numa topology before dumping cpu topology 1365 */ 1366 shared_proc_topology_init(); 1367 dump_numa_cpu_topology(); 1368 1369 #ifdef CONFIG_SCHED_SMT 1370 if (has_big_cores) { 1371 pr_info("Using small cores at SMT level\n"); 1372 power9_topology[0].mask = smallcore_smt_mask; 1373 powerpc_topology[0].mask = smallcore_smt_mask; 1374 } 1375 #endif 1376 /* 1377 * If any CPU detects that it's sharing a cache with another CPU then 1378 * use the deeper topology that is aware of this sharing. 1379 */ 1380 if (shared_caches) { 1381 pr_info("Using shared cache scheduler topology\n"); 1382 set_sched_topology(power9_topology); 1383 } else { 1384 pr_info("Using standard scheduler topology\n"); 1385 set_sched_topology(powerpc_topology); 1386 } 1387 } 1388 1389 #ifdef CONFIG_HOTPLUG_CPU 1390 int __cpu_disable(void) 1391 { 1392 int cpu = smp_processor_id(); 1393 int err; 1394 1395 if (!smp_ops->cpu_disable) 1396 return -ENOSYS; 1397 1398 this_cpu_disable_ftrace(); 1399 1400 err = smp_ops->cpu_disable(); 1401 if (err) 1402 return err; 1403 1404 /* Update sibling maps */ 1405 remove_cpu_from_masks(cpu); 1406 1407 return 0; 1408 } 1409 1410 void __cpu_die(unsigned int cpu) 1411 { 1412 if (smp_ops->cpu_die) 1413 smp_ops->cpu_die(cpu); 1414 } 1415 1416 void cpu_die(void) 1417 { 1418 /* 1419 * Disable on the down path. This will be re-enabled by 1420 * start_secondary() via start_secondary_resume() below 1421 */ 1422 this_cpu_disable_ftrace(); 1423 1424 if (ppc_md.cpu_die) 1425 ppc_md.cpu_die(); 1426 1427 /* If we return, we re-enter start_secondary */ 1428 start_secondary_resume(); 1429 } 1430 1431 #endif 1432