xref: /openbmc/linux/arch/powerpc/kernel/smp.c (revision bc05aa6e)
1 /*
2  * SMP support for ppc.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5  * deal of code from the sparc and intel versions.
6  *
7  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8  *
9  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17 
18 #undef DEBUG
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/topology.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/spinlock.h>
29 #include <linux/cache.h>
30 #include <linux/err.h>
31 #include <linux/device.h>
32 #include <linux/cpu.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/profile.h>
36 #include <linux/processor.h>
37 
38 #include <asm/ptrace.h>
39 #include <linux/atomic.h>
40 #include <asm/irq.h>
41 #include <asm/hw_irq.h>
42 #include <asm/kvm_ppc.h>
43 #include <asm/dbell.h>
44 #include <asm/page.h>
45 #include <asm/pgtable.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/kexec.h>
60 #include <asm/asm-prototypes.h>
61 #include <asm/cpu_has_feature.h>
62 
63 #ifdef DEBUG
64 #include <asm/udbg.h>
65 #define DBG(fmt...) udbg_printf(fmt)
66 #else
67 #define DBG(fmt...)
68 #endif
69 
70 #ifdef CONFIG_HOTPLUG_CPU
71 /* State of each CPU during hotplug phases */
72 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
73 #endif
74 
75 struct thread_info *secondary_ti;
76 
77 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
78 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
79 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
80 
81 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
82 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
83 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
84 
85 /* SMP operations for this machine */
86 struct smp_ops_t *smp_ops;
87 
88 /* Can't be static due to PowerMac hackery */
89 volatile unsigned int cpu_callin_map[NR_CPUS];
90 
91 int smt_enabled_at_boot = 1;
92 
93 /*
94  * Returns 1 if the specified cpu should be brought up during boot.
95  * Used to inhibit booting threads if they've been disabled or
96  * limited on the command line
97  */
98 int smp_generic_cpu_bootable(unsigned int nr)
99 {
100 	/* Special case - we inhibit secondary thread startup
101 	 * during boot if the user requests it.
102 	 */
103 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
104 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
105 			return 0;
106 		if (smt_enabled_at_boot
107 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
108 			return 0;
109 	}
110 
111 	return 1;
112 }
113 
114 
115 #ifdef CONFIG_PPC64
116 int smp_generic_kick_cpu(int nr)
117 {
118 	if (nr < 0 || nr >= nr_cpu_ids)
119 		return -EINVAL;
120 
121 	/*
122 	 * The processor is currently spinning, waiting for the
123 	 * cpu_start field to become non-zero After we set cpu_start,
124 	 * the processor will continue on to secondary_start
125 	 */
126 	if (!paca[nr].cpu_start) {
127 		paca[nr].cpu_start = 1;
128 		smp_mb();
129 		return 0;
130 	}
131 
132 #ifdef CONFIG_HOTPLUG_CPU
133 	/*
134 	 * Ok it's not there, so it might be soft-unplugged, let's
135 	 * try to bring it back
136 	 */
137 	generic_set_cpu_up(nr);
138 	smp_wmb();
139 	smp_send_reschedule(nr);
140 #endif /* CONFIG_HOTPLUG_CPU */
141 
142 	return 0;
143 }
144 #endif /* CONFIG_PPC64 */
145 
146 static irqreturn_t call_function_action(int irq, void *data)
147 {
148 	generic_smp_call_function_interrupt();
149 	return IRQ_HANDLED;
150 }
151 
152 static irqreturn_t reschedule_action(int irq, void *data)
153 {
154 	scheduler_ipi();
155 	return IRQ_HANDLED;
156 }
157 
158 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
159 {
160 	tick_broadcast_ipi_handler();
161 	return IRQ_HANDLED;
162 }
163 
164 #ifdef CONFIG_NMI_IPI
165 static irqreturn_t nmi_ipi_action(int irq, void *data)
166 {
167 	smp_handle_nmi_ipi(get_irq_regs());
168 	return IRQ_HANDLED;
169 }
170 #endif
171 
172 static irq_handler_t smp_ipi_action[] = {
173 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
174 	[PPC_MSG_RESCHEDULE] = reschedule_action,
175 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
176 #ifdef CONFIG_NMI_IPI
177 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
178 #endif
179 };
180 
181 /*
182  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
183  * than going through the call function infrastructure, and strongly
184  * serialized, so it is more appropriate for debugging.
