1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SMP support for ppc. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 6 * deal of code from the sparc and intel versions. 7 * 8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 9 * 10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 12 */ 13 14 #undef DEBUG 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/sched/topology.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/init.h> 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/err.h> 28 #include <linux/device.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/profile.h> 33 #include <linux/processor.h> 34 #include <linux/random.h> 35 #include <linux/stackprotector.h> 36 #include <linux/pgtable.h> 37 #include <linux/clockchips.h> 38 39 #include <asm/ptrace.h> 40 #include <linux/atomic.h> 41 #include <asm/irq.h> 42 #include <asm/hw_irq.h> 43 #include <asm/kvm_ppc.h> 44 #include <asm/dbell.h> 45 #include <asm/page.h> 46 #include <asm/smp.h> 47 #include <asm/time.h> 48 #include <asm/machdep.h> 49 #include <asm/cputhreads.h> 50 #include <asm/cputable.h> 51 #include <asm/mpic.h> 52 #include <asm/vdso_datapage.h> 53 #ifdef CONFIG_PPC64 54 #include <asm/paca.h> 55 #endif 56 #include <asm/vdso.h> 57 #include <asm/debug.h> 58 #include <asm/kexec.h> 59 #include <asm/cpu_has_feature.h> 60 #include <asm/ftrace.h> 61 #include <asm/kup.h> 62 #include <asm/fadump.h> 63 64 #ifdef DEBUG 65 #include <asm/udbg.h> 66 #define DBG(fmt...) udbg_printf(fmt) 67 #else 68 #define DBG(fmt...) 69 #endif 70 71 #ifdef CONFIG_HOTPLUG_CPU 72 /* State of each CPU during hotplug phases */ 73 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 74 #endif 75 76 struct task_struct *secondary_current; 77 bool has_big_cores; 78 bool coregroup_enabled; 79 bool thread_group_shares_l2; 80 bool thread_group_shares_l3; 81 82 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 83 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); 84 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 85 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 86 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map); 87 88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 89 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 90 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 91 EXPORT_SYMBOL_GPL(has_big_cores); 92 93 enum { 94 #ifdef CONFIG_SCHED_SMT 95 smt_idx, 96 #endif 97 cache_idx, 98 mc_idx, 99 die_idx, 100 }; 101 102 #define MAX_THREAD_LIST_SIZE 8 103 #define THREAD_GROUP_SHARE_L1 1 104 #define THREAD_GROUP_SHARE_L2_L3 2 105 struct thread_groups { 106 unsigned int property; 107 unsigned int nr_groups; 108 unsigned int threads_per_group; 109 unsigned int thread_list[MAX_THREAD_LIST_SIZE]; 110 }; 111 112 /* Maximum number of properties that groups of threads within a core can share */ 113 #define MAX_THREAD_GROUP_PROPERTIES 2 114 115 struct thread_groups_list { 116 unsigned int nr_properties; 117 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES]; 118 }; 119 120 static struct thread_groups_list tgl[NR_CPUS] __initdata; 121 /* 122 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to 123 * the set its siblings that share the L1-cache. 124 */ 125 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map); 126 127 /* 128 * On some big-cores system, thread_group_l2_cache_map for each CPU 129 * corresponds to the set its siblings within the core that share the 130 * L2-cache. 131 */ 132 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map); 133 134 /* 135 * On P10, thread_group_l3_cache_map for each CPU is equal to the 136 * thread_group_l2_cache_map 137 */ 138 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map); 139 140 /* SMP operations for this machine */ 141 struct smp_ops_t *smp_ops; 142 143 /* Can't be static due to PowerMac hackery */ 144 volatile unsigned int cpu_callin_map[NR_CPUS]; 145 146 int smt_enabled_at_boot = 1; 147 148 /* 149 * Returns 1 if the specified cpu should be brought up during boot. 150 * Used to inhibit booting threads if they've been disabled or 151 * limited on the command line 152 */ 153 int smp_generic_cpu_bootable(unsigned int nr) 154 { 155 /* Special case - we inhibit secondary thread startup 156 * during boot if the user requests it. 157 */ 158 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 159 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 160 return 0; 161 if (smt_enabled_at_boot 162 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 163 return 0; 164 } 165 166 return 1; 167 } 168 169 170 #ifdef CONFIG_PPC64 171 int smp_generic_kick_cpu(int nr) 172 { 173 if (nr < 0 || nr >= nr_cpu_ids) 174 return -EINVAL; 175 176 /* 177 * The processor is currently spinning, waiting for the 178 * cpu_start field to become non-zero After we set cpu_start, 179 * the processor will continue on to secondary_start 180 */ 181 if (!paca_ptrs[nr]->cpu_start) { 182 paca_ptrs[nr]->cpu_start = 1; 183 smp_mb(); 184 return 0; 185 } 186 187 #ifdef CONFIG_HOTPLUG_CPU 188 /* 189 * Ok it's not there, so it might be soft-unplugged, let's 190 * try to bring it back 191 */ 192 generic_set_cpu_up(nr); 193 smp_wmb(); 194 smp_send_reschedule(nr); 195 #endif /* CONFIG_HOTPLUG_CPU */ 196 197 return 0; 198 } 199 #endif /* CONFIG_PPC64 */ 200 201 static irqreturn_t call_function_action(int irq, void *data) 202 { 203 generic_smp_call_function_interrupt(); 204 return IRQ_HANDLED; 205 } 206 207 static irqreturn_t reschedule_action(int irq, void *data) 208 { 209 scheduler_ipi(); 210 return IRQ_HANDLED; 211 } 212 213 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 214 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 215 { 216 timer_broadcast_interrupt(); 217 return IRQ_HANDLED; 218 } 219 #endif 220 221 #ifdef CONFIG_NMI_IPI 222 static irqreturn_t nmi_ipi_action(int irq, void *data) 223 { 224 smp_handle_nmi_ipi(get_irq_regs()); 225 return IRQ_HANDLED; 226 } 227 #endif 228 229 static irq_handler_t smp_ipi_action[] = { 230 [PPC_MSG_CALL_FUNCTION] = call_function_action, 231 [PPC_MSG_RESCHEDULE] = reschedule_action, 232 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 233 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 234 #endif 235 #ifdef CONFIG_NMI_IPI 236 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 237 #endif 238 }; 239 240 /* 241 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 242 * than going through the call function infrastructure, and strongly 243 * serialized, so it is more appropriate for debugging. 