xref: /openbmc/linux/arch/powerpc/kernel/smp.c (revision c5254e72)
1 /*
2  * SMP support for ppc.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5  * deal of code from the sparc and intel versions.
6  *
7  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8  *
9  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17 
18 #undef DEBUG
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/spinlock.h>
28 #include <linux/cache.h>
29 #include <linux/err.h>
30 #include <linux/device.h>
31 #include <linux/cpu.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/profile.h>
35 
36 #include <asm/ptrace.h>
37 #include <linux/atomic.h>
38 #include <asm/irq.h>
39 #include <asm/hw_irq.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/prom.h>
44 #include <asm/smp.h>
45 #include <asm/time.h>
46 #include <asm/machdep.h>
47 #include <asm/cputhreads.h>
48 #include <asm/cputable.h>
49 #include <asm/mpic.h>
50 #include <asm/vdso_datapage.h>
51 #ifdef CONFIG_PPC64
52 #include <asm/paca.h>
53 #endif
54 #include <asm/vdso.h>
55 #include <asm/debug.h>
56 #include <asm/kexec.h>
57 #include <asm/asm-prototypes.h>
58 #include <asm/cpu_has_feature.h>
59 
60 #ifdef DEBUG
61 #include <asm/udbg.h>
62 #define DBG(fmt...) udbg_printf(fmt)
63 #else
64 #define DBG(fmt...)
65 #endif
66 
67 #ifdef CONFIG_HOTPLUG_CPU
68 /* State of each CPU during hotplug phases */
69 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
70 #endif
71 
72 struct thread_info *secondary_ti;
73 
74 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
75 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
76 
77 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
78 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
79 
80 /* SMP operations for this machine */
81 struct smp_ops_t *smp_ops;
82 
83 /* Can't be static due to PowerMac hackery */
84 volatile unsigned int cpu_callin_map[NR_CPUS];
85 
86 int smt_enabled_at_boot = 1;
87 
88 static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
89 
90 /*
91  * Returns 1 if the specified cpu should be brought up during boot.
92  * Used to inhibit booting threads if they've been disabled or
93  * limited on the command line
94  */
95 int smp_generic_cpu_bootable(unsigned int nr)
96 {
97 	/* Special case - we inhibit secondary thread startup
98 	 * during boot if the user requests it.
99 	 */
100 	if (system_state == SYSTEM_BOOTING && cpu_has_feature(CPU_FTR_SMT)) {
101 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
102 			return 0;
103 		if (smt_enabled_at_boot
104 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
105 			return 0;
106 	}
107 
108 	return 1;
109 }
110 
111 
112 #ifdef CONFIG_PPC64
113 int smp_generic_kick_cpu(int nr)
114 {
115 	BUG_ON(nr < 0 || nr >= NR_CPUS);
116 
117 	/*
118 	 * The processor is currently spinning, waiting for the
119 	 * cpu_start field to become non-zero After we set cpu_start,
120 	 * the processor will continue on to secondary_start
121 	 */
122 	if (!paca[nr].cpu_start) {
123 		paca[nr].cpu_start = 1;
124 		smp_mb();
125 		return 0;
126 	}
127 
128 #ifdef CONFIG_HOTPLUG_CPU
129 	/*
130 	 * Ok it's not there, so it might be soft-unplugged, let's
131 	 * try to bring it back
132 	 */
133 	generic_set_cpu_up(nr);
134 	smp_wmb();
135 	smp_send_reschedule(nr);
136 #endif /* CONFIG_HOTPLUG_CPU */
137 
138 	return 0;
139 }
140 #endif /* CONFIG_PPC64 */
141 
142 static irqreturn_t call_function_action(int irq, void *data)
143 {
144 	generic_smp_call_function_interrupt();
145 	return IRQ_HANDLED;
146 }
147 
148 static irqreturn_t reschedule_action(int irq, void *data)
