xref: /openbmc/linux/arch/powerpc/kernel/smp.c (revision d0e22329)
1 /*
2  * SMP support for ppc.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5  * deal of code from the sparc and intel versions.
6  *
7  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8  *
9  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17 
18 #undef DEBUG
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/topology.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/spinlock.h>
29 #include <linux/cache.h>
30 #include <linux/err.h>
31 #include <linux/device.h>
32 #include <linux/cpu.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/profile.h>
36 #include <linux/processor.h>
37 #include <linux/random.h>
38 #include <linux/stackprotector.h>
39 
40 #include <asm/ptrace.h>
41 #include <linux/atomic.h>
42 #include <asm/irq.h>
43 #include <asm/hw_irq.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/dbell.h>
46 #include <asm/page.h>
47 #include <asm/pgtable.h>
48 #include <asm/prom.h>
49 #include <asm/smp.h>
50 #include <asm/time.h>
51 #include <asm/machdep.h>
52 #include <asm/cputhreads.h>
53 #include <asm/cputable.h>
54 #include <asm/mpic.h>
55 #include <asm/vdso_datapage.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/paca.h>
58 #endif
59 #include <asm/vdso.h>
60 #include <asm/debug.h>
61 #include <asm/kexec.h>
62 #include <asm/asm-prototypes.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/ftrace.h>
65 
66 #ifdef DEBUG
67 #include <asm/udbg.h>
68 #define DBG(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
72 
73 #ifdef CONFIG_HOTPLUG_CPU
74 /* State of each CPU during hotplug phases */
75 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
76 #endif
77 
78 struct thread_info *secondary_ti;
79 bool has_big_cores;
80 
81 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
82 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
83 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
84 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
85 
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
89 EXPORT_SYMBOL_GPL(has_big_cores);
90 
91 #define MAX_THREAD_LIST_SIZE	8
92 #define THREAD_GROUP_SHARE_L1   1
93 struct thread_groups {
94 	unsigned int property;
95 	unsigned int nr_groups;
96 	unsigned int threads_per_group;
97 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
98 };
99 
100 /*
101  * On big-cores system, cpu_l1_cache_map for each CPU corresponds to
102  * the set its siblings that share the L1-cache.
103  */
104 DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
105 
106 /* SMP operations for this machine */
107 struct smp_ops_t *smp_ops;
108 
109 /* Can't be static due to PowerMac hackery */
110 volatile unsigned int cpu_callin_map[NR_CPUS];
111 
112 int smt_enabled_at_boot = 1;
113 
114 /*
115  * Returns 1 if the specified cpu should be brought up during boot.
116  * Used to inhibit booting threads if they've been disabled or
117  * limited on the command line
118  */
119 int smp_generic_cpu_bootable(unsigned int nr)
120 {
121 	/* Special case - we inhibit secondary thread startup
122 	 * during boot if the user requests it.
123 	 */
124 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
125 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
126 			return 0;
127 		if (smt_enabled_at_boot
128 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
129 			return 0;
130 	}
131 
132 	return 1;
133 }
134 
135 
136 #ifdef CONFIG_PPC64
137 int smp_generic_kick_cpu(int nr)
138 {
139 	if (nr < 0 || nr >= nr_cpu_ids)
140 		return -EINVAL;
141 
142 	/*
143 	 * The processor is currently spinning, waiting for the
144 	 * cpu_start field to become non-zero After we set cpu_start,
145 	 * the processor will continue on to secondary_start
146 	 */
147 	if (!paca_ptrs[nr]->cpu_start) {
148 		paca_ptrs[nr]->cpu_start = 1;
149 		smp_mb();
150 		return 0;
151 	}
152 
153 #ifdef CONFIG_HOTPLUG_CPU
154 	/*
155 	 * Ok it's not there, so it might be soft-unplugged, let's
156 	 * try to bring it back
157 	 */
158 	generic_set_cpu_up(nr);
159 	smp_wmb();
160 	smp_send_reschedule(nr);
161 #endif /* CONFIG_HOTPLUG_CPU */
162 
163 	return 0;
164 }
165 #endif /* CONFIG_PPC64 */
166 
167 static irqreturn_t call_function_action(int irq, void *data)
168 {
169 	generic_smp_call_function_interrupt();
170 	return IRQ_HANDLED;
171 }
172 
173 static irqreturn_t reschedule_action(int irq, void *data)
174 {
175 	scheduler_ipi();
176 	return IRQ_HANDLED;
177 }
178 
179 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
180 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
181 {
182 	timer_broadcast_interrupt();
183 	return IRQ_HANDLED;
184 }
185 #endif
186 
187 #ifdef CONFIG_NMI_IPI
188 static irqreturn_t nmi_ipi_action(int irq, void *data)
189 {
190 	smp_handle_nmi_ipi(get_irq_regs());
191 	return IRQ_HANDLED;
192 }
193 #endif
194 
195 static irq_handler_t smp_ipi_action[] = {
196 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
197 	[PPC_MSG_RESCHEDULE] = reschedule_action,
198 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
199 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
200 #endif
201 #ifdef CONFIG_NMI_IPI
202 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
203 #endif
204 };
205 
206 /*
207  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
208  * than going through the call function infrastructure, and strongly
209  * serialized, so it is more appropriate for debugging.