244 */ 245 const char *smp_ipi_name[] = { 246 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 247 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 248 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 249 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 250 #endif 251 #ifdef CONFIG_NMI_IPI 252 [PPC_MSG_NMI_IPI] = "nmi ipi", 253 #endif 254 }; 255 256 /* optional function to request ipi, for controllers with >= 4 ipis */ 257 int smp_request_message_ipi(int virq, int msg) 258 { 259 int err; 260 261 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 262 return -EINVAL; 263 #ifndef CONFIG_NMI_IPI 264 if (msg == PPC_MSG_NMI_IPI) 265 return 1; 266 #endif 267 268 err = request_irq(virq, smp_ipi_action[msg], 269 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 270 smp_ipi_name[msg], NULL); 271 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 272 virq, smp_ipi_name[msg], err); 273 274 return err; 275 } 276 277 #ifdef CONFIG_PPC_SMP_MUXED_IPI 278 struct cpu_messages { 279 long messages; /* current messages */ 280 }; 281 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 282 283 void smp_muxed_ipi_set_message(int cpu, int msg) 284 { 285 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 286 char *message = (char *)&info->messages; 287 288 /* 289 * Order previous accesses before accesses in the IPI handler. 290 */ 291 smp_mb(); 292 message[msg] = 1; 293 } 294 295 void smp_muxed_ipi_message_pass(int cpu, int msg) 296 { 297 smp_muxed_ipi_set_message(cpu, msg); 298 299 /* 300 * cause_ipi functions are required to include a full barrier 301 * before doing whatever causes the IPI. 302 */ 303 smp_ops->cause_ipi(cpu); 304 } 305 306 #ifdef __BIG_ENDIAN__ 307 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 308 #else 309 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 310 #endif 311 312 irqreturn_t smp_ipi_demux(void) 313 { 314 mb(); /* order any irq clear */ 315 316 return smp_ipi_demux_relaxed(); 317 } 318 319 /* sync-free variant. Callers should ensure synchronization */ 320 irqreturn_t smp_ipi_demux_relaxed(void) 321 { 322 struct cpu_messages *info; 323 unsigned long all; 324 325 info = this_cpu_ptr(&ipi_message); 326 do { 327 all = xchg(&info->messages, 0); 328 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 329 /* 330 * Must check for PPC_MSG_RM_HOST_ACTION messages 331 * before PPC_MSG_CALL_FUNCTION messages because when 332 * a VM is destroyed, we call kick_all_cpus_sync() 333 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 334 * messages have completed before we free any VCPUs. 335 */ 336 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 337 kvmppc_xics_ipi_action(); 338 #endif 339 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 340 generic_smp_call_function_interrupt(); 341 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 342 scheduler_ipi(); 343 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 344 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 345 timer_broadcast_interrupt(); 346 #endif 347 #ifdef CONFIG_NMI_IPI 348 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 349 nmi_ipi_action(0, NULL); 350 #endif 351 } while (info->messages); 352 353 return IRQ_HANDLED; 354 } 355 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 356 357 static inline void do_message_pass(int cpu, int msg) 358 { 359 if (smp_ops->message_pass) 360 smp_ops->message_pass(cpu, msg); 361 #ifdef CONFIG_PPC_SMP_MUXED_IPI 362 else 363 smp_muxed_ipi_message_pass(cpu, msg); 364 #endif 365 } 366 367 void smp_send_reschedule(int cpu) 368 { 369 if (likely(smp_ops)) 370 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 371 } 372 EXPORT_SYMBOL_GPL(smp_send_reschedule); 373 374 void arch_send_call_function_single_ipi(int cpu) 375 { 376 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 377 } 378 379 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 380 { 381 unsigned int cpu; 382 383 for_each_cpu(cpu, mask) 384 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 385 } 386 387 #ifdef CONFIG_NMI_IPI 388 389 /* 390 * "NMI IPI" system. 391 * 392 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 393 * a running system. They can be used for crash, debug, halt/reboot, etc. 394 * 395 * The IPI call waits with interrupts disabled until all targets enter the 396 * NMI handler, then returns. Subsequent IPIs can be issued before targets 397 * have returned from their handlers, so there is no guarantee about 398 * concurrency or re-entrancy. 399 * 400 * A new NMI can be issued before all targets exit the handler. 401 * 402 * The IPI call may time out without all targets entering the NMI handler. 403 * In that case, there is some logic to recover (and ignore subsequent 404 * NMI interrupts that may eventually be raised), but the platform interrupt 405 * handler may not be able to distinguish this from other exception causes, 406 * which may cause a crash. 