xref: /openbmc/linux/arch/powerpc/kernel/smp.c (revision f066af882b3755c5cdd2574e860433750c6bce1e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SMP support for ppc.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6  * deal of code from the sparc and intel versions.
7  *
8  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9  *
10  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12  */
13 
14 #undef DEBUG
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 
39 #include <asm/ptrace.h>
40 #include <linux/atomic.h>
41 #include <asm/irq.h>
42 #include <asm/hw_irq.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/dbell.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/kexec.h>
60 #include <asm/asm-prototypes.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/ftrace.h>
63 #include <asm/kup.h>
64 
65 #ifdef DEBUG
66 #include <asm/udbg.h>
67 #define DBG(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG(fmt...)
70 #endif
71 
72 #ifdef CONFIG_HOTPLUG_CPU
73 /* State of each CPU during hotplug phases */
74 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
75 #endif
76 
77 struct task_struct *secondary_current;
78 bool has_big_cores;
79 bool coregroup_enabled;
80 bool thread_group_shares_l2;
81 
82 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
83 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
84 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
85 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
86 DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
87 
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 EXPORT_SYMBOL_GPL(has_big_cores);
92 
93 enum {
94 #ifdef CONFIG_SCHED_SMT
95 	smt_idx,
96 #endif
97 	cache_idx,
98 	mc_idx,
99 	die_idx,
100 };
101 
102 #define MAX_THREAD_LIST_SIZE	8
103 #define THREAD_GROUP_SHARE_L1   1
104 #define THREAD_GROUP_SHARE_L2   2
105 struct thread_groups {
106 	unsigned int property;
107 	unsigned int nr_groups;
108 	unsigned int threads_per_group;
109 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
110 };
111 
112 /* Maximum number of properties that groups of threads within a core can share */
113 #define MAX_THREAD_GROUP_PROPERTIES 2
114 
115 struct thread_groups_list {
116 	unsigned int nr_properties;
117 	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
118 };
119 
120 static struct thread_groups_list tgl[NR_CPUS] __initdata;
121 /*
122  * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
123  * the set its siblings that share the L1-cache.
124  */
125 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
126 
127 /*
128  * On some big-cores system, thread_group_l2_cache_map for each CPU
129  * corresponds to the set its siblings within the core that share the
130  * L2-cache.
131  */
132 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
133 
134 /* SMP operations for this machine */
135 struct smp_ops_t *smp_ops;
136 
137 /* Can't be static due to PowerMac hackery */
138 volatile unsigned int cpu_callin_map[NR_CPUS];
139 
140 int smt_enabled_at_boot = 1;
141 
142 /*
143  * Returns 1 if the specified cpu should be brought up during boot.
144  * Used to inhibit booting threads if they've been disabled or
145  * limited on the command line
146  */
147 int smp_generic_cpu_bootable(unsigned int nr)
148 {
149 	/* Special case - we inhibit secondary thread startup
150 	 * during boot if the user requests it.
151 	 */
152 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
153 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
154 			return 0;
155 		if (smt_enabled_at_boot
156 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
157 			return 0;
158 	}
159 
160 	return 1;
161 }
162 
163 
164 #ifdef CONFIG_PPC64
165 int smp_generic_kick_cpu(int nr)
166 {
167 	if (nr < 0 || nr >= nr_cpu_ids)
168 		return -EINVAL;
169 
170 	/*
171 	 * The processor is currently spinning, waiting for the
172 	 * cpu_start field to become non-zero After we set cpu_start,
173 	 * the processor will continue on to secondary_start
174 	 */
175 	if (!paca_ptrs[nr]->cpu_start) {
176 		paca_ptrs[nr]->cpu_start = 1;
177 		smp_mb();
178 		return 0;
179 	}
180 
181 #ifdef CONFIG_HOTPLUG_CPU
182 	/*
183 	 * Ok it's not there, so it might be soft-unplugged, let's
184 	 * try to bring it back
185 	 */
186 	generic_set_cpu_up(nr);
187 	smp_wmb();
188 	smp_send_reschedule(nr);
189 #endif /* CONFIG_HOTPLUG_CPU */
190 
191 	return 0;
192 }
193 #endif /* CONFIG_PPC64 */
194 
195 static irqreturn_t call_function_action(int irq, void *data)
196 {
197 	generic_smp_call_function_interrupt();
198 	return IRQ_HANDLED;
199 }
200 
201 static irqreturn_t reschedule_action(int irq, void *data)
202 {
203 	scheduler_ipi();
204 	return IRQ_HANDLED;
205 }
206 
207 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
208 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
209 {
210 	timer_broadcast_interrupt();
211 	return IRQ_HANDLED;
212 }
213 #endif
214 
215 #ifdef CONFIG_NMI_IPI
216 static irqreturn_t nmi_ipi_action(int irq, void *data)
217 {
218 	smp_handle_nmi_ipi(get_irq_regs());
219 	return IRQ_HANDLED;
220 }
221 #endif
222 
223 static irq_handler_t smp_ipi_action[] = {
224 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
225 	[PPC_MSG_RESCHEDULE] = reschedule_action,
226 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
227 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
228 #endif
229 #ifdef CONFIG_NMI_IPI
230 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
231 #endif
232 };
233 
234 /*
235  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
236  * than going through the call function infrastructure, and strongly
237  * serialized, so it is more appropriate for debugging.