210  */
211 const char *smp_ipi_name[] = {
212 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
213 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
214 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
215 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
216 #endif
217 #ifdef CONFIG_NMI_IPI
218 	[PPC_MSG_NMI_IPI] = "nmi ipi",
219 #endif
220 };
221 
222 /* optional function to request ipi, for controllers with >= 4 ipis */
223 int smp_request_message_ipi(int virq, int msg)
224 {
225 	int err;
226 
227 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
228 		return -EINVAL;
229 #ifndef CONFIG_NMI_IPI
230 	if (msg == PPC_MSG_NMI_IPI)
231 		return 1;
232 #endif
233 
234 	err = request_irq(virq, smp_ipi_action[msg],
235 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
236 			  smp_ipi_name[msg], NULL);
237 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
238 		virq, smp_ipi_name[msg], err);
239 
240 	return err;
241 }
242 
243 #ifdef CONFIG_PPC_SMP_MUXED_IPI
244 struct cpu_messages {
245 	long messages;			/* current messages */
246 };
247 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
248 
249 void smp_muxed_ipi_set_message(int cpu, int msg)
250 {
251 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
252 	char *message = (char *)&info->messages;
253 
254 	/*
255 	 * Order previous accesses before accesses in the IPI handler.
256 	 */
257 	smp_mb();
258 	message[msg] = 1;
259 }
260 
261 void smp_muxed_ipi_message_pass(int cpu, int msg)
262 {
263 	smp_muxed_ipi_set_message(cpu, msg);
264 
265 	/*
266 	 * cause_ipi functions are required to include a full barrier
267 	 * before doing whatever causes the IPI.
268 	 */
269 	smp_ops->cause_ipi(cpu);
270 }
271 
272 #ifdef __BIG_ENDIAN__
273 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
274 #else
275 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
276 #endif
277 
278 irqreturn_t smp_ipi_demux(void)
279 {
280 	mb();	/* order any irq clear */
281 
282 	return smp_ipi_demux_relaxed();
283 }
284 
285 /* sync-free variant. Callers should ensure synchronization */
286 irqreturn_t smp_ipi_demux_relaxed(void)
287 {
288 	struct cpu_messages *info;
289 	unsigned long all;
290 
291 	info = this_cpu_ptr(&ipi_message);
292 	do {
293 		all = xchg(&info->messages, 0);
294 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
295 		/*
296 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
297 		 * before PPC_MSG_CALL_FUNCTION messages because when
298 		 * a VM is destroyed, we call kick_all_cpus_sync()
299 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
300 		 * messages have completed before we free any VCPUs.
301 		 */
302 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
303 			kvmppc_xics_ipi_action();
304 #endif
305 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
306 			generic_smp_call_function_interrupt();
307 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
308 			scheduler_ipi();
309 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
310 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
311 			timer_broadcast_interrupt();
312 #endif
313 #ifdef CONFIG_NMI_IPI
314 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
315 			nmi_ipi_action(0, NULL);
316 #endif
317 	} while (info->messages);
318 
319 	return IRQ_HANDLED;
320 }
321 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
322 
323 static inline void do_message_pass(int cpu, int msg)
324 {
325 	if (smp_ops->message_pass)
326 		smp_ops->message_pass(cpu, msg);
327 #ifdef CONFIG_PPC_SMP_MUXED_IPI
328 	else
329 		smp_muxed_ipi_message_pass(cpu, msg);
330 #endif
331 }
332 
333 void smp_send_reschedule(int cpu)
334 {
335 	if (likely(smp_ops))
336 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
337 }
338 EXPORT_SYMBOL_GPL(smp_send_reschedule);
339 
340 void arch_send_call_function_single_ipi(int cpu)
341 {
342 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
343 }
344 
345 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
346 {
347 	unsigned int cpu;
348 
349 	for_each_cpu(cpu, mask)
350 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
351 }
352 
353 #ifdef CONFIG_NMI_IPI
354 
355 /*
356  * "NMI IPI" system.
357  *
358  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
359  * a running system. They can be used for crash, debug, halt/reboot, etc.
360  *
361  * NMI IPIs are globally single threaded. No more than one in progress at
362  * any time.
363  *
364  * The IPI call waits with interrupts disabled until all targets enter the
365  * NMI handler, then the call returns.
366  *
367  * No new NMI can be initiated until targets exit the handler.
368  *
369  * The IPI call may time out without all targets entering the NMI handler.
370  * In that case, there is some logic to recover (and ignore subsequent
371  * NMI interrupts that may eventually be raised), but the platform interrupt
372  * handler may not be able to distinguish this from other exception causes,
373  * which may cause a crash.