149 {
150 	scheduler_ipi();
151 	return IRQ_HANDLED;
152 }
153 
154 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
155 {
156 	tick_broadcast_ipi_handler();
157 	return IRQ_HANDLED;
158 }
159 
160 static irqreturn_t debug_ipi_action(int irq, void *data)
161 {
162 	if (crash_ipi_function_ptr) {
163 		crash_ipi_function_ptr(get_irq_regs());
164 		return IRQ_HANDLED;
165 	}
166 
167 #ifdef CONFIG_DEBUGGER
168 	debugger_ipi(get_irq_regs());
169 #endif /* CONFIG_DEBUGGER */
170 
171 	return IRQ_HANDLED;
172 }
173 
174 static irq_handler_t smp_ipi_action[] = {
175 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
176 	[PPC_MSG_RESCHEDULE] = reschedule_action,
177 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
178 	[PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
179 };
180 
181 const char *smp_ipi_name[] = {
182 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
183 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
184 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
185 	[PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
186 };
187 
188 /* optional function to request ipi, for controllers with >= 4 ipis */
189 int smp_request_message_ipi(int virq, int msg)
190 {
191 	int err;
192 
193 	if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
194 		return -EINVAL;
195 	}
196 #if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC_CORE)
197 	if (msg == PPC_MSG_DEBUGGER_BREAK) {
198 		return 1;
199 	}
200 #endif
201 	err = request_irq(virq, smp_ipi_action[msg],
202 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
203 			  smp_ipi_name[msg], NULL);
204 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
205 		virq, smp_ipi_name[msg], err);
206 
207 	return err;
208 }
209 
210 #ifdef CONFIG_PPC_SMP_MUXED_IPI
211 struct cpu_messages {
212 	long messages;			/* current messages */
213 	unsigned long data;		/* data for cause ipi */
214 };
215 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
216 
217 void smp_muxed_ipi_set_data(int cpu, unsigned long data)
218 {
219 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
220 
221 	info->data = data;
222 }
223 
224 void smp_muxed_ipi_set_message(int cpu, int msg)
225 {
226 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
227 	char *message = (char *)&info->messages;
228 
229 	/*
230 	 * Order previous accesses before accesses in the IPI handler.
231 	 */
232 	smp_mb();
233 	message[msg] = 1;
234 }
235 
236 void smp_muxed_ipi_message_pass(int cpu, int msg)
237 {
238 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
239 
240 	smp_muxed_ipi_set_message(cpu, msg);
241 	/*
242 	 * cause_ipi functions are required to include a full barrier
243 	 * before doing whatever causes the IPI.
244 	 */
245 	smp_ops->cause_ipi(cpu, info->data);
246 }
247 
248 #ifdef __BIG_ENDIAN__
249 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
250 #else
251 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
252 #endif
253 
254 irqreturn_t smp_ipi_demux(void)
255 {
256 	struct cpu_messages *info = this_cpu_ptr(&ipi_message);
257 	unsigned long all;
258 
259 	mb();	/* order any irq clear */
260 
261 	do {
262 		all = xchg(&info->messages, 0);
263 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
264 		/*
265 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
266 		 * before PPC_MSG_CALL_FUNCTION messages because when
267 		 * a VM is destroyed, we call kick_all_cpus_sync()
268 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
269 		 * messages have completed before we free any VCPUs.