238  */
239 const char *smp_ipi_name[] = {
240 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
241 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
244 #endif
245 #ifdef CONFIG_NMI_IPI
246 	[PPC_MSG_NMI_IPI] = "nmi ipi",
247 #endif
248 };
249 
250 /* optional function to request ipi, for controllers with >= 4 ipis */
251 int smp_request_message_ipi(int virq, int msg)
252 {
253 	int err;
254 
255 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
256 		return -EINVAL;
257 #ifndef CONFIG_NMI_IPI
258 	if (msg == PPC_MSG_NMI_IPI)
259 		return 1;
260 #endif
261 
262 	err = request_irq(virq, smp_ipi_action[msg],
263 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
264 			  smp_ipi_name[msg], NULL);
265 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
266 		virq, smp_ipi_name[msg], err);
267 
268 	return err;
269 }
270 
271 #ifdef CONFIG_PPC_SMP_MUXED_IPI
272 struct cpu_messages {
273 	long messages;			/* current messages */
274 };
275 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
276 
277 void smp_muxed_ipi_set_message(int cpu, int msg)
278 {
279 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
280 	char *message = (char *)&info->messages;
281 
282 	/*
283 	 * Order previous accesses before accesses in the IPI handler.
284 	 */
285 	smp_mb();
286 	message[msg] = 1;
287 }
288 
289 void smp_muxed_ipi_message_pass(int cpu, int msg)
290 {
291 	smp_muxed_ipi_set_message(cpu, msg);
292 
293 	/*
294 	 * cause_ipi functions are required to include a full barrier
295 	 * before doing whatever causes the IPI.
296 	 */
297 	smp_ops->cause_ipi(cpu);
298 }
299 
300 #ifdef __BIG_ENDIAN__
301 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
302 #else
303 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
304 #endif
305 
306 irqreturn_t smp_ipi_demux(void)
307 {
308 	mb();	/* order any irq clear */
309 
310 	return smp_ipi_demux_relaxed();
311 }
312 
313 /* sync-free variant. Callers should ensure synchronization */
314 irqreturn_t smp_ipi_demux_relaxed(void)
315 {
316 	struct cpu_messages *info;
317 	unsigned long all;
318 
319 	info = this_cpu_ptr(&ipi_message);
320 	do {
321 		all = xchg(&info->messages, 0);
322 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
323 		/*
324 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
325 		 * before PPC_MSG_CALL_FUNCTION messages because when
326 		 * a VM is destroyed, we call kick_all_cpus_sync()
327 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
328 		 * messages have completed before we free any VCPUs.
329 		 */
330 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
331 			kvmppc_xics_ipi_action();
332 #endif
333 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
334 			generic_smp_call_function_interrupt();
335 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
336 			scheduler_ipi();
337 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
338 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
339 			timer_broadcast_interrupt();
340 #endif
341 #ifdef CONFIG_NMI_IPI
342 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
343 			nmi_ipi_action(0, NULL);
344 #endif
345 	} while (info->messages);
346 
347 	return IRQ_HANDLED;
348 }
349 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
350 
351 static inline void do_message_pass(int cpu, int msg)
352 {
353 	if (smp_ops->message_pass)
354 		smp_ops->message_pass(cpu, msg);
355 #ifdef CONFIG_PPC_SMP_MUXED_IPI
356 	else
357 		smp_muxed_ipi_message_pass(cpu, msg);
358 #endif
359 }
360 
361 void smp_send_reschedule(int cpu)
362 {
363 	if (likely(smp_ops))
364 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
365 }
366 EXPORT_SYMBOL_GPL(smp_send_reschedule);
367 
368 void arch_send_call_function_single_ipi(int cpu)
369 {
370 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
371 }
372 
373 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
374 {
375 	unsigned int cpu;
376 
377 	for_each_cpu(cpu, mask)
378 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
379 }
380 
381 #ifdef CONFIG_NMI_IPI
382 
383 /*
384  * "NMI IPI" system.
385  *
386  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
387  * a running system. They can be used for crash, debug, halt/reboot, etc.
388  *
389  * The IPI call waits with interrupts disabled until all targets enter the
390  * NMI handler, then returns. Subsequent IPIs can be issued before targets
391  * have returned from their handlers, so there is no guarantee about
392  * concurrency or re-entrancy.
393  *
394  * A new NMI can be issued before all targets exit the handler.
395  *
396  * The IPI call may time out without all targets entering the NMI handler.
397  * In that case, there is some logic to recover (and ignore subsequent
398  * NMI interrupts that may eventually be raised), but the platform interrupt
399  * handler may not be able to distinguish this from other exception causes,
400  * which may cause a crash.
401  */
402 
403 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
404 static struct cpumask nmi_ipi_pending_mask;
405 static bool nmi_ipi_busy = false;
406 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
407 
408 static void nmi_ipi_lock_start(unsigned long *flags)
409 {
410 	raw_local_irq_save(*flags);
411 	hard_irq_disable();
412 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
413 		raw_local_irq_restore(*flags);
414 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
415 		raw_local_irq_save(*flags);
416 		hard_irq_disable();
417 	}
418 }
419 
420 static void nmi_ipi_lock(void)
421 {
422 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
423 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
424 }
425 
426 static void nmi_ipi_unlock(void)
427 {
428 	smp_mb();
429 	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
430 	atomic_set(&__nmi_ipi_lock, 0);
431 }
432 
433 static void nmi_ipi_unlock_end(unsigned long *flags)
434 {
435 	nmi_ipi_unlock();
436 	raw_local_irq_restore(*flags);
437 }
438 
439 /*
440  * Platform NMI handler calls this to ack
441  */
442 int smp_handle_nmi_ipi(struct pt_regs *regs)
443 {
444 	void (*fn)(struct pt_regs *) = NULL;
445 	unsigned long flags;
446 	int me = raw_smp_processor_id();
447 	int ret = 0;
448 
449 	/*
450 	 * Unexpected NMIs are possible here because the interrupt may not
451 	 * be able to distinguish NMI IPIs from other types of NMIs, or
452 	 * because the caller may have timed out.