185  */
186 const char *smp_ipi_name[] = {
187 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
188 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
189 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
190 	[PPC_MSG_NMI_IPI] = "nmi ipi",
191 };
192 
193 /* optional function to request ipi, for controllers with >= 4 ipis */
194 int smp_request_message_ipi(int virq, int msg)
195 {
196 	int err;
197 
198 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
199 		return -EINVAL;
200 #ifndef CONFIG_NMI_IPI
201 	if (msg == PPC_MSG_NMI_IPI)
202 		return 1;
203 #endif
204 
205 	err = request_irq(virq, smp_ipi_action[msg],
206 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
207 			  smp_ipi_name[msg], NULL);
208 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
209 		virq, smp_ipi_name[msg], err);
210 
211 	return err;
212 }
213 
214 #ifdef CONFIG_PPC_SMP_MUXED_IPI
215 struct cpu_messages {
216 	long messages;			/* current messages */
217 };
218 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
219 
220 void smp_muxed_ipi_set_message(int cpu, int msg)
221 {
222 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
223 	char *message = (char *)&info->messages;
224 
225 	/*
226 	 * Order previous accesses before accesses in the IPI handler.
227 	 */
228 	smp_mb();
229 	message[msg] = 1;
230 }
231 
232 void smp_muxed_ipi_message_pass(int cpu, int msg)
233 {
234 	smp_muxed_ipi_set_message(cpu, msg);
235 
236 	/*
237 	 * cause_ipi functions are required to include a full barrier
238 	 * before doing whatever causes the IPI.
239 	 */
240 	smp_ops->cause_ipi(cpu);
241 }
242 
243 #ifdef __BIG_ENDIAN__
244 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
245 #else
246 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
247 #endif
248 
249 irqreturn_t smp_ipi_demux(void)
250 {
251 	mb();	/* order any irq clear */
252 
253 	return smp_ipi_demux_relaxed();
254 }
255 
256 /* sync-free variant. Callers should ensure synchronization */
257 irqreturn_t smp_ipi_demux_relaxed(void)
258 {
259 	struct cpu_messages *info;
260 	unsigned long all;
261 
262 	info = this_cpu_ptr(&ipi_message);
263 	do {
264 		all = xchg(&info->messages, 0);
265 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
266 		/*
267 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
268 		 * before PPC_MSG_CALL_FUNCTION messages because when
269 		 * a VM is destroyed, we call kick_all_cpus_sync()
270 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
271 		 * messages have completed before we free any VCPUs.
272 		 */
273 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
274 			kvmppc_xics_ipi_action();
275 #endif
276 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
277 			generic_smp_call_function_interrupt();
278 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
279 			scheduler_ipi();
280 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
281 			tick_broadcast_ipi_handler();
282 #ifdef CONFIG_NMI_IPI
283 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
284 			nmi_ipi_action(0, NULL);
285 #endif
286 	} while (info->messages);
287 
288 	return IRQ_HANDLED;
289 }
290 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
291 
292 static inline void do_message_pass(int cpu, int msg)
293 {
294 	if (smp_ops->message_pass)
295 		smp_ops->message_pass(cpu, msg);
296 #ifdef CONFIG_PPC_SMP_MUXED_IPI
297 	else
298 		smp_muxed_ipi_message_pass(cpu, msg);
299 #endif
300 }
301 
302 void smp_send_reschedule(int cpu)
303 {
304 	if (likely(smp_ops))
305 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
306 }
307 EXPORT_SYMBOL_GPL(smp_send_reschedule);
308 
309 void arch_send_call_function_single_ipi(int cpu)
310 {
311 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
312 }
313 
314 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
315 {
316 	unsigned int cpu;
317 
318 	for_each_cpu(cpu, mask)
319 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
320 }
321 
322 #ifdef CONFIG_NMI_IPI
323 
324 /*
325  * "NMI IPI" system.