270 		 */
271 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
272 			kvmppc_xics_ipi_action();
273 #endif
274 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
275 			generic_smp_call_function_interrupt();
276 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
277 			scheduler_ipi();
278 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
279 			tick_broadcast_ipi_handler();
280 		if (all & IPI_MESSAGE(PPC_MSG_DEBUGGER_BREAK))
281 			debug_ipi_action(0, NULL);
282 	} while (info->messages);
283 
284 	return IRQ_HANDLED;
285 }
286 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
287 
288 static inline void do_message_pass(int cpu, int msg)
289 {
290 	if (smp_ops->message_pass)
291 		smp_ops->message_pass(cpu, msg);
292 #ifdef CONFIG_PPC_SMP_MUXED_IPI
293 	else
294 		smp_muxed_ipi_message_pass(cpu, msg);
295 #endif
296 }
297 
298 void smp_send_reschedule(int cpu)
299 {
300 	if (likely(smp_ops))
301 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
302 }
303 EXPORT_SYMBOL_GPL(smp_send_reschedule);
304 
305 void arch_send_call_function_single_ipi(int cpu)
306 {
307 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
308 }
309 
310 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
311 {
312 	unsigned int cpu;
313 
314 	for_each_cpu(cpu, mask)
315 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
316 }
317 
318 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
319 void tick_broadcast(const struct cpumask *mask)
320 {
321 	unsigned int cpu;
322 
323 	for_each_cpu(cpu, mask)
324 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
325 }
326 #endif
327 
328 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
329 void smp_send_debugger_break(void)
330 {
331 	int cpu;
332 	int me = raw_smp_processor_id();
333 
334 	if (unlikely(!smp_ops))
335 		return;
336 
337 	for_each_online_cpu(cpu)
338 		if (cpu != me)
339 			do_message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
340 }
341 #endif
342 
343 #ifdef CONFIG_KEXEC_CORE
344 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
345 {
346 	crash_ipi_function_ptr = crash_ipi_callback;
347 	if (crash_ipi_callback) {
348 		mb();
349 		smp_send_debugger_break();
350 	}
351 }
352 #endif
353 
354 static void stop_this_cpu(void *dummy)
355 {
356 	/* Remove this CPU */
357 	set_cpu_online(smp_processor_id(), false);
358 
359 	local_irq_disable();
360 	while (1)
361 		;
362 }
363 
364 void smp_send_stop(void)
365 {
366 	smp_call_function(stop_this_cpu, NULL, 0);
367 }
368 
369 struct thread_info *current_set[NR_CPUS];
370 
371 static void smp_store_cpu_info(int id)
372 {
373 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
374 #ifdef CONFIG_PPC_FSL_BOOK3E
375 	per_cpu(next_tlbcam_idx, id)
376 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
377 #endif
378 }
379 
380 void __init smp_prepare_cpus(unsigned int max_cpus)
381 {
382 	unsigned int cpu;
383 
384 	DBG("smp_prepare_cpus\n");
385 
386 	/*
387 	 * setup_cpu may need to be called on the boot cpu. We havent
388 	 * spun any cpus up but lets be paranoid.
389 	 */
390 	BUG_ON(boot_cpuid != smp_processor_id());
391 
392 	/* Fixup boot cpu */
393 	smp_store_cpu_info(boot_cpuid);
394 	cpu_callin_map[boot_cpuid] = 1;
395 
396 	for_each_possible_cpu(cpu) {
397 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
398 					GFP_KERNEL, cpu_to_node(cpu));
399 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
400 					GFP_KERNEL, cpu_to_node(cpu));
401 		/*
402 		 * numa_node_id() works after this.
403 		 */
404 		if (cpu_present(cpu)) {
405 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
406 			set_cpu_numa_mem(cpu,
407 				local_memory_node(numa_cpu_lookup_table[cpu]));
408 		}
409 	}
410 
411 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
412 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
413 
414 	if (smp_ops && smp_ops->probe)
415 		smp_ops->probe();
416 }
417 
418 void smp_prepare_boot_cpu(void)
419 {
420 	BUG_ON(smp_processor_id() != boot_cpuid);
421 #ifdef CONFIG_PPC64
422 	paca[boot_cpuid].__current = current;
423 #endif
424 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
425 	current_set[boot_cpuid] = task_thread_info(current);
426 }
427 
428 #ifdef CONFIG_HOTPLUG_CPU
429 
430 int generic_cpu_disable(void)
431 {
432 	unsigned int cpu = smp_processor_id();
433 
434 	if (cpu == boot_cpuid)
435 		return -EBUSY;
436 
437 	set_cpu_online(cpu, false);
438 #ifdef CONFIG_PPC64
439 	vdso_data->processorCount--;
440 #endif
441 	migrate_irqs();
442 	return 0;
443 }
444 
445 void generic_cpu_die(unsigned int cpu)
446 {
447 	int i;
448 
449 	for (i = 0; i < 100; i++) {
450 		smp_rmb();
451 		if (is_cpu_dead(cpu))
452 			return;
453 		msleep(100);
454 	}
455 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
456 }
457 
458 void generic_set_cpu_dead(unsigned int cpu)
459 {
460 	per_cpu(cpu_state, cpu) = CPU_DEAD;
461 }
462 
463 /*
464  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
465  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
466  * which makes the delay in generic_cpu_die() not happen.