453 	 */
454 	nmi_ipi_lock_start(&flags);
455 	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
456 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
457 		fn = READ_ONCE(nmi_ipi_function);
458 		WARN_ON_ONCE(!fn);
459 		ret = 1;
460 	}
461 	nmi_ipi_unlock_end(&flags);
462 
463 	if (fn)
464 		fn(regs);
465 
466 	return ret;
467 }
468 
469 static void do_smp_send_nmi_ipi(int cpu, bool safe)
470 {
471 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
472 		return;
473 
474 	if (cpu >= 0) {
475 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
476 	} else {
477 		int c;
478 
479 		for_each_online_cpu(c) {
480 			if (c == raw_smp_processor_id())
481 				continue;
482 			do_message_pass(c, PPC_MSG_NMI_IPI);
483 		}
484 	}
485 }
486 
487 /*
488  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
489  * - fn is the target callback function.
490  * - delay_us > 0 is the delay before giving up waiting for targets to
491  *   begin executing the handler, == 0 specifies indefinite delay.
492  */
493 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
494 				u64 delay_us, bool safe)
495 {
496 	unsigned long flags;
497 	int me = raw_smp_processor_id();
498 	int ret = 1;
499 
500 	BUG_ON(cpu == me);
501 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
502 
503 	if (unlikely(!smp_ops))
504 		return 0;
505 
506 	nmi_ipi_lock_start(&flags);
507 	while (nmi_ipi_busy) {
508 		nmi_ipi_unlock_end(&flags);
509 		spin_until_cond(!nmi_ipi_busy);
510 		nmi_ipi_lock_start(&flags);
511 	}
512 	nmi_ipi_busy = true;
513 	nmi_ipi_function = fn;
514 
515 	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
516 
517 	if (cpu < 0) {
518 		/* ALL_OTHERS */
519 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
520 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
521 	} else {
522 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
523 	}
524 
525 	nmi_ipi_unlock();
526 
527 	/* Interrupts remain hard disabled */
528 
529 	do_smp_send_nmi_ipi(cpu, safe);
530 
531 	nmi_ipi_lock();
532 	/* nmi_ipi_busy is set here, so unlock/lock is okay */
533 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
534 		nmi_ipi_unlock();
535 		udelay(1);
536 		nmi_ipi_lock();
537 		if (delay_us) {
538 			delay_us--;
539 			if (!delay_us)
540 				break;
541 		}
542 	}
543 
544 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
545 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
546 		ret = 0;
547 		cpumask_clear(&nmi_ipi_pending_mask);
548 	}
549 
550 	nmi_ipi_function = NULL;
551 	nmi_ipi_busy = false;
552 
553 	nmi_ipi_unlock_end(&flags);
554 
555 	return ret;
556 }
557 
558 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
559 {
560 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
561 }
562 
563 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
564 {
565 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
566 }
567 #endif /* CONFIG_NMI_IPI */
568 
569 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
570 void tick_broadcast(const struct cpumask *mask)
571 {
572 	unsigned int cpu;
573 
574 	for_each_cpu(cpu, mask)
575 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
576 }
577 #endif
578 
579 #ifdef CONFIG_DEBUGGER
580 static void debugger_ipi_callback(struct pt_regs *regs)
581 {
582 	debugger_ipi(regs);
583 }
584 
585 void smp_send_debugger_break(void)
586 {
587 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
588 }
589 #endif
590 
591 #ifdef CONFIG_KEXEC_CORE
592 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
593 {
594 	int cpu;
595 
596 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
597 	if (kdump_in_progress() && crash_wake_offline) {
598 		for_each_present_cpu(cpu) {
599 			if (cpu_online(cpu))
600 				continue;
601 			/*
602 			 * crash_ipi_callback will wait for
603 			 * all cpus, including offline CPUs.
604 			 * We don't care about nmi_ipi_function.
605 			 * Offline cpus will jump straight into
606 			 * crash_ipi_callback, we can skip the
607 			 * entire NMI dance and waiting for
608 			 * cpus to clear pending mask, etc.
609 			 */
610 			do_smp_send_nmi_ipi(cpu, false);
611 		}
612 	}
613 }
614 #endif
615 
616 #ifdef CONFIG_NMI_IPI
617 static void nmi_stop_this_cpu(struct pt_regs *regs)
618 {
619 	/*
620 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
621 	 */
622 	spin_begin();
623 	while (1)
624 		spin_cpu_relax();
625 }
626 
627 void smp_send_stop(void)
628 {
629 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
630 }
631 
632 #else /* CONFIG_NMI_IPI */
633 
634 static void stop_this_cpu(void *dummy)
635 {
636 	hard_irq_disable();
637 	spin_begin();
638 	while (1)
639 		spin_cpu_relax();
640 }
641 
642 void smp_send_stop(void)
643 {
644 	static bool stopped = false;
645 
646 	/*
647 	 * Prevent waiting on csd lock from a previous smp_send_stop.
648 	 * This is racy, but in general callers try to do the right
649 	 * thing and only fire off one smp_send_stop (e.g., see
650 	 * kernel/panic.c)
651 	 */
652 	if (stopped)
653 		return;
654 
655 	stopped = true;
656 
657 	smp_call_function(stop_this_cpu, NULL, 0);
658 }
659 #endif /* CONFIG_NMI_IPI */
660 
661 struct task_struct *current_set[NR_CPUS];
662 
663 static void smp_store_cpu_info(int id)
664 {
665 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
666 #ifdef CONFIG_PPC_FSL_BOOK3E
667 	per_cpu(next_tlbcam_idx, id)
668 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
669 #endif
670 }
671 
672 /*
673  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
674  * rather than just passing around the cpumask we pass around a function that
675  * returns the that cpumask for the given CPU.