326  *
327  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
328  * a running system. They can be used for crash, debug, halt/reboot, etc.
329  *
330  * NMI IPIs are globally single threaded. No more than one in progress at
331  * any time.
332  *
333  * The IPI call waits with interrupts disabled until all targets enter the
334  * NMI handler, then the call returns.
335  *
336  * No new NMI can be initiated until targets exit the handler.
337  *
338  * The IPI call may time out without all targets entering the NMI handler.
339  * In that case, there is some logic to recover (and ignore subsequent
340  * NMI interrupts that may eventually be raised), but the platform interrupt
341  * handler may not be able to distinguish this from other exception causes,
342  * which may cause a crash.
343  */
344 
345 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
346 static struct cpumask nmi_ipi_pending_mask;
347 static int nmi_ipi_busy_count = 0;
348 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
349 
350 static void nmi_ipi_lock_start(unsigned long *flags)
351 {
352 	raw_local_irq_save(*flags);
353 	hard_irq_disable();
354 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
355 		raw_local_irq_restore(*flags);
356 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
357 		raw_local_irq_save(*flags);
358 		hard_irq_disable();
359 	}
360 }
361 
362 static void nmi_ipi_lock(void)
363 {
364 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
365 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
366 }
367 
368 static void nmi_ipi_unlock(void)
369 {
370 	smp_mb();
371 	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
372 	atomic_set(&__nmi_ipi_lock, 0);
373 }
374 
375 static void nmi_ipi_unlock_end(unsigned long *flags)
376 {
377 	nmi_ipi_unlock();
378 	raw_local_irq_restore(*flags);
379 }
380 
381 /*
382  * Platform NMI handler calls this to ack
383  */
384 int smp_handle_nmi_ipi(struct pt_regs *regs)
385 {
386 	void (*fn)(struct pt_regs *);
387 	unsigned long flags;
388 	int me = raw_smp_processor_id();
389 	int ret = 0;
390 
391 	/*
392 	 * Unexpected NMIs are possible here because the interrupt may not
393 	 * be able to distinguish NMI IPIs from other types of NMIs, or
394 	 * because the caller may have timed out.
395 	 */
396 	nmi_ipi_lock_start(&flags);
397 	if (!nmi_ipi_busy_count)
398 		goto out;
399 	if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
400 		goto out;
401 
402 	fn = nmi_ipi_function;
403 	if (!fn)
404 		goto out;
405 
406 	cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
407 	nmi_ipi_busy_count++;
408 	nmi_ipi_unlock();
409 
410 	ret = 1;
411 
412 	fn(regs);
413 
414 	nmi_ipi_lock();
415 	nmi_ipi_busy_count--;
416 out:
417 	nmi_ipi_unlock_end(&flags);
418 
419 	return ret;
420 }
421 
422 static void do_smp_send_nmi_ipi(int cpu)
423 {
424 	if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
425 		return;
426 
427 	if (cpu >= 0) {
428 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
429 	} else {
430 		int c;
431 
432 		for_each_online_cpu(c) {
433 			if (c == raw_smp_processor_id())
434 				continue;
435 			do_message_pass(c, PPC_MSG_NMI_IPI);
436 		}
437 	}
438 }
439 
440 void smp_flush_nmi_ipi(u64 delay_us)
441 {
442 	unsigned long flags;
443 
444 	nmi_ipi_lock_start(&flags);
445 	while (nmi_ipi_busy_count) {
446 		nmi_ipi_unlock_end(&flags);
447 		udelay(1);
448 		if (delay_us) {
449 			delay_us--;
450 			if (!delay_us)
451 				return;
452 		}
453 		nmi_ipi_lock_start(&flags);
454 	}
455 	nmi_ipi_unlock_end(&flags);
456 }
457 
458 /*
459  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
460  * - fn is the target callback function.