467  */
468 void generic_set_cpu_up(unsigned int cpu)
469 {
470 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
471 }
472 
473 int generic_check_cpu_restart(unsigned int cpu)
474 {
475 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
476 }
477 
478 int is_cpu_dead(unsigned int cpu)
479 {
480 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
481 }
482 
483 static bool secondaries_inhibited(void)
484 {
485 	return kvm_hv_mode_active();
486 }
487 
488 #else /* HOTPLUG_CPU */
489 
490 #define secondaries_inhibited()		0
491 
492 #endif
493 
494 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
495 {
496 	struct thread_info *ti = task_thread_info(idle);
497 
498 #ifdef CONFIG_PPC64
499 	paca[cpu].__current = idle;
500 	paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
501 #endif
502 	ti->cpu = cpu;
503 	secondary_ti = current_set[cpu] = ti;
504 }
505 
506 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
507 {
508 	int rc, c;
509 
510 	/*
511 	 * Don't allow secondary threads to come online if inhibited
512 	 */
513 	if (threads_per_core > 1 && secondaries_inhibited() &&
514 	    cpu_thread_in_subcore(cpu))
515 		return -EBUSY;
516 
517 	if (smp_ops == NULL ||
518 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
519 		return -EINVAL;
520 
521 	cpu_idle_thread_init(cpu, tidle);
522 
523 	/* Make sure callin-map entry is 0 (can be leftover a CPU
524 	 * hotplug
525 	 */
526 	cpu_callin_map[cpu] = 0;
527 
528 	/* The information for processor bringup must
529 	 * be written out to main store before we release
530 	 * the processor.
531 	 */
532 	smp_mb();
533 
534 	/* wake up cpus */
535 	DBG("smp: kicking cpu %d\n", cpu);
536 	rc = smp_ops->kick_cpu(cpu);
537 	if (rc) {
538 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
539 		return rc;
540 	}
541 
542 	/*
543 	 * wait to see if the cpu made a callin (is actually up).
544 	 * use this value that I found through experimentation.
545 	 * -- Cort
546 	 */
547 	if (system_state < SYSTEM_RUNNING)
548 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
549 			udelay(100);
550 #ifdef CONFIG_HOTPLUG_CPU
551 	else
552 		/*
553 		 * CPUs can take much longer to come up in the
554 		 * hotplug case.  Wait five seconds.
555 		 */
556 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
557 			msleep(1);
558 #endif
559 
560 	if (!cpu_callin_map[cpu]) {
561 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
562 		return -ENOENT;
563 	}
564 
565 	DBG("Processor %u found.\n", cpu);
566 
567 	if (smp_ops->give_timebase)
568 		smp_ops->give_timebase();
569 
570 	/* Wait until cpu puts itself in the online & active maps */
571 	while (!cpu_online(cpu))
572 		cpu_relax();
573 
574 	return 0;
575 }
576 
577 /* Return the value of the reg property corresponding to the given
578  * logical cpu.