374  */
375 
376 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
377 static struct cpumask nmi_ipi_pending_mask;
378 static int nmi_ipi_busy_count = 0;
379 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
380 
381 static void nmi_ipi_lock_start(unsigned long *flags)
382 {
383 	raw_local_irq_save(*flags);
384 	hard_irq_disable();
385 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
386 		raw_local_irq_restore(*flags);
387 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
388 		raw_local_irq_save(*flags);
389 		hard_irq_disable();
390 	}
391 }
392 
393 static void nmi_ipi_lock(void)
394 {
395 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
396 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
397 }
398 
399 static void nmi_ipi_unlock(void)
400 {
401 	smp_mb();
402 	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
403 	atomic_set(&__nmi_ipi_lock, 0);
404 }
405 
406 static void nmi_ipi_unlock_end(unsigned long *flags)
407 {
408 	nmi_ipi_unlock();
409 	raw_local_irq_restore(*flags);
410 }
411 
412 /*
413  * Platform NMI handler calls this to ack
414  */
415 int smp_handle_nmi_ipi(struct pt_regs *regs)
416 {
417 	void (*fn)(struct pt_regs *);
418 	unsigned long flags;
419 	int me = raw_smp_processor_id();
420 	int ret = 0;
421 
422 	/*
423 	 * Unexpected NMIs are possible here because the interrupt may not
424 	 * be able to distinguish NMI IPIs from other types of NMIs, or
425 	 * because the caller may have timed out.
426 	 */
427 	nmi_ipi_lock_start(&flags);
428 	if (!nmi_ipi_busy_count)
429 		goto out;
430 	if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
431 		goto out;
432 
433 	fn = nmi_ipi_function;
434 	if (!fn)
435 		goto out;
436 
437 	cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
438 	nmi_ipi_busy_count++;
439 	nmi_ipi_unlock();
440 
441 	ret = 1;
442 
443 	fn(regs);
444 
445 	nmi_ipi_lock();
446 	if (nmi_ipi_busy_count > 1) /* Can race with caller time-out */
447 		nmi_ipi_busy_count--;
448 out:
449 	nmi_ipi_unlock_end(&flags);
450 
451 	return ret;
452 }
453 
454 static void do_smp_send_nmi_ipi(int cpu, bool safe)
455 {
456 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
457 		return;
458 
459 	if (cpu >= 0) {
460 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
461 	} else {
462 		int c;
463 
464 		for_each_online_cpu(c) {
465 			if (c == raw_smp_processor_id())
466 				continue;
467 			do_message_pass(c, PPC_MSG_NMI_IPI);
468 		}
469 	}
470 }
471 
472 /*
473  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
474  * - fn is the target callback function.
475  * - delay_us > 0 is the delay before giving up waiting for targets to
476  *   complete executing the handler, == 0 specifies indefinite delay.
477  */
478 int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us, bool safe)
479 {
480 	unsigned long flags;
481 	int me = raw_smp_processor_id();
482 	int ret = 1;
483 
484 	BUG_ON(cpu == me);
485 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
486 
487 	if (unlikely(!smp_ops))
488 		return 0;
489 
490 	/* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
491 	nmi_ipi_lock_start(&flags);
492 	while (nmi_ipi_busy_count) {
493 		nmi_ipi_unlock_end(&flags);
494 		spin_until_cond(nmi_ipi_busy_count == 0);
495 		nmi_ipi_lock_start(&flags);
496 	}
497 
498 	nmi_ipi_function = fn;
499 
500 	if (cpu < 0) {
501 		/* ALL_OTHERS */
502 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
503 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
504 	} else {
505 		/* cpumask starts clear */
506 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
507 	}
508 	nmi_ipi_busy_count++;
509 	nmi_ipi_unlock();
510 
511 	do_smp_send_nmi_ipi(cpu, safe);
512 
513 	nmi_ipi_lock();
514 	/* nmi_ipi_busy_count is held here, so unlock/lock is okay */
515 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
516 		nmi_ipi_unlock();
517 		udelay(1);
518 		nmi_ipi_lock();
519 		if (delay_us) {
520 			delay_us--;
521 			if (!delay_us)
522 				break;
523 		}
524 	}
525 
526 	while (nmi_ipi_busy_count > 1) {
527 		nmi_ipi_unlock();
528 		udelay(1);
529 		nmi_ipi_lock();
530 		if (delay_us) {
531 			delay_us--;
532 			if (!delay_us)
533 				break;
534 		}
535 	}
536 
537 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
538 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
539 		ret = 0;
540 		cpumask_clear(&nmi_ipi_pending_mask);
541 	}
542 	if (nmi_ipi_busy_count > 1) {
543 		/* Timeout waiting for CPUs to execute fn */
544 		ret = 0;
545 		nmi_ipi_busy_count = 1;
546 	}
547 
548 	nmi_ipi_busy_count--;
549 	nmi_ipi_unlock_end(&flags);
550 
551 	return ret;
552 }
553 
554 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
555 {
556 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
557 }
558 
559 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
560 {
561 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
562 }
563 #endif /* CONFIG_NMI_IPI */
564 
565 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
566 void tick_broadcast(const struct cpumask *mask)
567 {
568 	unsigned int cpu;
569 
570 	for_each_cpu(cpu, mask)
571 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
572 }
573 #endif
574 
575 #ifdef CONFIG_DEBUGGER
576 void debugger_ipi_callback(struct pt_regs *regs)
577 {
578 	debugger_ipi(regs);
579 }
580 
581 void smp_send_debugger_break(void)
582 {
583 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
584 }
585 #endif
586 
587 #ifdef CONFIG_KEXEC_CORE
588 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
589 {
590 	int cpu;
591 
592 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
593 	if (kdump_in_progress() && crash_wake_offline) {
594 		for_each_present_cpu(cpu) {
595 			if (cpu_online(cpu))
596 				continue;
597 			/*
598 			 * crash_ipi_callback will wait for
599 			 * all cpus, including offline CPUs.