461  * - delay_us > 0 is the delay before giving up waiting for targets to
462  *   enter the handler, == 0 specifies indefinite delay.
463  */
464 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
465 {
466 	unsigned long flags;
467 	int me = raw_smp_processor_id();
468 	int ret = 1;
469 
470 	BUG_ON(cpu == me);
471 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
472 
473 	if (unlikely(!smp_ops))
474 		return 0;
475 
476 	/* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
477 	nmi_ipi_lock_start(&flags);
478 	while (nmi_ipi_busy_count) {
479 		nmi_ipi_unlock_end(&flags);
480 		spin_until_cond(nmi_ipi_busy_count == 0);
481 		nmi_ipi_lock_start(&flags);
482 	}
483 
484 	nmi_ipi_function = fn;
485 
486 	if (cpu < 0) {
487 		/* ALL_OTHERS */
488 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
489 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
490 	} else {
491 		/* cpumask starts clear */
492 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
493 	}
494 	nmi_ipi_busy_count++;
495 	nmi_ipi_unlock();
496 
497 	do_smp_send_nmi_ipi(cpu);
498 
499 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
500 		udelay(1);
501 		if (delay_us) {
502 			delay_us--;
503 			if (!delay_us)
504 				break;
505 		}
506 	}
507 
508 	nmi_ipi_lock();
509 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
510 		/* Could not gather all CPUs */
511 		ret = 0;
512 		cpumask_clear(&nmi_ipi_pending_mask);
513 	}
514 	nmi_ipi_busy_count--;
515 	nmi_ipi_unlock_end(&flags);
516 
517 	return ret;
518 }
519 #endif /* CONFIG_NMI_IPI */
520 
521 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
522 void tick_broadcast(const struct cpumask *mask)
523 {
524 	unsigned int cpu;
525 
526 	for_each_cpu(cpu, mask)
527 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
528 }
529 #endif
530 
531 #ifdef CONFIG_DEBUGGER
532 void debugger_ipi_callback(struct pt_regs *regs)
533 {
534 	debugger_ipi(regs);
535 }
536 
537 void smp_send_debugger_break(void)
538 {
539 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
540 }
541 #endif
542 
543 #ifdef CONFIG_KEXEC_CORE
544 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
545 {
546 	int cpu;
547 
548 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
549 	if (kdump_in_progress() && crash_wake_offline) {
550 		for_each_present_cpu(cpu) {
551 			if (cpu_online(cpu))
552 				continue;
553 			/*
554 			 * crash_ipi_callback will wait for
555 			 * all cpus, including offline CPUs.
556 			 * We don't care about nmi_ipi_function.
557 			 * Offline cpus will jump straight into
558 			 * crash_ipi_callback, we can skip the
559 			 * entire NMI dance and waiting for
560 			 * cpus to clear pending mask, etc.
561 			 */
562 			do_smp_send_nmi_ipi(cpu);
563 		}
564 	}
565 }
566 #endif
567 
568 static void stop_this_cpu(void *dummy)
569 {
570 	/* Remove this CPU */
571 	set_cpu_online(smp_processor_id(), false);
572 
573 	local_irq_disable();
574 	while (1)
575 		;
576 }
577 
578 void smp_send_stop(void)
579 {
580 	smp_call_function(stop_this_cpu, NULL, 0);
581 }
582 
583 struct thread_info *current_set[NR_CPUS];
584 
585 static void smp_store_cpu_info(int id)
586 {
587 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
588 #ifdef CONFIG_PPC_FSL_BOOK3E
589 	per_cpu(next_tlbcam_idx, id)
590 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
591 #endif
592 }
593 
594 /*
595  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
596  * rather than just passing around the cpumask we pass around a function that
597  * returns the that cpumask for the given CPU.