407 */ 408 409 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 410 static struct cpumask nmi_ipi_pending_mask; 411 static bool nmi_ipi_busy = false; 412 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 413 414 noinstr static void nmi_ipi_lock_start(unsigned long *flags) 415 { 416 raw_local_irq_save(*flags); 417 hard_irq_disable(); 418 while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 419 raw_local_irq_restore(*flags); 420 spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0); 421 raw_local_irq_save(*flags); 422 hard_irq_disable(); 423 } 424 } 425 426 noinstr static void nmi_ipi_lock(void) 427 { 428 while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 429 spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0); 430 } 431 432 noinstr static void nmi_ipi_unlock(void) 433 { 434 smp_mb(); 435 WARN_ON(arch_atomic_read(&__nmi_ipi_lock) != 1); 436 arch_atomic_set(&__nmi_ipi_lock, 0); 437 } 438 439 noinstr static void nmi_ipi_unlock_end(unsigned long *flags) 440 { 441 nmi_ipi_unlock(); 442 raw_local_irq_restore(*flags); 443 } 444 445 /* 446 * Platform NMI handler calls this to ack 447 */ 448 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs) 449 { 450 void (*fn)(struct pt_regs *) = NULL; 451 unsigned long flags; 452 int me = raw_smp_processor_id(); 453 int ret = 0; 454 455 /* 456 * Unexpected NMIs are possible here because the interrupt may not 457 * be able to distinguish NMI IPIs from other types of NMIs, or 458 * because the caller may have timed out. 459 */ 460 nmi_ipi_lock_start(&flags); 461 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { 462 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 463 fn = READ_ONCE(nmi_ipi_function); 464 WARN_ON_ONCE(!fn); 465 ret = 1; 466 } 467 nmi_ipi_unlock_end(&flags); 468 469 if (fn) 470 fn(regs); 471 472 return ret; 473 } 474 475 static void do_smp_send_nmi_ipi(int cpu, bool safe) 476 { 477 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 478 return; 479 480 if (cpu >= 0) { 481 do_message_pass(cpu, PPC_MSG_NMI_IPI); 482 } else { 483 int c; 484 485 for_each_online_cpu(c) { 486 if (c == raw_smp_processor_id()) 487 continue; 488 do_message_pass(c, PPC_MSG_NMI_IPI); 489 } 490 } 491 } 492 493 /* 494 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 495 * - fn is the target callback function. 496 * - delay_us > 0 is the delay before giving up waiting for targets to 497 * begin executing the handler, == 0 specifies indefinite delay. 498 */ 499 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), 500 u64 delay_us, bool safe) 501 { 502 unsigned long flags; 503 int me = raw_smp_processor_id(); 504 int ret = 1; 505 506 BUG_ON(cpu == me); 507 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 508 509 if (unlikely(!smp_ops)) 510 return 0; 511 512 nmi_ipi_lock_start(&flags); 513 while (nmi_ipi_busy) { 514 nmi_ipi_unlock_end(&flags); 515 spin_until_cond(!nmi_ipi_busy); 516 nmi_ipi_lock_start(&flags); 517 } 518 nmi_ipi_busy = true; 519 nmi_ipi_function = fn; 520 521 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); 522 523 if (cpu < 0) { 524 /* ALL_OTHERS */ 525 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 526 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 527 } else { 528 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 529 } 530 531 nmi_ipi_unlock(); 532 533 /* Interrupts remain hard disabled */ 534 535 do_smp_send_nmi_ipi(cpu, safe); 536 537 nmi_ipi_lock(); 538 /* nmi_ipi_busy is set here, so unlock/lock is okay */ 539 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 540 nmi_ipi_unlock(); 541 udelay(1); 542 nmi_ipi_lock(); 543 if (delay_us) { 544 delay_us--; 545 if (!delay_us) 546 break; 547 } 548 } 549 550 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 551 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ 552 ret = 0; 553 cpumask_clear(&nmi_ipi_pending_mask); 554 } 555 556 nmi_ipi_function = NULL; 557 nmi_ipi_busy = false; 558 559 nmi_ipi_unlock_end(&flags); 560 561 return ret; 562 } 563 564 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 565 { 566 return __smp_send_nmi_ipi(cpu, fn, delay_us, false); 567 } 568 569 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 570 { 571 return __smp_send_nmi_ipi(cpu, fn, delay_us, true); 572 } 573 #endif /* CONFIG_NMI_IPI */ 574 575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 576 void tick_broadcast(const struct cpumask *mask) 577 { 578 unsigned int cpu; 579 580 for_each_cpu(cpu, mask) 581 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 582 } 583 #endif 584 585 #ifdef CONFIG_DEBUGGER 586 static void debugger_ipi_callback(struct pt_regs *regs) 587 { 588 debugger_ipi(regs); 589 } 590 591 void smp_send_debugger_break(void) 592 { 593 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 594 } 595 #endif 596 597 #ifdef CONFIG_KEXEC_CORE 598 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 599 { 600 int cpu; 601 602 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 603 if (kdump_in_progress() && crash_wake_offline) { 604 for_each_present_cpu(cpu) { 605 if (cpu_online(cpu)) 606 continue; 607 /* 608 * crash_ipi_callback will wait for 609 * all cpus, including offline CPUs. 610 * We don't care about nmi_ipi_function. 611 * Offline cpus will jump straight into 612 * crash_ipi_callback, we can skip the 613 * entire NMI dance and waiting for 614 * cpus to clear pending mask, etc. 615 */ 616 do_smp_send_nmi_ipi(cpu, false); 617 } 618 } 619 } 620 #endif 621 622 #ifdef CONFIG_NMI_IPI 623 static void crash_stop_this_cpu(struct pt_regs *regs) 624 #else 625 static void crash_stop_this_cpu(void *dummy) 626 #endif 627 { 628 /* 629 * Just busy wait here and avoid marking CPU as offline to ensure 630 * register data is captured appropriately. 631 */ 632 while (1) 633 cpu_relax(); 634 } 635 636 void crash_smp_send_stop(void) 637 { 638 static bool stopped = false; 639 640 /* 641 * In case of fadump, register data for all CPUs is captured by f/w 642 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before 643 * this rtas call to avoid tricky post processing of those CPUs' 644 * backtraces. 