600 			 * We don't care about nmi_ipi_function.
601 			 * Offline cpus will jump straight into
602 			 * crash_ipi_callback, we can skip the
603 			 * entire NMI dance and waiting for
604 			 * cpus to clear pending mask, etc.
605 			 */
606 			do_smp_send_nmi_ipi(cpu, false);
607 		}
608 	}
609 }
610 #endif
611 
612 #ifdef CONFIG_NMI_IPI
613 static void nmi_stop_this_cpu(struct pt_regs *regs)
614 {
615 	/*
616 	 * This is a special case because it never returns, so the NMI IPI
617 	 * handling would never mark it as done, which makes any later
618 	 * smp_send_nmi_ipi() call spin forever. Mark it done now.
619 	 *
620 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
621 	 */
622 	nmi_ipi_lock();
623 	if (nmi_ipi_busy_count > 1)
624 		nmi_ipi_busy_count--;
625 	nmi_ipi_unlock();
626 
627 	spin_begin();
628 	while (1)
629 		spin_cpu_relax();
630 }
631 
632 void smp_send_stop(void)
633 {
634 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
635 }
636 
637 #else /* CONFIG_NMI_IPI */
638 
639 static void stop_this_cpu(void *dummy)
640 {
641 	hard_irq_disable();
642 	spin_begin();
643 	while (1)
644 		spin_cpu_relax();
645 }
646 
647 void smp_send_stop(void)
648 {
649 	static bool stopped = false;
650 
651 	/*
652 	 * Prevent waiting on csd lock from a previous smp_send_stop.
653 	 * This is racy, but in general callers try to do the right
654 	 * thing and only fire off one smp_send_stop (e.g., see
655 	 * kernel/panic.c)
656 	 */
657 	if (stopped)
658 		return;
659 
660 	stopped = true;
661 
662 	smp_call_function(stop_this_cpu, NULL, 0);
663 }
664 #endif /* CONFIG_NMI_IPI */
665 
666 struct thread_info *current_set[NR_CPUS];
667 
668 static void smp_store_cpu_info(int id)
669 {
670 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
671 #ifdef CONFIG_PPC_FSL_BOOK3E
672 	per_cpu(next_tlbcam_idx, id)
673 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
674 #endif
675 }
676 
677 /*
678  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
679  * rather than just passing around the cpumask we pass around a function that
680  * returns the that cpumask for the given CPU.
681  */
682 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
683 {
684 	cpumask_set_cpu(i, get_cpumask(j));
685 	cpumask_set_cpu(j, get_cpumask(i));
686 }
687 
688 #ifdef CONFIG_HOTPLUG_CPU
689 static void set_cpus_unrelated(int i, int j,
690 		struct cpumask *(*get_cpumask)(int))
691 {
692 	cpumask_clear_cpu(i, get_cpumask(j));
693 	cpumask_clear_cpu(j, get_cpumask(i));
694 }
695 #endif
696 
697 /*
698  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
699  *                      property for the CPU device node @dn and stores
700  *                      the parsed output in the thread_groups
701  *                      structure @tg if the ibm,thread-groups[0]
702  *                      matches @property.
703  *
704  * @dn: The device node of the CPU device.
705  * @tg: Pointer to a thread group structure into which the parsed
706  *      output of "ibm,thread-groups" is stored.
707  * @property: The property of the thread-group that the caller is
708  *            interested in.
709  *
710  * ibm,thread-groups[0..N-1] array defines which group of threads in
711  * the CPU-device node can be grouped together based on the property.
712  *
713  * ibm,thread-groups[0] tells us the property based on which the
714  * threads are being grouped together. If this value is 1, it implies
715  * that the threads in the same group share L1, translation cache.
716  *
717  * ibm,thread-groups[1] tells us how many such thread groups exist.
718  *
719  * ibm,thread-groups[2] tells us the number of threads in each such
720  * group.
721  *
722  * ibm,thread-groups[3..N-1] is the list of threads identified by
723  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
724  * the grouping.
725  *
726  * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
727  * implies that there are 2 groups of 4 threads each, where each group
728  * of threads share L1, translation cache.
729  *
730  * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
731  * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
732  * 11, 12} structure
733  *
734  * Returns 0 on success, -EINVAL if the property does not exist,
735  * -ENODATA if property does not have a value, and -EOVERFLOW if the
736  * property data isn't large enough.
737  */
738 static int parse_thread_groups(struct device_node *dn,
739 			       struct thread_groups *tg,
740 			       unsigned int property)
741 {
742 	int i;
743 	u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
744 	u32 *thread_list;
745 	size_t total_threads;
746 	int ret;
747 
748 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
749 					 thread_group_array, 3);
750 	if (ret)
751 		return ret;
752 
753 	tg->property = thread_group_array[0];
754 	tg->nr_groups = thread_group_array[1];
755 	tg->threads_per_group = thread_group_array[2];
756 	if (tg->property != property ||
757 	    tg->nr_groups < 1 ||
758 	    tg->threads_per_group < 1)
759 		return -ENODATA;
760 
761 	total_threads = tg->nr_groups * tg->threads_per_group;
762 
763 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
764 					 thread_group_array,
765 					 3 + total_threads);
766 	if (ret)
767 		return ret;
768 
769 	thread_list = &thread_group_array[3];
770 
771 	for (i = 0 ; i < total_threads; i++)
772 		tg->thread_list[i] = thread_list[i];
773 
774 	return 0;
775 }
776 
777 /*
778  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
779  *                              that @cpu belongs to.