676  */
677 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
678 {
679 	cpumask_set_cpu(i, get_cpumask(j));
680 	cpumask_set_cpu(j, get_cpumask(i));
681 }
682 
683 #ifdef CONFIG_HOTPLUG_CPU
684 static void set_cpus_unrelated(int i, int j,
685 		struct cpumask *(*get_cpumask)(int))
686 {
687 	cpumask_clear_cpu(i, get_cpumask(j));
688 	cpumask_clear_cpu(j, get_cpumask(i));
689 }
690 #endif
691 
692 /*
693  * Extends set_cpus_related. Instead of setting one CPU at a time in
694  * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
695  */
696 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
697 				struct cpumask *(*dstmask)(int))
698 {
699 	struct cpumask *mask;
700 	int k;
701 
702 	mask = srcmask(j);
703 	for_each_cpu(k, srcmask(i))
704 		cpumask_or(dstmask(k), dstmask(k), mask);
705 
706 	if (i == j)
707 		return;
708 
709 	mask = srcmask(i);
710 	for_each_cpu(k, srcmask(j))
711 		cpumask_or(dstmask(k), dstmask(k), mask);
712 }
713 
714 /*
715  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
716  *                      property for the CPU device node @dn and stores
717  *                      the parsed output in the thread_groups_list
718  *                      structure @tglp.
719  *
720  * @dn: The device node of the CPU device.
721  * @tglp: Pointer to a thread group list structure into which the parsed
722  *      output of "ibm,thread-groups" is stored.
723  *
724  * ibm,thread-groups[0..N-1] array defines which group of threads in
725  * the CPU-device node can be grouped together based on the property.
726  *
727  * This array can represent thread groupings for multiple properties.
728  *
729  * ibm,thread-groups[i + 0] tells us the property based on which the
730  * threads are being grouped together. If this value is 1, it implies
731  * that the threads in the same group share L1, translation cache. If
732  * the value is 2, it implies that the threads in the same group share
733  * the same L2 cache.
734  *
735  * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
736  * property ibm,thread-groups[i]
737  *
738  * ibm,thread-groups[i+2] tells us the number of threads in each such
739  * group.
740  * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
741  *
742  * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
743  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
744  * the grouping.
745  *
746  * Example:
747  * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
748  * This can be decomposed up into two consecutive arrays:
749  * a) [1,2,4,8,10,12,14,9,11,13,15]
750  * b) [2,2,4,8,10,12,14,9,11,13,15]
751  *
752  * where in,
753  *
754  * a) provides information of Property "1" being shared by "2" groups,
755  *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
756  *  the first group is {8,10,12,14} and the
757  *  "ibm,ppc-interrupt-server#s" of the second group is
758  *  {9,11,13,15}. Property "1" is indicative of the thread in the
759  *  group sharing L1 cache, translation cache and Instruction Data
760  *  flow.
761  *
762  * b) provides information of Property "2" being shared by "2" groups,
763  *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
764  *  the first group is {8,10,12,14} and the
765  *  "ibm,ppc-interrupt-server#s" of the second group is
766  *  {9,11,13,15}. Property "2" indicates that the threads in each
767  *  group share the L2-cache.
768  *
769  * Returns 0 on success, -EINVAL if the property does not exist,
770  * -ENODATA if property does not have a value, and -EOVERFLOW if the
771  * property data isn't large enough.
772  */
773 static int parse_thread_groups(struct device_node *dn,
774 			       struct thread_groups_list *tglp)
775 {
776 	unsigned int property_idx = 0;
777 	u32 *thread_group_array;
778 	size_t total_threads;
779 	int ret = 0, count;
780 	u32 *thread_list;
781 	int i = 0;
782 
783 	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
784 	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
785 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
786 					 thread_group_array, count);
787 	if (ret)
788 		goto out_free;
789 
790 	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
791 		int j;
792 		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
793 
794 		tg->property = thread_group_array[i];
795 		tg->nr_groups = thread_group_array[i + 1];
796 		tg->threads_per_group = thread_group_array[i + 2];
797 		total_threads = tg->nr_groups * tg->threads_per_group;
798 
799 		thread_list = &thread_group_array[i + 3];
800 
801 		for (j = 0; j < total_threads; j++)
802 			tg->thread_list[j] = thread_list[j];
803 		i = i + 3 + total_threads;
804 	}
805 
806 	tglp->nr_properties = property_idx;
807 
808 out_free:
809 	kfree(thread_group_array);
810 	return ret;
811 }
812 
813 /*
814  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
815  *                              that @cpu belongs to.
816  *
817  * @cpu : The logical CPU whose thread group is being searched.
818  * @tg : The thread-group structure of the CPU node which @cpu belongs
819  *       to.
820  *
821  * Returns the index to tg->thread_list that points to the the start
822  * of the thread_group that @cpu belongs to.
823  *
824  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
825  * tg->thread_list.