645 */ 646 if (should_fadump_crash()) 647 return; 648 649 if (stopped) 650 return; 651 652 stopped = true; 653 654 #ifdef CONFIG_NMI_IPI 655 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000); 656 #else 657 smp_call_function(crash_stop_this_cpu, NULL, 0); 658 #endif /* CONFIG_NMI_IPI */ 659 } 660 661 #ifdef CONFIG_NMI_IPI 662 static void nmi_stop_this_cpu(struct pt_regs *regs) 663 { 664 /* 665 * IRQs are already hard disabled by the smp_handle_nmi_ipi. 666 */ 667 set_cpu_online(smp_processor_id(), false); 668 669 spin_begin(); 670 while (1) 671 spin_cpu_relax(); 672 } 673 674 void smp_send_stop(void) 675 { 676 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); 677 } 678 679 #else /* CONFIG_NMI_IPI */ 680 681 static void stop_this_cpu(void *dummy) 682 { 683 hard_irq_disable(); 684 685 /* 686 * Offlining CPUs in stop_this_cpu can result in scheduler warnings, 687 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants 688 * to know other CPUs are offline before it breaks locks to flush 689 * printk buffers, in case we panic()ed while holding the lock. 690 */ 691 set_cpu_online(smp_processor_id(), false); 692 693 spin_begin(); 694 while (1) 695 spin_cpu_relax(); 696 } 697 698 void smp_send_stop(void) 699 { 700 static bool stopped = false; 701 702 /* 703 * Prevent waiting on csd lock from a previous smp_send_stop. 704 * This is racy, but in general callers try to do the right 705 * thing and only fire off one smp_send_stop (e.g., see 706 * kernel/panic.c) 707 */ 708 if (stopped) 709 return; 710 711 stopped = true; 712 713 smp_call_function(stop_this_cpu, NULL, 0); 714 } 715 #endif /* CONFIG_NMI_IPI */ 716 717 static struct task_struct *current_set[NR_CPUS]; 718 719 static void smp_store_cpu_info(int id) 720 { 721 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 722 #ifdef CONFIG_PPC_FSL_BOOK3E 723 per_cpu(next_tlbcam_idx, id) 724 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 725 #endif 726 } 727 728 /* 729 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 730 * rather than just passing around the cpumask we pass around a function that 731 * returns the that cpumask for the given CPU. 732 */ 733 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 734 { 735 cpumask_set_cpu(i, get_cpumask(j)); 736 cpumask_set_cpu(j, get_cpumask(i)); 737 } 738 739 #ifdef CONFIG_HOTPLUG_CPU 740 static void set_cpus_unrelated(int i, int j, 741 struct cpumask *(*get_cpumask)(int)) 742 { 743 cpumask_clear_cpu(i, get_cpumask(j)); 744 cpumask_clear_cpu(j, get_cpumask(i)); 745 } 746 #endif 747 748 /* 749 * Extends set_cpus_related. Instead of setting one CPU at a time in 750 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask. 751 */ 752 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int), 753 struct cpumask *(*dstmask)(int)) 754 { 755 struct cpumask *mask; 756 int k; 757 758 mask = srcmask(j); 759 for_each_cpu(k, srcmask(i)) 760 cpumask_or(dstmask(k), dstmask(k), mask); 761 762 if (i == j) 763 return; 764 765 mask = srcmask(i); 766 for_each_cpu(k, srcmask(j)) 767 cpumask_or(dstmask(k), dstmask(k), mask); 768 } 769 770 /* 771 * parse_thread_groups: Parses the "ibm,thread-groups" device tree 772 * property for the CPU device node @dn and stores 773 * the parsed output in the thread_groups_list 774 * structure @tglp. 775 * 776 * @dn: The device node of the CPU device. 777 * @tglp: Pointer to a thread group list structure into which the parsed 778 * output of "ibm,thread-groups" is stored. 779 * 780 * ibm,thread-groups[0..N-1] array defines which group of threads in 781 * the CPU-device node can be grouped together based on the property. 782 * 783 * This array can represent thread groupings for multiple properties. 784 * 785 * ibm,thread-groups[i + 0] tells us the property based on which the 786 * threads are being grouped together. If this value is 1, it implies 787 * that the threads in the same group share L1, translation cache. If 788 * the value is 2, it implies that the threads in the same group share 789 * the same L2 cache. 790 * 791 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the 792 * property ibm,thread-groups[i] 793 * 794 * ibm,thread-groups[i+2] tells us the number of threads in each such 795 * group. 796 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then, 797 * 798 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by 799 * "ibm,ppc-interrupt-server#s" arranged as per their membership in 800 * the grouping. 801 * 802 * Example: 803 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15] 804 * This can be decomposed up into two consecutive arrays: 805 * a) [1,2,4,8,10,12,14,9,11,13,15] 806 * b) [2,2,4,8,10,12,14,9,11,13,15] 807 * 808 * where in, 809 * 810 * a) provides information of Property "1" being shared by "2" groups, 811 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of 812 * the first group is {8,10,12,14} and the 813 * "ibm,ppc-interrupt-server#s" of the second group is 814 * {9,11,13,15}. Property "1" is indicative of the thread in the 815 * group sharing L1 cache, translation cache and Instruction Data 816 * flow. 817 * 818 * b) provides information of Property "2" being shared by "2" groups, 819 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of 820 * the first group is {8,10,12,14} and the 821 * "ibm,ppc-interrupt-server#s" of the second group is 822 * {9,11,13,15}. Property "2" indicates that the threads in each 823 * group share the L2-cache. 824 * 825 * Returns 0 on success, -EINVAL if the property does not exist, 826 * -ENODATA if property does not have a value, and -EOVERFLOW if the 827 * property data isn't large enough. 828 */ 829 static int parse_thread_groups(struct device_node *dn, 830 struct thread_groups_list *tglp) 831 { 832 unsigned int property_idx = 0; 833 u32 *thread_group_array; 834 size_t total_threads; 835 int ret = 0, count; 836 u32 *thread_list; 837 int i = 0; 838 839 count = of_property_count_u32_elems(dn, "ibm,thread-groups"); 840 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL); 841 ret = of_property_read_u32_array(dn, "ibm,thread-groups", 842 thread_group_array, count); 843 if (ret) 844 goto out_free; 845 846 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) { 847 int j; 848 struct thread_groups *tg = &tglp->property_tgs[property_idx++]; 849 850 tg->property = thread_group_array[i]; 851 tg->nr_groups = thread_group_array[i + 1]; 852 tg->threads_per_group = thread_group_array[i + 2]; 853 total_threads = tg->nr_groups * tg->threads_per_group; 854 855 thread_list = &thread_group_array[i + 3]; 856 857 for (j = 0; j < total_threads; j++) 858 tg->thread_list[j] = thread_list[j]; 859 i = i + 3 + total_threads; 860 } 861 862 tglp->nr_properties = property_idx; 863 864 out_free: 865 kfree(thread_group_array); 866 return ret; 867 } 868 869 /* 870 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list 871 * that @cpu belongs to. 872 * 873 * @cpu : The logical CPU whose thread group is being searched. 