780  *
781  * @cpu : The logical CPU whose thread group is being searched.
782  * @tg : The thread-group structure of the CPU node which @cpu belongs
783  *       to.
784  *
785  * Returns the index to tg->thread_list that points to the the start
786  * of the thread_group that @cpu belongs to.
787  *
788  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
789  * tg->thread_list.
790  */
791 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
792 {
793 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
794 	int i, j;
795 
796 	for (i = 0; i < tg->nr_groups; i++) {
797 		int group_start = i * tg->threads_per_group;
798 
799 		for (j = 0; j < tg->threads_per_group; j++) {
800 			int idx = group_start + j;
801 
802 			if (tg->thread_list[idx] == hw_cpu_id)
803 				return group_start;
804 		}
805 	}
806 
807 	return -1;
808 }
809 
810 static int init_cpu_l1_cache_map(int cpu)
811 
812 {
813 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
814 	struct thread_groups tg = {.property = 0,
815 				   .nr_groups = 0,
816 				   .threads_per_group = 0};
817 	int first_thread = cpu_first_thread_sibling(cpu);
818 	int i, cpu_group_start = -1, err = 0;
819 
820 	if (!dn)
821 		return -ENODATA;
822 
823 	err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
824 	if (err)
825 		goto out;
826 
827 	zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
828 				GFP_KERNEL,
829 				cpu_to_node(cpu));
830 
831 	cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
832 
833 	if (unlikely(cpu_group_start == -1)) {
834 		WARN_ON_ONCE(1);
835 		err = -ENODATA;
836 		goto out;
837 	}
838 
839 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
840 		int i_group_start = get_cpu_thread_group_start(i, &tg);
841 
842 		if (unlikely(i_group_start == -1)) {
843 			WARN_ON_ONCE(1);
844 			err = -ENODATA;
845 			goto out;
846 		}
847 
848 		if (i_group_start == cpu_group_start)
849 			cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
850 	}
851 
852 out:
853 	of_node_put(dn);
854 	return err;
855 }
856 
857 static int init_big_cores(void)
858 {
859 	int cpu;
860 
861 	for_each_possible_cpu(cpu) {
862 		int err = init_cpu_l1_cache_map(cpu);
863 
864 		if (err)
865 			return err;
866 
867 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
868 					GFP_KERNEL,
869 					cpu_to_node(cpu));
870 	}
871 
872 	has_big_cores = true;
873 	return 0;
874 }
875 
876 void __init smp_prepare_cpus(unsigned int max_cpus)
877 {
878 	unsigned int cpu;
879 
880 	DBG("smp_prepare_cpus\n");
881 
882 	/*
883 	 * setup_cpu may need to be called on the boot cpu. We havent
884 	 * spun any cpus up but lets be paranoid.
885 	 */
886 	BUG_ON(boot_cpuid != smp_processor_id());
887 
888 	/* Fixup boot cpu */
889 	smp_store_cpu_info(boot_cpuid);
890 	cpu_callin_map[boot_cpuid] = 1;
891 
892 	for_each_possible_cpu(cpu) {
893 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
894 					GFP_KERNEL, cpu_to_node(cpu));
895 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
896 					GFP_KERNEL, cpu_to_node(cpu));
897 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
898 					GFP_KERNEL, cpu_to_node(cpu));
899 		/*
900 		 * numa_node_id() works after this.
901 		 */
902 		if (cpu_present(cpu)) {
903 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
904 			set_cpu_numa_mem(cpu,
905 				local_memory_node(numa_cpu_lookup_table[cpu]));
906 		}
907 	}
908 
909 	/* Init the cpumasks so the boot CPU is related to itself */
910 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
911 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
912 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
913 
914 	init_big_cores();
915 	if (has_big_cores) {
916 		cpumask_set_cpu(boot_cpuid,
917 				cpu_smallcore_mask(boot_cpuid));
918 	}
919 
920 	if (smp_ops && smp_ops->probe)
921 		smp_ops->probe();
922 }
923 
924 void smp_prepare_boot_cpu(void)
925 {
926 	BUG_ON(smp_processor_id() != boot_cpuid);
927 #ifdef CONFIG_PPC64
928 	paca_ptrs[boot_cpuid]->__current = current;
929 #endif
930 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
931 	current_set[boot_cpuid] = task_thread_info(current);
932 }
933 
934 #ifdef CONFIG_HOTPLUG_CPU
935 
936 int generic_cpu_disable(void)
937 {
938 	unsigned int cpu = smp_processor_id();
939 
940 	if (cpu == boot_cpuid)
941 		return -EBUSY;
942 
943 	set_cpu_online(cpu, false);
944 #ifdef CONFIG_PPC64
945 	vdso_data->processorCount--;
946 #endif
947 	/* Update affinity of all IRQs previously aimed at this CPU */
948 	irq_migrate_all_off_this_cpu();
949 
950 	/*
951 	 * Depending on the details of the interrupt controller, it's possible
952 	 * that one of the interrupts we just migrated away from this CPU is
953 	 * actually already pending on this CPU. If we leave it in that state
954 	 * the interrupt will never be EOI'ed, and will never fire again. So
955 	 * temporarily enable interrupts here, to allow any pending interrupt to
956 	 * be received (and EOI'ed), before we take this CPU offline.