598  */
599 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
600 {
601 	cpumask_set_cpu(i, get_cpumask(j));
602 	cpumask_set_cpu(j, get_cpumask(i));
603 }
604 
605 #ifdef CONFIG_HOTPLUG_CPU
606 static void set_cpus_unrelated(int i, int j,
607 		struct cpumask *(*get_cpumask)(int))
608 {
609 	cpumask_clear_cpu(i, get_cpumask(j));
610 	cpumask_clear_cpu(j, get_cpumask(i));
611 }
612 #endif
613 
614 void __init smp_prepare_cpus(unsigned int max_cpus)
615 {
616 	unsigned int cpu;
617 
618 	DBG("smp_prepare_cpus\n");
619 
620 	/*
621 	 * setup_cpu may need to be called on the boot cpu. We havent
622 	 * spun any cpus up but lets be paranoid.
623 	 */
624 	BUG_ON(boot_cpuid != smp_processor_id());
625 
626 	/* Fixup boot cpu */
627 	smp_store_cpu_info(boot_cpuid);
628 	cpu_callin_map[boot_cpuid] = 1;
629 
630 	for_each_possible_cpu(cpu) {
631 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
632 					GFP_KERNEL, cpu_to_node(cpu));
633 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
634 					GFP_KERNEL, cpu_to_node(cpu));
635 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
636 					GFP_KERNEL, cpu_to_node(cpu));
637 		/*
638 		 * numa_node_id() works after this.
639 		 */
640 		if (cpu_present(cpu)) {
641 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
642 			set_cpu_numa_mem(cpu,
643 				local_memory_node(numa_cpu_lookup_table[cpu]));
644 		}
645 	}
646 
647 	/* Init the cpumasks so the boot CPU is related to itself */
648 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
649 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
650 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
651 
652 	if (smp_ops && smp_ops->probe)
653 		smp_ops->probe();
654 }
655 
656 void smp_prepare_boot_cpu(void)
657 {
658 	BUG_ON(smp_processor_id() != boot_cpuid);
659 #ifdef CONFIG_PPC64
660 	paca[boot_cpuid].__current = current;
661 #endif
662 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
663 	current_set[boot_cpuid] = task_thread_info(current);
664 }
665 
666 #ifdef CONFIG_HOTPLUG_CPU
667 
668 int generic_cpu_disable(void)
669 {
670 	unsigned int cpu = smp_processor_id();
671 
672 	if (cpu == boot_cpuid)
673 		return -EBUSY;
674 
675 	set_cpu_online(cpu, false);
676 #ifdef CONFIG_PPC64
677 	vdso_data->processorCount--;
678 #endif
679 	/* Update affinity of all IRQs previously aimed at this CPU */
680 	irq_migrate_all_off_this_cpu();
681 
682 	/*
683 	 * Depending on the details of the interrupt controller, it's possible
684 	 * that one of the interrupts we just migrated away from this CPU is
685 	 * actually already pending on this CPU. If we leave it in that state
686 	 * the interrupt will never be EOI'ed, and will never fire again. So
687 	 * temporarily enable interrupts here, to allow any pending interrupt to
688 	 * be received (and EOI'ed), before we take this CPU offline.
689 	 */
690 	local_irq_enable();
691 	mdelay(1);
692 	local_irq_disable();
693 
694 	return 0;
695 }
696 
697 void generic_cpu_die(unsigned int cpu)
698 {
699 	int i;
700 
701 	for (i = 0; i < 100; i++) {
702 		smp_rmb();
703 		if (is_cpu_dead(cpu))
704 			return;
705 		msleep(100);
706 	}
707 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
708 }
709 
710 void generic_set_cpu_dead(unsigned int cpu)
711 {
712 	per_cpu(cpu_state, cpu) = CPU_DEAD;
713 }
714 
715 /*
716  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
717  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
718  * which makes the delay in generic_cpu_die() not happen.