874 * @tg : The thread-group structure of the CPU node which @cpu belongs 875 * to. 876 * 877 * Returns the index to tg->thread_list that points to the start 878 * of the thread_group that @cpu belongs to. 879 * 880 * Returns -1 if cpu doesn't belong to any of the groups pointed to by 881 * tg->thread_list. 882 */ 883 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) 884 { 885 int hw_cpu_id = get_hard_smp_processor_id(cpu); 886 int i, j; 887 888 for (i = 0; i < tg->nr_groups; i++) { 889 int group_start = i * tg->threads_per_group; 890 891 for (j = 0; j < tg->threads_per_group; j++) { 892 int idx = group_start + j; 893 894 if (tg->thread_list[idx] == hw_cpu_id) 895 return group_start; 896 } 897 } 898 899 return -1; 900 } 901 902 static struct thread_groups *__init get_thread_groups(int cpu, 903 int group_property, 904 int *err) 905 { 906 struct device_node *dn = of_get_cpu_node(cpu, NULL); 907 struct thread_groups_list *cpu_tgl = &tgl[cpu]; 908 struct thread_groups *tg = NULL; 909 int i; 910 *err = 0; 911 912 if (!dn) { 913 *err = -ENODATA; 914 return NULL; 915 } 916 917 if (!cpu_tgl->nr_properties) { 918 *err = parse_thread_groups(dn, cpu_tgl); 919 if (*err) 920 goto out; 921 } 922 923 for (i = 0; i < cpu_tgl->nr_properties; i++) { 924 if (cpu_tgl->property_tgs[i].property == group_property) { 925 tg = &cpu_tgl->property_tgs[i]; 926 break; 927 } 928 } 929 930 if (!tg) 931 *err = -EINVAL; 932 out: 933 of_node_put(dn); 934 return tg; 935 } 936 937 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, 938 int cpu, int cpu_group_start) 939 { 940 int first_thread = cpu_first_thread_sibling(cpu); 941 int i; 942 943 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu)); 944 945 for (i = first_thread; i < first_thread + threads_per_core; i++) { 946 int i_group_start = get_cpu_thread_group_start(i, tg); 947 948 if (unlikely(i_group_start == -1)) { 949 WARN_ON_ONCE(1); 950 return -ENODATA; 951 } 952 953 if (i_group_start == cpu_group_start) 954 cpumask_set_cpu(i, *mask); 955 } 956 957 return 0; 958 } 959 960 static int __init init_thread_group_cache_map(int cpu, int cache_property) 961 962 { 963 int cpu_group_start = -1, err = 0; 964 struct thread_groups *tg = NULL; 965 cpumask_var_t *mask = NULL; 966 967 if (cache_property != THREAD_GROUP_SHARE_L1 && 968 cache_property != THREAD_GROUP_SHARE_L2_L3) 969 return -EINVAL; 970 971 tg = get_thread_groups(cpu, cache_property, &err); 972 973 if (!tg) 974 return err; 975 976 cpu_group_start = get_cpu_thread_group_start(cpu, tg); 977 978 if (unlikely(cpu_group_start == -1)) { 979 WARN_ON_ONCE(1); 980 return -ENODATA; 981 } 982 983 if (cache_property == THREAD_GROUP_SHARE_L1) { 984 mask = &per_cpu(thread_group_l1_cache_map, cpu); 985 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 986 } 987 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) { 988 mask = &per_cpu(thread_group_l2_cache_map, cpu); 989 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 990 mask = &per_cpu(thread_group_l3_cache_map, cpu); 991 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 992 } 993 994 995 return 0; 996 } 997 998 static bool shared_caches; 999 1000 #ifdef CONFIG_SCHED_SMT 1001 /* cpumask of CPUs with asymmetric SMT dependency */ 1002 static int powerpc_smt_flags(void) 1003 { 1004 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1005 1006 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 1007 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 1008 flags |= SD_ASYM_PACKING; 1009 } 1010 return flags; 1011 } 1012 #endif 1013 1014 /* 1015 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 1016 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 1017 * since the migrated task remains cache hot. We want to take advantage of this 1018 * at the scheduler level so an extra topology level is required. 1019 */ 1020 static int powerpc_shared_cache_flags(void) 1021 { 1022 return SD_SHARE_PKG_RESOURCES; 1023 } 1024 1025 /* 1026 * We can't just pass cpu_l2_cache_mask() directly because 1027 * returns a non-const pointer and the compiler barfs on that. 1028 */ 1029 static const struct cpumask *shared_cache_mask(int cpu) 1030 { 1031 return per_cpu(cpu_l2_cache_map, cpu); 1032 } 1033 1034 #ifdef CONFIG_SCHED_SMT 1035 static const struct cpumask *smallcore_smt_mask(int cpu) 1036 { 1037 return cpu_smallcore_mask(cpu); 1038 } 1039 #endif 1040 1041 static struct cpumask *cpu_coregroup_mask(int cpu) 1042 { 1043 return per_cpu(cpu_coregroup_map, cpu); 1044 } 1045 1046 static bool has_coregroup_support(void) 1047 { 1048 return coregroup_enabled; 1049 } 1050 1051 static const struct cpumask *cpu_mc_mask(int cpu) 1052 { 1053 return cpu_coregroup_mask(cpu); 1054 } 1055 1056 static struct sched_domain_topology_level powerpc_topology[] = { 1057 #ifdef CONFIG_SCHED_SMT 1058 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1059 #endif 1060 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, 1061 { cpu_mc_mask, SD_INIT_NAME(MC) }, 1062 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1063 { NULL, }, 1064 }; 1065 1066 static int __init init_big_cores(void) 1067 { 1068 int cpu; 1069 1070 for_each_possible_cpu(cpu) { 1071 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1); 1072 1073 if (err) 1074 return err; 1075 1076 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), 1077 GFP_KERNEL, 1078 cpu_to_node(cpu)); 1079 } 1080 1081 has_big_cores = true; 1082 1083 for_each_possible_cpu(cpu) { 1084 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3); 1085 1086 if (err) 1087 return err; 1088 } 1089 1090 thread_group_shares_l2 = true; 1091 thread_group_shares_l3 = true; 1092 pr_debug("L2/L3 cache only shared by the threads in the small core\n"); 1093 1094 return 0; 1095 } 1096 1097 void __init smp_prepare_cpus(unsigned int max_cpus) 1098 { 1099 unsigned int cpu; 1100 1101 DBG("smp_prepare_cpus\n"); 1102 1103 /* 1104 * setup_cpu may need to be called on the boot cpu. We haven't 1105 * spun any cpus up but lets be paranoid. 