957 	 */
958 	local_irq_enable();
959 	mdelay(1);
960 	local_irq_disable();
961 
962 	return 0;
963 }
964 
965 void generic_cpu_die(unsigned int cpu)
966 {
967 	int i;
968 
969 	for (i = 0; i < 100; i++) {
970 		smp_rmb();
971 		if (is_cpu_dead(cpu))
972 			return;
973 		msleep(100);
974 	}
975 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
976 }
977 
978 void generic_set_cpu_dead(unsigned int cpu)
979 {
980 	per_cpu(cpu_state, cpu) = CPU_DEAD;
981 }
982 
983 /*
984  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
985  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
986  * which makes the delay in generic_cpu_die() not happen.
987  */
988 void generic_set_cpu_up(unsigned int cpu)
989 {
990 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
991 }
992 
993 int generic_check_cpu_restart(unsigned int cpu)
994 {
995 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
996 }
997 
998 int is_cpu_dead(unsigned int cpu)
999 {
1000 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1001 }
1002 
1003 static bool secondaries_inhibited(void)
1004 {
1005 	return kvm_hv_mode_active();
1006 }
1007 
1008 #else /* HOTPLUG_CPU */
1009 
1010 #define secondaries_inhibited()		0
1011 
1012 #endif
1013 
1014 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1015 {
1016 	struct thread_info *ti = task_thread_info(idle);
1017 
1018 #ifdef CONFIG_PPC64
1019 	paca_ptrs[cpu]->__current = idle;
1020 	paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
1021 #endif
1022 	ti->cpu = cpu;
1023 	secondary_ti = current_set[cpu] = ti;
1024 }
1025 
1026 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1027 {
1028 	int rc, c;
1029 
1030 	/*
1031 	 * Don't allow secondary threads to come online if inhibited
1032 	 */
1033 	if (threads_per_core > 1 && secondaries_inhibited() &&
1034 	    cpu_thread_in_subcore(cpu))
1035 		return -EBUSY;
1036 
1037 	if (smp_ops == NULL ||
1038 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1039 		return -EINVAL;
1040 
1041 	cpu_idle_thread_init(cpu, tidle);
1042 
1043 	/*
1044 	 * The platform might need to allocate resources prior to bringing
1045 	 * up the CPU
1046 	 */
1047 	if (smp_ops->prepare_cpu) {
1048 		rc = smp_ops->prepare_cpu(cpu);
1049 		if (rc)
1050 			return rc;
1051 	}
1052 
1053 	/* Make sure callin-map entry is 0 (can be leftover a CPU
1054 	 * hotplug
1055 	 */
1056 	cpu_callin_map[cpu] = 0;
1057 
1058 	/* The information for processor bringup must
1059 	 * be written out to main store before we release
1060 	 * the processor.
1061 	 */
1062 	smp_mb();
1063 
1064 	/* wake up cpus */
1065 	DBG("smp: kicking cpu %d\n", cpu);
1066 	rc = smp_ops->kick_cpu(cpu);
1067 	if (rc) {
1068 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1069 		return rc;
1070 	}
1071 
1072 	/*
1073 	 * wait to see if the cpu made a callin (is actually up).
1074 	 * use this value that I found through experimentation.
1075 	 * -- Cort
1076 	 */
1077 	if (system_state < SYSTEM_RUNNING)
1078 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1079 			udelay(100);
1080 #ifdef CONFIG_HOTPLUG_CPU
1081 	else
1082 		/*
1083 		 * CPUs can take much longer to come up in the
1084 		 * hotplug case.  Wait five seconds.
1085 		 */
1086 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1087 			msleep(1);
1088 #endif
1089 
1090 	if (!cpu_callin_map[cpu]) {
1091 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1092 		return -ENOENT;
1093 	}
1094 
1095 	DBG("Processor %u found.\n", cpu);
1096 
1097 	if (smp_ops->give_timebase)
1098 		smp_ops->give_timebase();
1099 
1100 	/* Wait until cpu puts itself in the online & active maps */
1101 	spin_until_cond(cpu_online(cpu));
1102 
1103 	return 0;
1104 }
1105 
1106 /* Return the value of the reg property corresponding to the given
1107  * logical cpu.
1108  */
1109 int cpu_to_core_id(int cpu)
1110 {
1111 	struct device_node *np;
1112 	const __be32 *reg;
1113 	int id = -1;
1114 
1115 	np = of_get_cpu_node(cpu, NULL);
1116 	if (!np)
1117 		goto out;
1118 
1119 	reg = of_get_property(np, "reg", NULL);
1120 	if (!reg)
1121 		goto out;
1122 
1123 	id = be32_to_cpup(reg);
1124 out:
1125 	of_node_put(np);
1126 	return id;
1127 }
1128 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1129 
1130 /* Helper routines for cpu to core mapping */
1131 int cpu_core_index_of_thread(int cpu)
1132 {
1133 	return cpu >> threads_shift;
1134 }
1135 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1136 
1137 int cpu_first_thread_of_core(int core)
1138 {
1139 	return core << threads_shift;
1140 }
1141 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1142 
1143 /* Must be called when no change can occur to cpu_present_mask,
1144  * i.e. during cpu online or offline.