719  */
720 void generic_set_cpu_up(unsigned int cpu)
721 {
722 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
723 }
724 
725 int generic_check_cpu_restart(unsigned int cpu)
726 {
727 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
728 }
729 
730 int is_cpu_dead(unsigned int cpu)
731 {
732 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
733 }
734 
735 static bool secondaries_inhibited(void)
736 {
737 	return kvm_hv_mode_active();
738 }
739 
740 #else /* HOTPLUG_CPU */
741 
742 #define secondaries_inhibited()		0
743 
744 #endif
745 
746 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
747 {
748 	struct thread_info *ti = task_thread_info(idle);
749 
750 #ifdef CONFIG_PPC64
751 	paca[cpu].__current = idle;
752 	paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
753 #endif
754 	ti->cpu = cpu;
755 	secondary_ti = current_set[cpu] = ti;
756 }
757 
758 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
759 {
760 	int rc, c;
761 
762 	/*
763 	 * Don't allow secondary threads to come online if inhibited
764 	 */
765 	if (threads_per_core > 1 && secondaries_inhibited() &&
766 	    cpu_thread_in_subcore(cpu))
767 		return -EBUSY;
768 
769 	if (smp_ops == NULL ||
770 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
771 		return -EINVAL;
772 
773 	cpu_idle_thread_init(cpu, tidle);
774 
775 	/*
776 	 * The platform might need to allocate resources prior to bringing
777 	 * up the CPU
778 	 */
779 	if (smp_ops->prepare_cpu) {
780 		rc = smp_ops->prepare_cpu(cpu);
781 		if (rc)
782 			return rc;
783 	}
784 
785 	/* Make sure callin-map entry is 0 (can be leftover a CPU
786 	 * hotplug
787 	 */
788 	cpu_callin_map[cpu] = 0;
789 
790 	/* The information for processor bringup must
791 	 * be written out to main store before we release
792 	 * the processor.
793 	 */
794 	smp_mb();
795 
796 	/* wake up cpus */
797 	DBG("smp: kicking cpu %d\n", cpu);
798 	rc = smp_ops->kick_cpu(cpu);
799 	if (rc) {
800 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
801 		return rc;
802 	}
803 
804 	/*
805 	 * wait to see if the cpu made a callin (is actually up).
806 	 * use this value that I found through experimentation.
807 	 * -- Cort
808 	 */
809 	if (system_state < SYSTEM_RUNNING)
810 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
811 			udelay(100);
812 #ifdef CONFIG_HOTPLUG_CPU
813 	else
814 		/*
815 		 * CPUs can take much longer to come up in the
816 		 * hotplug case.  Wait five seconds.
817 		 */
818 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
819 			msleep(1);
820 #endif
821 
822 	if (!cpu_callin_map[cpu]) {
823 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
824 		return -ENOENT;
825 	}
826 
827 	DBG("Processor %u found.\n", cpu);
828 
829 	if (smp_ops->give_timebase)
830 		smp_ops->give_timebase();
831 
832 	/* Wait until cpu puts itself in the online & active maps */
833 	spin_until_cond(cpu_online(cpu));
834 
835 	return 0;
836 }
837 
838 /* Return the value of the reg property corresponding to the given
839  * logical cpu.
840  */
841 int cpu_to_core_id(int cpu)
842 {
843 	struct device_node *np;
844 	const __be32 *reg;
845 	int id = -1;
846 
847 	np = of_get_cpu_node(cpu, NULL);
848 	if (!np)
849 		goto out;
850 
851 	reg = of_get_property(np, "reg", NULL);
852 	if (!reg)
853 		goto out;
854 
855 	id = be32_to_cpup(reg);
856 out:
857 	of_node_put(np);
858 	return id;
859 }
860 EXPORT_SYMBOL_GPL(cpu_to_core_id);
861 
862 /* Helper routines for cpu to core mapping */
863 int cpu_core_index_of_thread(int cpu)
864 {
865 	return cpu >> threads_shift;
866 }
867 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
868 
869 int cpu_first_thread_of_core(int core)
870 {
871 	return core << threads_shift;
872 }
873 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
874 
875 /* Must be called when no change can occur to cpu_present_mask,
876  * i.e. during cpu online or offline.