1106 */ 1107 BUG_ON(boot_cpuid != smp_processor_id()); 1108 1109 /* Fixup boot cpu */ 1110 smp_store_cpu_info(boot_cpuid); 1111 cpu_callin_map[boot_cpuid] = 1; 1112 1113 for_each_possible_cpu(cpu) { 1114 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 1115 GFP_KERNEL, cpu_to_node(cpu)); 1116 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 1117 GFP_KERNEL, cpu_to_node(cpu)); 1118 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 1119 GFP_KERNEL, cpu_to_node(cpu)); 1120 if (has_coregroup_support()) 1121 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu), 1122 GFP_KERNEL, cpu_to_node(cpu)); 1123 1124 #ifdef CONFIG_NUMA 1125 /* 1126 * numa_node_id() works after this. 1127 */ 1128 if (cpu_present(cpu)) { 1129 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 1130 set_cpu_numa_mem(cpu, 1131 local_memory_node(numa_cpu_lookup_table[cpu])); 1132 } 1133 #endif 1134 } 1135 1136 /* Init the cpumasks so the boot CPU is related to itself */ 1137 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 1138 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 1139 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 1140 1141 if (has_coregroup_support()) 1142 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid)); 1143 1144 init_big_cores(); 1145 if (has_big_cores) { 1146 cpumask_set_cpu(boot_cpuid, 1147 cpu_smallcore_mask(boot_cpuid)); 1148 } 1149 1150 if (cpu_to_chip_id(boot_cpuid) != -1) { 1151 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1152 1153 /* 1154 * All threads of a core will all belong to the same core, 1155 * chip_id_lookup_table will have one entry per core. 1156 * Assumption: if boot_cpuid doesn't have a chip-id, then no 1157 * other CPUs, will also not have chip-id. 1158 */ 1159 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL); 1160 if (chip_id_lookup_table) 1161 memset(chip_id_lookup_table, -1, sizeof(int) * idx); 1162 } 1163 1164 if (smp_ops && smp_ops->probe) 1165 smp_ops->probe(); 1166 } 1167 1168 void smp_prepare_boot_cpu(void) 1169 { 1170 BUG_ON(smp_processor_id() != boot_cpuid); 1171 #ifdef CONFIG_PPC64 1172 paca_ptrs[boot_cpuid]->__current = current; 1173 #endif 1174 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 1175 current_set[boot_cpuid] = current; 1176 } 1177 1178 #ifdef CONFIG_HOTPLUG_CPU 1179 1180 int generic_cpu_disable(void) 1181 { 1182 unsigned int cpu = smp_processor_id(); 1183 1184 if (cpu == boot_cpuid) 1185 return -EBUSY; 1186 1187 set_cpu_online(cpu, false); 1188 #ifdef CONFIG_PPC64 1189 vdso_data->processorCount--; 1190 #endif 1191 /* Update affinity of all IRQs previously aimed at this CPU */ 1192 irq_migrate_all_off_this_cpu(); 1193 1194 /* 1195 * Depending on the details of the interrupt controller, it's possible 1196 * that one of the interrupts we just migrated away from this CPU is 1197 * actually already pending on this CPU. If we leave it in that state 1198 * the interrupt will never be EOI'ed, and will never fire again. So 1199 * temporarily enable interrupts here, to allow any pending interrupt to 1200 * be received (and EOI'ed), before we take this CPU offline. 1201 */ 1202 local_irq_enable(); 1203 mdelay(1); 1204 local_irq_disable(); 1205 1206 return 0; 1207 } 1208 1209 void generic_cpu_die(unsigned int cpu) 1210 { 1211 int i; 1212 1213 for (i = 0; i < 100; i++) { 1214 smp_rmb(); 1215 if (is_cpu_dead(cpu)) 1216 return; 1217 msleep(100); 1218 } 1219 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 1220 } 1221 1222 void generic_set_cpu_dead(unsigned int cpu) 1223 { 1224 per_cpu(cpu_state, cpu) = CPU_DEAD; 1225 } 1226 1227 /* 1228 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 1229 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 1230 * which makes the delay in generic_cpu_die() not happen. 1231 */ 1232 void generic_set_cpu_up(unsigned int cpu) 1233 { 1234 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 1235 } 1236 1237 int generic_check_cpu_restart(unsigned int cpu) 1238 { 1239 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 1240 } 1241 1242 int is_cpu_dead(unsigned int cpu) 1243 { 1244 return per_cpu(cpu_state, cpu) == CPU_DEAD; 1245 } 1246 1247 static bool secondaries_inhibited(void) 1248 { 1249 return kvm_hv_mode_active(); 1250 } 1251 1252 #else /* HOTPLUG_CPU */ 1253 1254 #define secondaries_inhibited() 0 1255 1256 #endif 1257 1258 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 1259 { 1260 #ifdef CONFIG_PPC64 1261 paca_ptrs[cpu]->__current = idle; 1262 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + 1263 THREAD_SIZE - STACK_FRAME_OVERHEAD; 1264 #endif 1265 task_thread_info(idle)->cpu = cpu; 1266 secondary_current = current_set[cpu] = idle; 1267 } 1268 1269 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1270 { 1271 int rc, c; 1272 1273 /* 1274 * Don't allow secondary threads to come online if inhibited 1275 */ 1276 if (threads_per_core > 1 && secondaries_inhibited() && 1277 cpu_thread_in_subcore(cpu)) 1278 return -EBUSY; 1279 1280 if (smp_ops == NULL || 1281 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 1282 return -EINVAL; 1283 1284 cpu_idle_thread_init(cpu, tidle); 1285 1286 /* 1287 * The platform might need to allocate resources prior to bringing 1288 * up the CPU 1289 */ 1290 if (smp_ops->prepare_cpu) { 1291 rc = smp_ops->prepare_cpu(cpu); 1292 if (rc) 1293 return rc; 1294 } 1295 1296 /* Make sure callin-map entry is 0 (can be leftover a CPU 1297 * hotplug 1298 */ 1299 cpu_callin_map[cpu] = 0; 1300 1301 /* The information for processor bringup must 1302 * be written out to main store before we release 1303 * the processor. 1304 */ 1305 smp_mb(); 1306 1307 /* wake up cpus */ 1308 DBG("smp: kicking cpu %d\n", cpu); 1309 rc = smp_ops->kick_cpu(cpu); 1310 if (rc) { 1311 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 1312 return rc; 1313 } 1314 1315 /* 1316 * wait to see if the cpu made a callin (is actually up). 1317 * use this value that I found through experimentation. 1318 * -- Cort 1319 */ 1320 if (system_state < SYSTEM_RUNNING) 1321 for (c = 50000; c && !cpu_callin_map[cpu]; c--) 1322 udelay(100); 1323 #ifdef CONFIG_HOTPLUG_CPU 1324 else 1325 /* 1326 * CPUs can take much longer to come up in the 1327 * hotplug case. Wait five seconds. 1328 */ 1329 for (c = 5000; c && !cpu_callin_map[cpu]; c--) 1330 msleep(1); 1331 #endif 1332 1333 if (!cpu_callin_map[cpu]) { 1334 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 1335 return -ENOENT; 1336 } 1337 1338 DBG("Processor %u found.