1145  */
1146 static struct device_node *cpu_to_l2cache(int cpu)
1147 {
1148 	struct device_node *np;
1149 	struct device_node *cache;
1150 
1151 	if (!cpu_present(cpu))
1152 		return NULL;
1153 
1154 	np = of_get_cpu_node(cpu, NULL);
1155 	if (np == NULL)
1156 		return NULL;
1157 
1158 	cache = of_find_next_cache_node(np);
1159 
1160 	of_node_put(np);
1161 
1162 	return cache;
1163 }
1164 
1165 static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
1166 {
1167 	struct device_node *l2_cache, *np;
1168 	int i;
1169 
1170 	l2_cache = cpu_to_l2cache(cpu);
1171 	if (!l2_cache)
1172 		return false;
1173 
1174 	for_each_cpu(i, cpu_online_mask) {
1175 		/*
1176 		 * when updating the marks the current CPU has not been marked
1177 		 * online, but we need to update the cache masks
1178 		 */
1179 		np = cpu_to_l2cache(i);
1180 		if (!np)
1181 			continue;
1182 
1183 		if (np == l2_cache)
1184 			set_cpus_related(cpu, i, mask_fn);
1185 
1186 		of_node_put(np);
1187 	}
1188 	of_node_put(l2_cache);
1189 
1190 	return true;
1191 }
1192 
1193 #ifdef CONFIG_HOTPLUG_CPU
1194 static void remove_cpu_from_masks(int cpu)
1195 {
1196 	int i;
1197 
1198 	/* NB: cpu_core_mask is a superset of the others */
1199 	for_each_cpu(i, cpu_core_mask(cpu)) {
1200 		set_cpus_unrelated(cpu, i, cpu_core_mask);
1201 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1202 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1203 		if (has_big_cores)
1204 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1205 	}
1206 }
1207 #endif
1208 
1209 static inline void add_cpu_to_smallcore_masks(int cpu)
1210 {
1211 	struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
1212 	int i, first_thread = cpu_first_thread_sibling(cpu);
1213 
1214 	if (!has_big_cores)
1215 		return;
1216 
1217 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1218 
1219 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
1220 		if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
1221 			set_cpus_related(i, cpu, cpu_smallcore_mask);
1222 	}
1223 }
1224 
1225 static void add_cpu_to_masks(int cpu)
1226 {
1227 	int first_thread = cpu_first_thread_sibling(cpu);
1228 	int chipid = cpu_to_chip_id(cpu);
1229 	int i;
1230 
1231 	/*
1232 	 * This CPU will not be in the online mask yet so we need to manually
1233 	 * add it to it's own thread sibling mask.
1234 	 */
1235 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1236 
1237 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1238 		if (cpu_online(i))
1239 			set_cpus_related(i, cpu, cpu_sibling_mask);
1240 
1241 	add_cpu_to_smallcore_masks(cpu);
1242 	/*
1243 	 * Copy the thread sibling mask into the cache sibling mask
1244 	 * and mark any CPUs that share an L2 with this CPU.
1245 	 */
1246 	for_each_cpu(i, cpu_sibling_mask(cpu))
1247 		set_cpus_related(cpu, i, cpu_l2_cache_mask);
1248 	update_mask_by_l2(cpu, cpu_l2_cache_mask);
1249 
1250 	/*
1251 	 * Copy the cache sibling mask into core sibling mask and mark
1252 	 * any CPUs on the same chip as this CPU.
1253 	 */
1254 	for_each_cpu(i, cpu_l2_cache_mask(cpu))
1255 		set_cpus_related(cpu, i, cpu_core_mask);
1256 
1257 	if (chipid == -1)
1258 		return;
1259 
1260 	for_each_cpu(i, cpu_online_mask)
1261 		if (cpu_to_chip_id(i) == chipid)
1262 			set_cpus_related(cpu, i, cpu_core_mask);
1263 }
1264 
1265 static bool shared_caches;
1266 
1267 /* Activate a secondary processor. */
1268 void start_secondary(void *unused)
1269 {
1270 	unsigned int cpu = smp_processor_id();
1271 	struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1272 
1273 	mmgrab(&init_mm);
1274 	current->active_mm = &init_mm;
1275 
1276 	smp_store_cpu_info(cpu);
1277 	set_dec(tb_ticks_per_jiffy);
1278 	preempt_disable();
1279 	cpu_callin_map[cpu] = 1;
1280 
1281 	if (smp_ops->setup_cpu)
1282 		smp_ops->setup_cpu(cpu);
1283 	if (smp_ops->take_timebase)
1284 		smp_ops->take_timebase();
1285 
1286 	secondary_cpu_time_init();
1287 
1288 #ifdef CONFIG_PPC64
1289 	if (system_state == SYSTEM_RUNNING)
1290 		vdso_data->processorCount++;
1291 
1292 	vdso_getcpu_init();
1293 #endif
1294 	/* Update topology CPU masks */
1295 	add_cpu_to_masks(cpu);
1296 
1297 	if (has_big_cores)
1298 		sibling_mask = cpu_smallcore_mask;
1299 	/*
1300 	 * Check for any shared caches. Note that this must be done on a
1301 	 * per-core basis because one core in the pair might be disabled.