826  */
827 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
828 {
829 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
830 	int i, j;
831 
832 	for (i = 0; i < tg->nr_groups; i++) {
833 		int group_start = i * tg->threads_per_group;
834 
835 		for (j = 0; j < tg->threads_per_group; j++) {
836 			int idx = group_start + j;
837 
838 			if (tg->thread_list[idx] == hw_cpu_id)
839 				return group_start;
840 		}
841 	}
842 
843 	return -1;
844 }
845 
846 static struct thread_groups *__init get_thread_groups(int cpu,
847 						      int group_property,
848 						      int *err)
849 {
850 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
851 	struct thread_groups_list *cpu_tgl = &tgl[cpu];
852 	struct thread_groups *tg = NULL;
853 	int i;
854 	*err = 0;
855 
856 	if (!dn) {
857 		*err = -ENODATA;
858 		return NULL;
859 	}
860 
861 	if (!cpu_tgl->nr_properties) {
862 		*err = parse_thread_groups(dn, cpu_tgl);
863 		if (*err)
864 			goto out;
865 	}
866 
867 	for (i = 0; i < cpu_tgl->nr_properties; i++) {
868 		if (cpu_tgl->property_tgs[i].property == group_property) {
869 			tg = &cpu_tgl->property_tgs[i];
870 			break;
871 		}
872 	}
873 
874 	if (!tg)
875 		*err = -EINVAL;
876 out:
877 	of_node_put(dn);
878 	return tg;
879 }
880 
881 static int __init init_thread_group_cache_map(int cpu, int cache_property)
882 
883 {
884 	int first_thread = cpu_first_thread_sibling(cpu);
885 	int i, cpu_group_start = -1, err = 0;
886 	struct thread_groups *tg = NULL;
887 	cpumask_var_t *mask = NULL;
888 
889 	if (cache_property != THREAD_GROUP_SHARE_L1 &&
890 	    cache_property != THREAD_GROUP_SHARE_L2)
891 		return -EINVAL;
892 
893 	tg = get_thread_groups(cpu, cache_property, &err);
894 	if (!tg)
895 		return err;
896 
897 	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
898 
899 	if (unlikely(cpu_group_start == -1)) {
900 		WARN_ON_ONCE(1);
901 		return -ENODATA;
902 	}
903 
904 	if (cache_property == THREAD_GROUP_SHARE_L1)
905 		mask = &per_cpu(thread_group_l1_cache_map, cpu);
906 	else if (cache_property == THREAD_GROUP_SHARE_L2)
907 		mask = &per_cpu(thread_group_l2_cache_map, cpu);
908 
909 	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
910 
911 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
912 		int i_group_start = get_cpu_thread_group_start(i, tg);
913 
914 		if (unlikely(i_group_start == -1)) {
915 			WARN_ON_ONCE(1);
916 			return -ENODATA;
917 		}
918 
919 		if (i_group_start == cpu_group_start)
920 			cpumask_set_cpu(i, *mask);
921 	}
922 
923 	return 0;
924 }
925 
926 static bool shared_caches;
927 
928 #ifdef CONFIG_SCHED_SMT
929 /* cpumask of CPUs with asymmetric SMT dependency */
930 static int powerpc_smt_flags(void)
931 {
932 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
933 
934 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
935 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
936 		flags |= SD_ASYM_PACKING;
937 	}
938 	return flags;
939 }
940 #endif
941 
942 /*
943  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
944  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
945  * since the migrated task remains cache hot. We want to take advantage of this
946  * at the scheduler level so an extra topology level is required.
947  */
948 static int powerpc_shared_cache_flags(void)
949 {
950 	return SD_SHARE_PKG_RESOURCES;
951 }
952 
953 /*
954  * We can't just pass cpu_l2_cache_mask() directly because
955  * returns a non-const pointer and the compiler barfs on that.
956  */
957 static const struct cpumask *shared_cache_mask(int cpu)
958 {
959 	return per_cpu(cpu_l2_cache_map, cpu);
960 }
961 
962 #ifdef CONFIG_SCHED_SMT
963 static const struct cpumask *smallcore_smt_mask(int cpu)
964 {
965 	return cpu_smallcore_mask(cpu);
966 }
967 #endif
968 
969 static struct cpumask *cpu_coregroup_mask(int cpu)
970 {
971 	return per_cpu(cpu_coregroup_map, cpu);
972 }
973 
974 static bool has_coregroup_support(void)
975 {
976 	return coregroup_enabled;
977 }
978 
979 static const struct cpumask *cpu_mc_mask(int cpu)
980 {
981 	return cpu_coregroup_mask(cpu);
982 }
983 
984 static struct sched_domain_topology_level powerpc_topology[] = {
985 #ifdef CONFIG_SCHED_SMT
986 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
987 #endif
988 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
989 	{ cpu_mc_mask, SD_INIT_NAME(MC) },
990 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
991 	{ NULL, },
992 };
993 
994 static int __init init_big_cores(void)
995 {
996 	int cpu;
997 
998 	for_each_possible_cpu(cpu) {
999 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1000 
1001 		if (err)
1002 			return err;
1003 
1004 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1005 					GFP_KERNEL,
1006 					cpu_to_node(cpu));
1007 	}
1008 
1009 	has_big_cores = true;
1010 
1011 	for_each_possible_cpu(cpu) {
1012 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2);
1013 
1014 		if (err)
1015 			return err;
1016 	}
1017 
1018 	thread_group_shares_l2 = true;
1019 	pr_debug("L2 cache only shared by the threads in the small core\n");
1020 	return 0;
1021 }
1022 
1023 void __init smp_prepare_cpus(unsigned int max_cpus)
1024 {
1025 	unsigned int cpu;
1026 
1027 	DBG("smp_prepare_cpus\n");
1028 
1029 	/*
1030 	 * setup_cpu may need to be called on the boot cpu. We havent
1031 	 * spun any cpus up but lets be paranoid.
1032 	 */
1033 	BUG_ON(boot_cpuid != smp_processor_id());
1034 
1035 	/* Fixup boot cpu */
1036 	smp_store_cpu_info(boot_cpuid);
1037 	cpu_callin_map[boot_cpuid] = 1;
1038 
1039 	for_each_possible_cpu(cpu) {
1040 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1041 					GFP_KERNEL, cpu_to_node(cpu));
1042 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1043 					GFP_KERNEL, cpu_to_node(cpu));
1044 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1045 					GFP_KERNEL, cpu_to_node(cpu));
1046 		if (has_coregroup_support())
1047 			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1048 						GFP_KERNEL, cpu_to_node(cpu));
1049 
1050 #ifdef CONFIG_NEED_MULTIPLE_NODES
1051 		/*
1052 		 * numa_node_id() works after this.
1053 		 */
1054 		if (cpu_present(cpu)) {
1055 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1056 			set_cpu_numa_mem(cpu,
1057 				local_memory_node(numa_cpu_lookup_table[cpu]));
1058 		}
1059 #endif
1060 		/*
1061 		 * cpu_core_map is now more updated and exists only since
1062 		 * its been exported for long. It only will have a snapshot
1063 		 * of cpu_cpu_mask.