579  */
580 int cpu_to_core_id(int cpu)
581 {
582 	struct device_node *np;
583 	const __be32 *reg;
584 	int id = -1;
585 
586 	np = of_get_cpu_node(cpu, NULL);
587 	if (!np)
588 		goto out;
589 
590 	reg = of_get_property(np, "reg", NULL);
591 	if (!reg)
592 		goto out;
593 
594 	id = be32_to_cpup(reg);
595 out:
596 	of_node_put(np);
597 	return id;
598 }
599 EXPORT_SYMBOL_GPL(cpu_to_core_id);
600 
601 /* Helper routines for cpu to core mapping */
602 int cpu_core_index_of_thread(int cpu)
603 {
604 	return cpu >> threads_shift;
605 }
606 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
607 
608 int cpu_first_thread_of_core(int core)
609 {
610 	return core << threads_shift;
611 }
612 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
613 
614 static void traverse_siblings_chip_id(int cpu, bool add, int chipid)
615 {
616 	const struct cpumask *mask;
617 	struct device_node *np;
618 	int i, plen;
619 	const __be32 *prop;
620 
621 	mask = add ? cpu_online_mask : cpu_present_mask;
622 	for_each_cpu(i, mask) {
623 		np = of_get_cpu_node(i, NULL);
624 		if (!np)
625 			continue;
626 		prop = of_get_property(np, "ibm,chip-id", &plen);
627 		if (prop && plen == sizeof(int) &&
628 		    of_read_number(prop, 1) == chipid) {
629 			if (add) {
630 				cpumask_set_cpu(cpu, cpu_core_mask(i));
631 				cpumask_set_cpu(i, cpu_core_mask(cpu));
632 			} else {
633 				cpumask_clear_cpu(cpu, cpu_core_mask(i));
634 				cpumask_clear_cpu(i, cpu_core_mask(cpu));
635 			}
636 		}
637 		of_node_put(np);
638 	}
639 }
640 
641 /* Must be called when no change can occur to cpu_present_mask,
642  * i.e. during cpu online or offline.
643  */
644 static struct device_node *cpu_to_l2cache(int cpu)
645 {
646 	struct device_node *np;
647 	struct device_node *cache;
648 
649 	if (!cpu_present(cpu))
650 		return NULL;
651 
652 	np = of_get_cpu_node(cpu, NULL);
653 	if (np == NULL)
654 		return NULL;
655 
656 	cache = of_find_next_cache_node(np);
657 
658 	of_node_put(np);
659 
660 	return cache;
661 }
662 
663 static void traverse_core_siblings(int cpu, bool add)
664 {
665 	struct device_node *l2_cache, *np;
666 	const struct cpumask *mask;
667 	int i, chip, plen;
668 	const __be32 *prop;
669 
670 	/* First see if we have ibm,chip-id properties in cpu nodes */
671 	np = of_get_cpu_node(cpu, NULL);
672 	if (np) {
673 		chip = -1;
674 		prop = of_get_property(np, "ibm,chip-id", &plen);
675 		if (prop && plen == sizeof(int))
676 			chip = of_read_number(prop, 1);
677 		of_node_put(np);
678 		if (chip >= 0) {
679 			traverse_siblings_chip_id(cpu, add, chip);
680 			return;
681 		}
682 	}
683 
684 	l2_cache = cpu_to_l2cache(cpu);
685 	mask = add ? cpu_online_mask : cpu_present_mask;
686 	for_each_cpu(i, mask) {
687 		np = cpu_to_l2cache(i);
688 		if (!np)
689 			continue;
690 		if (np == l2_cache) {
691 			if (add) {
692 				cpumask_set_cpu(cpu, cpu_core_mask(i));
693 				cpumask_set_cpu(i, cpu_core_mask(cpu));
694 			} else {
695 				cpumask_clear_cpu(cpu, cpu_core_mask(i));
696 				cpumask_clear_cpu(i, cpu_core_mask(cpu));
697 			}
698 		}
699 		of_node_put(np);
700 	}
701 	of_node_put(l2_cache);
702 }
703 
704 /* Activate a secondary processor. */
705 void start_secondary(void *unused)
706 {
707 	unsigned int cpu = smp_processor_id();
708 	int i, base;
709 
710 	atomic_inc(&init_mm.mm_count);
711 	current->active_mm = &init_mm;
712 
713 	smp_store_cpu_info(cpu);
714 	set_dec(tb_ticks_per_jiffy);
715 	preempt_disable();
716 	cpu_callin_map[cpu] = 1;
717 
718 	if (smp_ops->setup_cpu)
719 		smp_ops->setup_cpu(cpu);
720 	if (smp_ops->take_timebase)
721 		smp_ops->take_timebase();
722 
723 	secondary_cpu_time_init();
724 
725 #ifdef CONFIG_PPC64
726 	if (system_state == SYSTEM_RUNNING)
727 		vdso_data->processorCount++;
728 
729 	vdso_getcpu_init();
730 #endif
731 	/* Update sibling maps */
732 	base = cpu_first_thread_sibling(cpu);
733 	for (i = 0; i < threads_per_core; i++) {
734 		if (cpu_is_offline(base + i) && (cpu != base + i))
735 			continue;
736 		cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
737 		cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
738 
739 		/* cpu_core_map should be a superset of
740 		 * cpu_sibling_map even if we don't have cache
741 		 * information, so update the former here, too.