1302 	 */
1303 	if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu)))
1304 		shared_caches = true;
1305 
1306 	set_numa_node(numa_cpu_lookup_table[cpu]);
1307 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1308 
1309 	smp_wmb();
1310 	notify_cpu_starting(cpu);
1311 	set_cpu_online(cpu, true);
1312 
1313 	boot_init_stack_canary();
1314 
1315 	local_irq_enable();
1316 
1317 	/* We can enable ftrace for secondary cpus now */
1318 	this_cpu_enable_ftrace();
1319 
1320 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1321 
1322 	BUG();
1323 }
1324 
1325 int setup_profiling_timer(unsigned int multiplier)
1326 {
1327 	return 0;
1328 }
1329 
1330 #ifdef CONFIG_SCHED_SMT
1331 /* cpumask of CPUs with asymetric SMT dependancy */
1332 static int powerpc_smt_flags(void)
1333 {
1334 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1335 
1336 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1337 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1338 		flags |= SD_ASYM_PACKING;
1339 	}
1340 	return flags;
1341 }
1342 #endif
1343 
1344 static struct sched_domain_topology_level powerpc_topology[] = {
1345 #ifdef CONFIG_SCHED_SMT
1346 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1347 #endif
1348 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1349 	{ NULL, },
1350 };
1351 
1352 /*
1353  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1354  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1355  * since the migrated task remains cache hot. We want to take advantage of this
1356  * at the scheduler level so an extra topology level is required.
1357  */
1358 static int powerpc_shared_cache_flags(void)
1359 {
1360 	return SD_SHARE_PKG_RESOURCES;
1361 }
1362 
1363 /*
1364  * We can't just pass cpu_l2_cache_mask() directly because
1365  * returns a non-const pointer and the compiler barfs on that.
1366  */
1367 static const struct cpumask *shared_cache_mask(int cpu)
1368 {
1369 	return cpu_l2_cache_mask(cpu);
1370 }
1371 
1372 #ifdef CONFIG_SCHED_SMT
1373 static const struct cpumask *smallcore_smt_mask(int cpu)
1374 {
1375 	return cpu_smallcore_mask(cpu);
1376 }
1377 #endif
1378 
1379 static struct sched_domain_topology_level power9_topology[] = {
1380 #ifdef CONFIG_SCHED_SMT
1381 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1382 #endif
1383 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1384 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1385 	{ NULL, },
1386 };
1387 
1388 void __init smp_cpus_done(unsigned int max_cpus)
1389 {
1390 	/*
1391 	 * We are running pinned to the boot CPU, see rest_init().
1392 	 */
1393 	if (smp_ops && smp_ops->setup_cpu)
1394 		smp_ops->setup_cpu(boot_cpuid);
1395 
1396 	if (smp_ops && smp_ops->bringup_done)
1397 		smp_ops->bringup_done();
1398 
1399 	/*
1400 	 * On a shared LPAR, associativity needs to be requested.
1401 	 * Hence, get numa topology before dumping cpu topology
1402 	 */
1403 	shared_proc_topology_init();
1404 	dump_numa_cpu_topology();
1405 
1406 #ifdef CONFIG_SCHED_SMT
1407 	if (has_big_cores) {
1408 		pr_info("Using small cores at SMT level\n");
1409 		power9_topology[0].mask = smallcore_smt_mask;
1410 		powerpc_topology[0].mask = smallcore_smt_mask;
1411 	}
1412 #endif
1413 	/*
1414 	 * If any CPU detects that it's sharing a cache with another CPU then
1415 	 * use the deeper topology that is aware of this sharing.
1416 	 */
1417 	if (shared_caches) {
1418 		pr_info("Using shared cache scheduler topology\n");
1419 		set_sched_topology(power9_topology);
1420 	} else {
1421 		pr_info("Using standard scheduler topology\n");
1422 		set_sched_topology(powerpc_topology);
1423 	}
1424 }
1425 
1426 #ifdef CONFIG_HOTPLUG_CPU
1427 int __cpu_disable(void)
1428 {
1429 	int cpu = smp_processor_id();
1430 	int err;
1431 
1432 	if (!smp_ops->cpu_disable)
1433 		return -ENOSYS;
1434 
1435 	this_cpu_disable_ftrace();
1436 
1437 	err = smp_ops->cpu_disable();
1438 	if (err)
1439 		return err;
1440 
1441 	/* Update sibling maps */
1442 	remove_cpu_from_masks(cpu);
1443 
1444 	return 0;
1445 }
1446 
1447 void __cpu_die(unsigned int cpu)
1448 {
1449 	if (smp_ops->cpu_die)
1450 		smp_ops->cpu_die(cpu);
1451 }
1452 
1453 void cpu_die(void)
1454 {
1455 	/*
1456 	 * Disable on the down path. This will be re-enabled by
1457 	 * start_secondary() via start_secondary_resume() below
1458 	 */
1459 	this_cpu_disable_ftrace();
1460 
1461 	if (ppc_md.cpu_die)
1462 		ppc_md.cpu_die();
1463 
1464 	/* If we return, we re-enter start_secondary */
1465 	start_secondary_resume();
1466 }
1467 
1468 #endif
1469