1064 		 */
1065 		cpumask_copy(per_cpu(cpu_core_map, cpu), cpu_cpu_mask(cpu));
1066 	}
1067 
1068 	/* Init the cpumasks so the boot CPU is related to itself */
1069 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1070 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1071 
1072 	if (has_coregroup_support())
1073 		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1074 
1075 	init_big_cores();
1076 	if (has_big_cores) {
1077 		cpumask_set_cpu(boot_cpuid,
1078 				cpu_smallcore_mask(boot_cpuid));
1079 	}
1080 
1081 	if (smp_ops && smp_ops->probe)
1082 		smp_ops->probe();
1083 }
1084 
1085 void smp_prepare_boot_cpu(void)
1086 {
1087 	BUG_ON(smp_processor_id() != boot_cpuid);
1088 #ifdef CONFIG_PPC64
1089 	paca_ptrs[boot_cpuid]->__current = current;
1090 #endif
1091 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1092 	current_set[boot_cpuid] = current;
1093 }
1094 
1095 #ifdef CONFIG_HOTPLUG_CPU
1096 
1097 int generic_cpu_disable(void)
1098 {
1099 	unsigned int cpu = smp_processor_id();
1100 
1101 	if (cpu == boot_cpuid)
1102 		return -EBUSY;
1103 
1104 	set_cpu_online(cpu, false);
1105 #ifdef CONFIG_PPC64
1106 	vdso_data->processorCount--;
1107 #endif
1108 	/* Update affinity of all IRQs previously aimed at this CPU */
1109 	irq_migrate_all_off_this_cpu();
1110 
1111 	/*
1112 	 * Depending on the details of the interrupt controller, it's possible
1113 	 * that one of the interrupts we just migrated away from this CPU is
1114 	 * actually already pending on this CPU. If we leave it in that state
1115 	 * the interrupt will never be EOI'ed, and will never fire again. So
1116 	 * temporarily enable interrupts here, to allow any pending interrupt to
1117 	 * be received (and EOI'ed), before we take this CPU offline.
1118 	 */
1119 	local_irq_enable();
1120 	mdelay(1);
1121 	local_irq_disable();
1122 
1123 	return 0;
1124 }
1125 
1126 void generic_cpu_die(unsigned int cpu)
1127 {
1128 	int i;
1129 
1130 	for (i = 0; i < 100; i++) {
1131 		smp_rmb();
1132 		if (is_cpu_dead(cpu))
1133 			return;
1134 		msleep(100);
1135 	}
1136 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1137 }
1138 
1139 void generic_set_cpu_dead(unsigned int cpu)
1140 {
1141 	per_cpu(cpu_state, cpu) = CPU_DEAD;
1142 }
1143 
1144 /*
1145  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1146  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1147  * which makes the delay in generic_cpu_die() not happen.
1148  */
1149 void generic_set_cpu_up(unsigned int cpu)
1150 {
1151 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1152 }
1153 
1154 int generic_check_cpu_restart(unsigned int cpu)
1155 {
1156 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1157 }
1158 
1159 int is_cpu_dead(unsigned int cpu)
1160 {
1161 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1162 }
1163 
1164 static bool secondaries_inhibited(void)
1165 {
1166 	return kvm_hv_mode_active();
1167 }
1168 
1169 #else /* HOTPLUG_CPU */
1170 
1171 #define secondaries_inhibited()		0
1172 
1173 #endif
1174 
1175 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1176 {
1177 #ifdef CONFIG_PPC64
1178 	paca_ptrs[cpu]->__current = idle;
1179 	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1180 				 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1181 #endif
1182 	idle->cpu = cpu;
1183 	secondary_current = current_set[cpu] = idle;
1184 }
1185 
1186 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1187 {
1188 	int rc, c;
1189 
1190 	/*
1191 	 * Don't allow secondary threads to come online if inhibited
1192 	 */
1193 	if (threads_per_core > 1 && secondaries_inhibited() &&
1194 	    cpu_thread_in_subcore(cpu))
1195 		return -EBUSY;
1196 
1197 	if (smp_ops == NULL ||
1198 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1199 		return -EINVAL;
1200 
1201 	cpu_idle_thread_init(cpu, tidle);
1202 
1203 	/*
1204 	 * The platform might need to allocate resources prior to bringing
1205 	 * up the CPU
1206 	 */
1207 	if (smp_ops->prepare_cpu) {
1208 		rc = smp_ops->prepare_cpu(cpu);
1209 		if (rc)
1210 			return rc;
1211 	}
1212 
1213 	/* Make sure callin-map entry is 0 (can be leftover a CPU
1214 	 * hotplug
1215 	 */
1216 	cpu_callin_map[cpu] = 0;
1217 
1218 	/* The information for processor bringup must
1219 	 * be written out to main store before we release
1220 	 * the processor.
1221 	 */
1222 	smp_mb();
1223 
1224 	/* wake up cpus */
1225 	DBG("smp: kicking cpu %d\n", cpu);
1226 	rc = smp_ops->kick_cpu(cpu);
1227 	if (rc) {
1228 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1229 		return rc;
1230 	}
1231 
1232 	/*
1233 	 * wait to see if the cpu made a callin (is actually up).
1234 	 * use this value that I found through experimentation.
1235 	 * -- Cort
1236 	 */
1237 	if (system_state < SYSTEM_RUNNING)
1238 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1239 			udelay(100);
1240 #ifdef CONFIG_HOTPLUG_CPU
1241 	else
1242 		/*
1243 		 * CPUs can take much longer to come up in the
1244 		 * hotplug case.  Wait five seconds.
1245 		 */
1246 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1247 			msleep(1);
1248 #endif
1249 
1250 	if (!cpu_callin_map[cpu]) {
1251 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1252 		return -ENOENT;
1253 	}
1254 
1255 	DBG("Processor %u found.\n", cpu);
1256 
1257 	if (smp_ops->give_timebase)
1258 		smp_ops->give_timebase();
1259 
1260 	/* Wait until cpu puts itself in the online & active maps */
1261 	spin_until_cond(cpu_online(cpu));
1262 
1263 	return 0;
1264 }
1265 
1266 /* Return the value of the reg property corresponding to the given
1267  * logical cpu.