\n", cpu); 1339 1340 if (smp_ops->give_timebase) 1341 smp_ops->give_timebase(); 1342 1343 /* Wait until cpu puts itself in the online & active maps */ 1344 spin_until_cond(cpu_online(cpu)); 1345 1346 return 0; 1347 } 1348 1349 /* Return the value of the reg property corresponding to the given 1350 * logical cpu. 1351 */ 1352 int cpu_to_core_id(int cpu) 1353 { 1354 struct device_node *np; 1355 int id = -1; 1356 1357 np = of_get_cpu_node(cpu, NULL); 1358 if (!np) 1359 goto out; 1360 1361 id = of_get_cpu_hwid(np, 0); 1362 out: 1363 of_node_put(np); 1364 return id; 1365 } 1366 EXPORT_SYMBOL_GPL(cpu_to_core_id); 1367 1368 /* Helper routines for cpu to core mapping */ 1369 int cpu_core_index_of_thread(int cpu) 1370 { 1371 return cpu >> threads_shift; 1372 } 1373 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 1374 1375 int cpu_first_thread_of_core(int core) 1376 { 1377 return core << threads_shift; 1378 } 1379 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 1380 1381 /* Must be called when no change can occur to cpu_present_mask, 1382 * i.e. during cpu online or offline. 1383 */ 1384 static struct device_node *cpu_to_l2cache(int cpu) 1385 { 1386 struct device_node *np; 1387 struct device_node *cache; 1388 1389 if (!cpu_present(cpu)) 1390 return NULL; 1391 1392 np = of_get_cpu_node(cpu, NULL); 1393 if (np == NULL) 1394 return NULL; 1395 1396 cache = of_find_next_cache_node(np); 1397 1398 of_node_put(np); 1399 1400 return cache; 1401 } 1402 1403 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask) 1404 { 1405 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1406 struct device_node *l2_cache, *np; 1407 int i; 1408 1409 if (has_big_cores) 1410 submask_fn = cpu_smallcore_mask; 1411 1412 /* 1413 * If the threads in a thread-group share L2 cache, then the 1414 * L2-mask can be obtained from thread_group_l2_cache_map. 1415 */ 1416 if (thread_group_shares_l2) { 1417 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu)); 1418 1419 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) { 1420 if (cpu_online(i)) 1421 set_cpus_related(i, cpu, cpu_l2_cache_mask); 1422 } 1423 1424 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */ 1425 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) && 1426 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) { 1427 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n", 1428 cpu); 1429 } 1430 1431 return true; 1432 } 1433 1434 l2_cache = cpu_to_l2cache(cpu); 1435 if (!l2_cache || !*mask) { 1436 /* Assume only core siblings share cache with this CPU */ 1437 for_each_cpu(i, cpu_sibling_mask(cpu)) 1438 set_cpus_related(cpu, i, cpu_l2_cache_mask); 1439 1440 return false; 1441 } 1442 1443 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1444 1445 /* Update l2-cache mask with all the CPUs that are part of submask */ 1446 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask); 1447 1448 /* Skip all CPUs already part of current CPU l2-cache mask */ 1449 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu)); 1450 1451 for_each_cpu(i, *mask) { 1452 /* 1453 * when updating the marks the current CPU has not been marked 1454 * online, but we need to update the cache masks 1455 */ 1456 np = cpu_to_l2cache(i); 1457 1458 /* Skip all CPUs already part of current CPU l2-cache */ 1459 if (np == l2_cache) { 1460 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask); 1461 cpumask_andnot(*mask, *mask, submask_fn(i)); 1462 } else { 1463 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i)); 1464 } 1465 1466 of_node_put(np); 1467 } 1468 of_node_put(l2_cache); 1469 1470 return true; 1471 } 1472 1473 #ifdef CONFIG_HOTPLUG_CPU 1474 static void remove_cpu_from_masks(int cpu) 1475 { 1476 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask; 1477 int i; 1478 1479 unmap_cpu_from_node(cpu); 1480 1481 if (shared_caches) 1482 mask_fn = cpu_l2_cache_mask; 1483 1484 for_each_cpu(i, mask_fn(cpu)) { 1485 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 1486 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 1487 if (has_big_cores) 1488 set_cpus_unrelated(cpu, i, cpu_smallcore_mask); 1489 } 1490 1491 for_each_cpu(i, cpu_core_mask(cpu)) 1492 set_cpus_unrelated(cpu, i, cpu_core_mask); 1493 1494 if (has_coregroup_support()) { 1495 for_each_cpu(i, cpu_coregroup_mask(cpu)) 1496 set_cpus_unrelated(cpu, i, cpu_coregroup_mask); 1497 } 1498 } 1499 #endif 1500 1501 static inline void add_cpu_to_smallcore_masks(int cpu) 1502 { 1503 int i; 1504 1505 if (!has_big_cores) 1506 return; 1507 1508 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); 1509 1510 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) { 1511 if (cpu_online(i)) 1512 set_cpus_related(i, cpu, cpu_smallcore_mask); 1513 } 1514 } 1515 1516 static void update_coregroup_mask(int cpu, cpumask_var_t *mask) 1517 { 1518 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1519 int coregroup_id = cpu_to_coregroup_id(cpu); 1520 int i; 1521 1522 if (shared_caches) 1523 submask_fn = cpu_l2_cache_mask; 1524 1525 if (!*mask) { 1526 /* Assume only siblings are part of this CPU's coregroup */ 1527 for_each_cpu(i, submask_fn(cpu)) 1528 set_cpus_related(cpu, i, cpu_coregroup_mask); 1529 1530 return; 1531 } 1532 1533 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1534 1535 /* Update coregroup mask with all the CPUs that are part of submask */ 1536 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask); 1537 1538 /* Skip all CPUs already part of coregroup mask */ 1539 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu)); 1540 1541 for_each_cpu(i, *mask) { 1542 /* Skip all CPUs not part of this coregroup */ 1543 if (coregroup_id == cpu_to_coregroup_id(i)) { 1544 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask); 1545 cpumask_andnot(*mask, *mask, submask_fn(i)); 1546 } else { 1547 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i)); 1548 } 1549 } 1550 } 1551 1552 static void add_cpu_to_masks(int cpu) 1553 { 1554 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1555 int first_thread = cpu_first_thread_sibling(cpu); 1556 cpumask_var_t mask; 1557 int chip_id = -1; 1558 bool ret; 1559 int i; 1560 1561 /* 1562 * This CPU will not be in the online mask yet so we need to manually 1563 * add it to it's own thread sibling mask. 1564 */ 1565 map_cpu_to_node(cpu, cpu_to_node(cpu)); 1566 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 1567 cpumask_set_cpu(cpu, cpu_core_mask(cpu)); 1568 1569 for (i = first_thread; i < first_thread + threads_per_core; i++) 1570 if (cpu_online(i)) 1571 set_cpus_related(i, cpu, cpu_sibling_mask); 1572 1573 add_cpu_to_smallcore_masks(cpu); 1574 1575 /* In CPU-hotplug path, hence use GFP_ATOMIC */ 1576 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu)); 1577 update_mask_by_l2(cpu, &mask); 1578 1579 if (has_coregroup_support()) 1580 update_coregroup_mask(cpu, &mask); 1581 1582 if (chip_id_lookup_table && ret) 1583 chip_id = cpu_to_chip_id(cpu); 1584 1585 if (shared_caches) 1586 submask_fn = cpu_l2_cache_mask; 1587 1588 /* Update core_mask with all the CPUs that are part of submask */ 1589 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask); 1590 1591 /* Skip all CPUs already part of current CPU core mask */ 1592 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu)); 1593 1594 /* If chip_id is -1; limit the cpu_core_mask to within DIE*/ 1595 if (chip_id == -1) 1596 cpumask_and(mask, mask, cpu_cpu_mask(cpu)); 1597 1598 for_each_cpu(i, mask) { 1599 if (chip_id == cpu_to_chip_id(i)) { 1600 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask); 1601 cpumask_andnot(mask, mask, submask_fn(i)); 1602 } else { 1603 cpumask_andnot(mask, mask, cpu_core_mask(i)); 1604 } 1605 } 1606 1607 free_cpumask_var(mask); 1608 } 1609 1610 /* Activate a secondary processor. */ 1611 void start_secondary(void *unused) 1612 { 1613 unsigned int cpu = raw_smp_processor_id(); 1614 1615 /* PPC64 calls setup_kup() in early_setup_secondary() */ 1616 if (IS_ENABLED(CONFIG_PPC32)) 1617 setup_kup(); 1618 1619 mmgrab(&init_mm); 1620 current->active_mm = &init_mm; 1621 1622 smp_store_cpu_info(cpu); 1623 set_dec(tb_ticks_per_jiffy); 1624 rcu_cpu_starting(cpu); 1625 cpu_callin_map[cpu] = 1; 1626 1627 if (smp_ops->setup_cpu) 1628 smp_ops->setup_cpu(cpu); 1629 if (smp_ops->take_timebase) 1630 smp_ops->take_timebase(); 1631 1632 secondary_cpu_time_init(); 1633 1634 #ifdef CONFIG_PPC64 1635 if (system_state == SYSTEM_RUNNING) 1636 vdso_data->processorCount++; 1637 1638 vdso_getcpu_init(); 1639 #endif 1640 set_numa_node(numa_cpu_lookup_table[cpu]); 1641 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1642 1643 /* Update topology CPU masks */ 1644 add_cpu_to_masks(cpu); 1645 1646 /* 1647 * Check for any shared caches. Note that this must be done on a 1648 * per-core basis because one core in the pair might be disabled. 1649 */ 1650 if (!shared_caches) { 1651 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; 1652 struct cpumask *mask = cpu_l2_cache_mask(cpu); 1653 1654 if (has_big_cores) 1655 sibling_mask = cpu_smallcore_mask; 1656 1657 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu))) 1658 shared_caches = true; 1659 } 1660 1661 smp_wmb(); 1662 notify_cpu_starting(cpu); 1663 set_cpu_online(cpu, true); 1664 1665 boot_init_stack_canary(); 1666 1667 local_irq_enable(); 1668 1669 /* We can enable ftrace for secondary cpus now */ 1670 this_cpu_enable_ftrace(); 1671 1672 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1673 1674 BUG(); 1675 } 1676 1677 #ifdef CONFIG_PROFILING 1678 int setup_profiling_timer(unsigned int multiplier) 1679 { 1680 return 0; 1681 } 1682 #endif 1683 1684 static void __init fixup_topology(void) 1685 { 1686 int i; 1687 1688 #ifdef CONFIG_SCHED_SMT 1689 if (has_big_cores) { 1690 pr_info("Big cores detected but using small core scheduling\n"); 1691 powerpc_topology[smt_idx].mask = smallcore_smt_mask; 1692 } 1693 #endif 1694 1695 if (!has_coregroup_support()) 1696 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask; 1697 1698 /* 1699 * Try to consolidate topology levels here instead of 1700 * allowing scheduler to degenerate. 1701 * - Dont consolidate if masks are different. 1702 * - Dont consolidate if sd_flags exists and are different. 1703 */ 1704 for (i = 1; i <= die_idx; i++) { 1705 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask) 1706 continue; 1707 1708 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags && 1709 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags) 1710 continue; 1711 1712 if (!powerpc_topology[i - 1].sd_flags) 1713 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags; 1714 1715 powerpc_topology[i].mask = powerpc_topology[i + 1].mask; 1716 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags; 1717 #ifdef CONFIG_SCHED_DEBUG 1718 powerpc_topology[i].name = powerpc_topology[i + 1].name; 1719 #endif 1720 } 1721 } 1722 1723 void __init smp_cpus_done(unsigned int max_cpus) 1724 { 1725 /* 1726 * We are running pinned to the boot CPU, see rest_init(). 1727 */ 1728 if (smp_ops && smp_ops->setup_cpu) 1729 smp_ops->setup_cpu(boot_cpuid); 1730 1731 if (smp_ops && smp_ops->bringup_done) 1732 smp_ops->bringup_done(); 1733 1734 dump_numa_cpu_topology(); 1735 1736 fixup_topology(); 1737 set_sched_topology(powerpc_topology); 1738 } 1739 1740 #ifdef CONFIG_HOTPLUG_CPU 1741 int __cpu_disable(void) 1742 { 1743 int cpu = smp_processor_id(); 1744 int err; 1745 1746 if (!smp_ops->cpu_disable) 1747 return -ENOSYS; 1748 1749 this_cpu_disable_ftrace(); 1750 1751 err = smp_ops->cpu_disable(); 1752 if (err) 1753 return err; 1754 1755 /* Update sibling maps */ 1756 remove_cpu_from_masks(cpu); 1757 1758 return 0; 1759 } 1760 1761 void __cpu_die(unsigned int cpu) 1762 { 1763 if (smp_ops->cpu_die) 1764 smp_ops->cpu_die(cpu); 1765 } 1766 1767 void arch_cpu_idle_dead(void) 1768 { 1769 /* 1770 * Disable on the down path. This will be re-enabled by 1771 * start_secondary() via start_secondary_resume() below 1772 */ 1773 this_cpu_disable_ftrace(); 1774 1775 if (smp_ops->cpu_offline_self) 1776 smp_ops->cpu_offline_self(); 1777 1778 /* If we return, we re-enter start_secondary */ 1779 start_secondary_resume(); 1780 } 1781 1782 #endif 1783