742 		 */
743 		cpumask_set_cpu(cpu, cpu_core_mask(base + i));
744 		cpumask_set_cpu(base + i, cpu_core_mask(cpu));
745 	}
746 	traverse_core_siblings(cpu, true);
747 
748 	set_numa_node(numa_cpu_lookup_table[cpu]);
749 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
750 
751 	smp_wmb();
752 	notify_cpu_starting(cpu);
753 	set_cpu_online(cpu, true);
754 
755 	local_irq_enable();
756 
757 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
758 
759 	BUG();
760 }
761 
762 int setup_profiling_timer(unsigned int multiplier)
763 {
764 	return 0;
765 }
766 
767 #ifdef CONFIG_SCHED_SMT
768 /* cpumask of CPUs with asymetric SMT dependancy */
769 static int powerpc_smt_flags(void)
770 {
771 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
772 
773 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
774 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
775 		flags |= SD_ASYM_PACKING;
776 	}
777 	return flags;
778 }
779 #endif
780 
781 static struct sched_domain_topology_level powerpc_topology[] = {
782 #ifdef CONFIG_SCHED_SMT
783 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
784 #endif
785 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
786 	{ NULL, },
787 };
788 
789 void __init smp_cpus_done(unsigned int max_cpus)
790 {
791 	cpumask_var_t old_mask;
792 
793 	/* We want the setup_cpu() here to be called from CPU 0, but our
794 	 * init thread may have been "borrowed" by another CPU in the meantime
795 	 * se we pin us down to CPU 0 for a short while
796 	 */
797 	alloc_cpumask_var(&old_mask, GFP_NOWAIT);
798 	cpumask_copy(old_mask, tsk_cpus_allowed(current));
799 	set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
800 
801 	if (smp_ops && smp_ops->setup_cpu)
802 		smp_ops->setup_cpu(boot_cpuid);
803 
804 	set_cpus_allowed_ptr(current, old_mask);
805 
806 	free_cpumask_var(old_mask);
807 
808 	if (smp_ops && smp_ops->bringup_done)
809 		smp_ops->bringup_done();
810 
811 	dump_numa_cpu_topology();
812 
813 	set_sched_topology(powerpc_topology);
814 
815 }
816 
817 #ifdef CONFIG_HOTPLUG_CPU
818 int __cpu_disable(void)
819 {
820 	int cpu = smp_processor_id();
821 	int base, i;
822 	int err;
823 
824 	if (!smp_ops->cpu_disable)
825 		return -ENOSYS;
826 
827 	err = smp_ops->cpu_disable();
828 	if (err)
829 		return err;
830 
831 	/* Update sibling maps */
832 	base = cpu_first_thread_sibling(cpu);
833 	for (i = 0; i < threads_per_core && base + i < nr_cpu_ids; i++) {
834 		cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
835 		cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
836 		cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
837 		cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
838 	}
839 	traverse_core_siblings(cpu, false);
840 
841 	return 0;
842 }
843 
844 void __cpu_die(unsigned int cpu)
845 {
846 	if (smp_ops->cpu_die)
847 		smp_ops->cpu_die(cpu);
848 }
849 
850 void cpu_die(void)
851 {
852 	if (ppc_md.cpu_die)
853 		ppc_md.cpu_die();
854 
855 	/* If we return, we re-enter start_secondary */
856 	start_secondary_resume();
857 }
858 
859 #endif
860