1268  */
1269 int cpu_to_core_id(int cpu)
1270 {
1271 	struct device_node *np;
1272 	const __be32 *reg;
1273 	int id = -1;
1274 
1275 	np = of_get_cpu_node(cpu, NULL);
1276 	if (!np)
1277 		goto out;
1278 
1279 	reg = of_get_property(np, "reg", NULL);
1280 	if (!reg)
1281 		goto out;
1282 
1283 	id = be32_to_cpup(reg);
1284 out:
1285 	of_node_put(np);
1286 	return id;
1287 }
1288 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1289 
1290 /* Helper routines for cpu to core mapping */
1291 int cpu_core_index_of_thread(int cpu)
1292 {
1293 	return cpu >> threads_shift;
1294 }
1295 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1296 
1297 int cpu_first_thread_of_core(int core)
1298 {
1299 	return core << threads_shift;
1300 }
1301 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1302 
1303 /* Must be called when no change can occur to cpu_present_mask,
1304  * i.e. during cpu online or offline.
1305  */
1306 static struct device_node *cpu_to_l2cache(int cpu)
1307 {
1308 	struct device_node *np;
1309 	struct device_node *cache;
1310 
1311 	if (!cpu_present(cpu))
1312 		return NULL;
1313 
1314 	np = of_get_cpu_node(cpu, NULL);
1315 	if (np == NULL)
1316 		return NULL;
1317 
1318 	cache = of_find_next_cache_node(np);
1319 
1320 	of_node_put(np);
1321 
1322 	return cache;
1323 }
1324 
1325 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1326 {
1327 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1328 	struct device_node *l2_cache, *np;
1329 	int i;
1330 
1331 	if (has_big_cores)
1332 		submask_fn = cpu_smallcore_mask;
1333 
1334 	/*
1335 	 * If the threads in a thread-group share L2 cache, then the
1336 	 * L2-mask can be obtained from thread_group_l2_cache_map.
1337 	 */
1338 	if (thread_group_shares_l2) {
1339 		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1340 
1341 		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1342 			if (cpu_online(i))
1343 				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1344 		}
1345 
1346 		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1347 		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1348 		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1349 			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1350 				     cpu);
1351 		}
1352 
1353 		return true;
1354 	}
1355 
1356 	l2_cache = cpu_to_l2cache(cpu);
1357 	if (!l2_cache || !*mask) {
1358 		/* Assume only core siblings share cache with this CPU */
1359 		for_each_cpu(i, submask_fn(cpu))
1360 			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1361 
1362 		return false;
1363 	}
1364 
1365 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1366 
1367 	/* Update l2-cache mask with all the CPUs that are part of submask */
1368 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1369 
1370 	/* Skip all CPUs already part of current CPU l2-cache mask */
1371 	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1372 
1373 	for_each_cpu(i, *mask) {
1374 		/*
1375 		 * when updating the marks the current CPU has not been marked
1376 		 * online, but we need to update the cache masks
1377 		 */
1378 		np = cpu_to_l2cache(i);
1379 
1380 		/* Skip all CPUs already part of current CPU l2-cache */
1381 		if (np == l2_cache) {
1382 			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1383 			cpumask_andnot(*mask, *mask, submask_fn(i));
1384 		} else {
1385 			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1386 		}
1387 
1388 		of_node_put(np);
1389 	}
1390 	of_node_put(l2_cache);
1391 
1392 	return true;
1393 }
1394 
1395 #ifdef CONFIG_HOTPLUG_CPU
1396 static void remove_cpu_from_masks(int cpu)
1397 {
1398 	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1399 	int i;
1400 
1401 	if (shared_caches)
1402 		mask_fn = cpu_l2_cache_mask;
1403 
1404 	for_each_cpu(i, mask_fn(cpu)) {
1405 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1406 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1407 		if (has_big_cores)
1408 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1409 	}
1410 
1411 	if (has_coregroup_support()) {
1412 		for_each_cpu(i, cpu_coregroup_mask(cpu))
1413 			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1414 	}
1415 }
1416 #endif
1417 
1418 static inline void add_cpu_to_smallcore_masks(int cpu)
1419 {
1420 	int i;
1421 
1422 	if (!has_big_cores)
1423 		return;
1424 
1425 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1426 
1427 	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1428 		if (cpu_online(i))
1429 			set_cpus_related(i, cpu, cpu_smallcore_mask);
1430 	}
1431 }
1432 
1433 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1434 {
1435 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1436 	int coregroup_id = cpu_to_coregroup_id(cpu);
1437 	int i;
1438 
1439 	if (shared_caches)
1440 		submask_fn = cpu_l2_cache_mask;
1441 
1442 	if (!*mask) {
1443 		/* Assume only siblings are part of this CPU's coregroup */
1444 		for_each_cpu(i, submask_fn(cpu))
1445 			set_cpus_related(cpu, i, cpu_coregroup_mask);
1446 
1447 		return;
1448 	}
1449 
1450 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1451 
1452 	/* Update coregroup mask with all the CPUs that are part of submask */
1453 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1454 
1455 	/* Skip all CPUs already part of coregroup mask */
1456 	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1457 
1458 	for_each_cpu(i, *mask) {
1459 		/* Skip all CPUs not part of this coregroup */
1460 		if (coregroup_id == cpu_to_coregroup_id(i)) {
1461 			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1462 			cpumask_andnot(*mask, *mask, submask_fn(i));
1463 		} else {
1464 			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1465 		}
1466 	}
1467 }
1468 
1469 static void add_cpu_to_masks(int cpu)
1470 {
1471 	int first_thread = cpu_first_thread_sibling(cpu);
1472 	cpumask_var_t mask;
1473 	int i;
1474 
1475 	/*
1476 	 * This CPU will not be in the online mask yet so we need to manually
1477 	 * add it to it's own thread sibling mask.