877  */
878 static struct device_node *cpu_to_l2cache(int cpu)
879 {
880 	struct device_node *np;
881 	struct device_node *cache;
882 
883 	if (!cpu_present(cpu))
884 		return NULL;
885 
886 	np = of_get_cpu_node(cpu, NULL);
887 	if (np == NULL)
888 		return NULL;
889 
890 	cache = of_find_next_cache_node(np);
891 
892 	of_node_put(np);
893 
894 	return cache;
895 }
896 
897 static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
898 {
899 	struct device_node *l2_cache, *np;
900 	int i;
901 
902 	l2_cache = cpu_to_l2cache(cpu);
903 	if (!l2_cache)
904 		return false;
905 
906 	for_each_cpu(i, cpu_online_mask) {
907 		/*
908 		 * when updating the marks the current CPU has not been marked
909 		 * online, but we need to update the cache masks
910 		 */
911 		np = cpu_to_l2cache(i);
912 		if (!np)
913 			continue;
914 
915 		if (np == l2_cache)
916 			set_cpus_related(cpu, i, mask_fn);
917 
918 		of_node_put(np);
919 	}
920 	of_node_put(l2_cache);
921 
922 	return true;
923 }
924 
925 #ifdef CONFIG_HOTPLUG_CPU
926 static void remove_cpu_from_masks(int cpu)
927 {
928 	int i;
929 
930 	/* NB: cpu_core_mask is a superset of the others */
931 	for_each_cpu(i, cpu_core_mask(cpu)) {
932 		set_cpus_unrelated(cpu, i, cpu_core_mask);
933 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
934 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
935 	}
936 }
937 #endif
938 
939 static void add_cpu_to_masks(int cpu)
940 {
941 	int first_thread = cpu_first_thread_sibling(cpu);
942 	int chipid = cpu_to_chip_id(cpu);
943 	int i;
944 
945 	/*
946 	 * This CPU will not be in the online mask yet so we need to manually
947 	 * add it to it's own thread sibling mask.
948 	 */
949 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
950 
951 	for (i = first_thread; i < first_thread + threads_per_core; i++)
952 		if (cpu_online(i))
953 			set_cpus_related(i, cpu, cpu_sibling_mask);
954 
955 	/*
956 	 * Copy the thread sibling mask into the cache sibling mask
957 	 * and mark any CPUs that share an L2 with this CPU.
958 	 */
959 	for_each_cpu(i, cpu_sibling_mask(cpu))
960 		set_cpus_related(cpu, i, cpu_l2_cache_mask);
961 	update_mask_by_l2(cpu, cpu_l2_cache_mask);
962 
963 	/*
964 	 * Copy the cache sibling mask into core sibling mask and mark
965 	 * any CPUs on the same chip as this CPU.
966 	 */
967 	for_each_cpu(i, cpu_l2_cache_mask(cpu))
968 		set_cpus_related(cpu, i, cpu_core_mask);
969 
970 	if (chipid == -1)
971 		return;
972 
973 	for_each_cpu(i, cpu_online_mask)
974 		if (cpu_to_chip_id(i) == chipid)
975 			set_cpus_related(cpu, i, cpu_core_mask);
976 }
977 
978 static bool shared_caches;
979 
980 /* Activate a secondary processor. */
981 void start_secondary(void *unused)
982 {
983 	unsigned int cpu = smp_processor_id();
984 
985 	mmgrab(&init_mm);
986 	current->active_mm = &init_mm;
987 
988 	smp_store_cpu_info(cpu);
989 	set_dec(tb_ticks_per_jiffy);
990 	preempt_disable();
991 	cpu_callin_map[cpu] = 1;
992 
993 	if (smp_ops->setup_cpu)
994 		smp_ops->setup_cpu(cpu);
995 	if (smp_ops->take_timebase)
996 		smp_ops->take_timebase();
997 
998 	secondary_cpu_time_init();
999 
1000 #ifdef CONFIG_PPC64
1001 	if (system_state == SYSTEM_RUNNING)
1002 		vdso_data->processorCount++;
1003 
1004 	vdso_getcpu_init();
1005 #endif
1006 	/* Update topology CPU masks */
1007 	add_cpu_to_masks(cpu);
1008 
1009 	/*
1010 	 * Check for any shared caches. Note that this must be done on a
1011 	 * per-core basis because one core in the pair might be disabled.