1478 	 */
1479 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1480 
1481 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1482 		if (cpu_online(i))
1483 			set_cpus_related(i, cpu, cpu_sibling_mask);
1484 
1485 	add_cpu_to_smallcore_masks(cpu);
1486 
1487 	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1488 	alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1489 	update_mask_by_l2(cpu, &mask);
1490 
1491 	if (has_coregroup_support())
1492 		update_coregroup_mask(cpu, &mask);
1493 
1494 	free_cpumask_var(mask);
1495 }
1496 
1497 /* Activate a secondary processor. */
1498 void start_secondary(void *unused)
1499 {
1500 	unsigned int cpu = raw_smp_processor_id();
1501 
1502 	mmgrab(&init_mm);
1503 	current->active_mm = &init_mm;
1504 
1505 	smp_store_cpu_info(cpu);
1506 	set_dec(tb_ticks_per_jiffy);
1507 	rcu_cpu_starting(cpu);
1508 	preempt_disable();
1509 	cpu_callin_map[cpu] = 1;
1510 
1511 	if (smp_ops->setup_cpu)
1512 		smp_ops->setup_cpu(cpu);
1513 	if (smp_ops->take_timebase)
1514 		smp_ops->take_timebase();
1515 
1516 	secondary_cpu_time_init();
1517 
1518 #ifdef CONFIG_PPC64
1519 	if (system_state == SYSTEM_RUNNING)
1520 		vdso_data->processorCount++;
1521 
1522 	vdso_getcpu_init();
1523 #endif
1524 	/* Update topology CPU masks */
1525 	add_cpu_to_masks(cpu);
1526 
1527 	/*
1528 	 * Check for any shared caches. Note that this must be done on a
1529 	 * per-core basis because one core in the pair might be disabled.
1530 	 */
1531 	if (!shared_caches) {
1532 		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1533 		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1534 
1535 		if (has_big_cores)
1536 			sibling_mask = cpu_smallcore_mask;
1537 
1538 		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1539 			shared_caches = true;
1540 	}
1541 
1542 	set_numa_node(numa_cpu_lookup_table[cpu]);
1543 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1544 
1545 	smp_wmb();
1546 	notify_cpu_starting(cpu);
1547 	set_cpu_online(cpu, true);
1548 
1549 	boot_init_stack_canary();
1550 
1551 	local_irq_enable();
1552 
1553 	/* We can enable ftrace for secondary cpus now */
1554 	this_cpu_enable_ftrace();
1555 
1556 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1557 
1558 	BUG();
1559 }
1560 
1561 int setup_profiling_timer(unsigned int multiplier)
1562 {
1563 	return 0;
1564 }
1565 
1566 static void fixup_topology(void)
1567 {
1568 	int i;
1569 
1570 #ifdef CONFIG_SCHED_SMT
1571 	if (has_big_cores) {
1572 		pr_info("Big cores detected but using small core scheduling\n");
1573 		powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1574 	}
1575 #endif
1576 
1577 	if (!has_coregroup_support())
1578 		powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1579 
1580 	/*
1581 	 * Try to consolidate topology levels here instead of
1582 	 * allowing scheduler to degenerate.
1583 	 * - Dont consolidate if masks are different.
1584 	 * - Dont consolidate if sd_flags exists and are different.
1585 	 */
1586 	for (i = 1; i <= die_idx; i++) {
1587 		if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1588 			continue;
1589 
1590 		if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1591 				powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1592 			continue;
1593 
1594 		if (!powerpc_topology[i - 1].sd_flags)
1595 			powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1596 
1597 		powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1598 		powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1599 #ifdef CONFIG_SCHED_DEBUG
1600 		powerpc_topology[i].name = powerpc_topology[i + 1].name;
1601 #endif
1602 	}
1603 }
1604 
1605 void __init smp_cpus_done(unsigned int max_cpus)
1606 {
1607 	/*
1608 	 * We are running pinned to the boot CPU, see rest_init().
1609 	 */
1610 	if (smp_ops && smp_ops->setup_cpu)
1611 		smp_ops->setup_cpu(boot_cpuid);
1612 
1613 	if (smp_ops && smp_ops->bringup_done)
1614 		smp_ops->bringup_done();
1615 
1616 	dump_numa_cpu_topology();
1617 
1618 	fixup_topology();
1619 	set_sched_topology(powerpc_topology);
1620 }
1621 
1622 #ifdef CONFIG_HOTPLUG_CPU
1623 int __cpu_disable(void)
1624 {
1625 	int cpu = smp_processor_id();
1626 	int err;
1627 
1628 	if (!smp_ops->cpu_disable)
1629 		return -ENOSYS;
1630 
1631 	this_cpu_disable_ftrace();
1632 
1633 	err = smp_ops->cpu_disable();
1634 	if (err)
1635 		return err;
1636 
1637 	/* Update sibling maps */
1638 	remove_cpu_from_masks(cpu);
1639 
1640 	return 0;
1641 }
1642 
1643 void __cpu_die(unsigned int cpu)
1644 {
1645 	if (smp_ops->cpu_die)
1646 		smp_ops->cpu_die(cpu);
1647 }
1648 
1649 void arch_cpu_idle_dead(void)
1650 {
1651 	sched_preempt_enable_no_resched();
1652 
1653 	/*
1654 	 * Disable on the down path. This will be re-enabled by
1655 	 * start_secondary() via start_secondary_resume() below
1656 	 */
1657 	this_cpu_disable_ftrace();
1658 
1659 	if (smp_ops->cpu_offline_self)
1660 		smp_ops->cpu_offline_self();
1661 
1662 	/* If we return, we re-enter start_secondary */
1663 	start_secondary_resume();
1664 }
1665 
1666 #endif
1667