1012 	 */
1013 	if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
1014 		shared_caches = true;
1015 
1016 	set_numa_node(numa_cpu_lookup_table[cpu]);
1017 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1018 
1019 	smp_wmb();
1020 	notify_cpu_starting(cpu);
1021 	set_cpu_online(cpu, true);
1022 
1023 	local_irq_enable();
1024 
1025 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1026 
1027 	BUG();
1028 }
1029 
1030 int setup_profiling_timer(unsigned int multiplier)
1031 {
1032 	return 0;
1033 }
1034 
1035 #ifdef CONFIG_SCHED_SMT
1036 /* cpumask of CPUs with asymetric SMT dependancy */
1037 static int powerpc_smt_flags(void)
1038 {
1039 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1040 
1041 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1042 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1043 		flags |= SD_ASYM_PACKING;
1044 	}
1045 	return flags;
1046 }
1047 #endif
1048 
1049 static struct sched_domain_topology_level powerpc_topology[] = {
1050 #ifdef CONFIG_SCHED_SMT
1051 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1052 #endif
1053 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1054 	{ NULL, },
1055 };
1056 
1057 /*
1058  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1059  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1060  * since the migrated task remains cache hot. We want to take advantage of this
1061  * at the scheduler level so an extra topology level is required.
1062  */
1063 static int powerpc_shared_cache_flags(void)
1064 {
1065 	return SD_SHARE_PKG_RESOURCES;
1066 }
1067 
1068 /*
1069  * We can't just pass cpu_l2_cache_mask() directly because
1070  * returns a non-const pointer and the compiler barfs on that.
1071  */
1072 static const struct cpumask *shared_cache_mask(int cpu)
1073 {
1074 	return cpu_l2_cache_mask(cpu);
1075 }
1076 
1077 static struct sched_domain_topology_level power9_topology[] = {
1078 #ifdef CONFIG_SCHED_SMT
1079 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1080 #endif
1081 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1082 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1083 	{ NULL, },
1084 };
1085 
1086 void __init smp_cpus_done(unsigned int max_cpus)
1087 {
1088 	/*
1089 	 * We are running pinned to the boot CPU, see rest_init().
1090 	 */
1091 	if (smp_ops && smp_ops->setup_cpu)
1092 		smp_ops->setup_cpu(boot_cpuid);
1093 
1094 	if (smp_ops && smp_ops->bringup_done)
1095 		smp_ops->bringup_done();
1096 
1097 	dump_numa_cpu_topology();
1098 
1099 	/*
1100 	 * If any CPU detects that it's sharing a cache with another CPU then
1101 	 * use the deeper topology that is aware of this sharing.
1102 	 */
1103 	if (shared_caches) {
1104 		pr_info("Using shared cache scheduler topology\n");
1105 		set_sched_topology(power9_topology);
1106 	} else {
1107 		pr_info("Using standard scheduler topology\n");
1108 		set_sched_topology(powerpc_topology);
1109 	}
1110 }
1111 
1112 #ifdef CONFIG_HOTPLUG_CPU
1113 int __cpu_disable(void)
1114 {
1115 	int cpu = smp_processor_id();
1116 	int err;
1117 
1118 	if (!smp_ops->cpu_disable)
1119 		return -ENOSYS;
1120 
1121 	err = smp_ops->cpu_disable();
1122 	if (err)
1123 		return err;
1124 
1125 	/* Update sibling maps */
1126 	remove_cpu_from_masks(cpu);
1127 
1128 	return 0;
1129 }
1130 
1131 void __cpu_die(unsigned int cpu)
1132 {
1133 	if (smp_ops->cpu_die)
1134 		smp_ops->cpu_die(cpu);
1135 }
1136 
1137 void cpu_die(void)
1138 {
1139 	if (ppc_md.cpu_die)
1140 		ppc_md.cpu_die();
1141 
1142 	/* If we return, we re-enter start_secondary */
1143 	start_secondary_resume();
1144 }
1145 
1146 #endif
1147