xref: /openbmc/linux/arch/powerpc/kernel/smp.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SMP support for ppc.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6  * deal of code from the sparc and intel versions.
7  *
8  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9  *
10  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12  */
13 
14 #undef DEBUG
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 
39 #include <asm/ptrace.h>
40 #include <linux/atomic.h>
41 #include <asm/irq.h>
42 #include <asm/hw_irq.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/dbell.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/kexec.h>
60 #include <asm/asm-prototypes.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/ftrace.h>
63 #include <asm/kup.h>
64 
65 #ifdef DEBUG
66 #include <asm/udbg.h>
67 #define DBG(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG(fmt...)
70 #endif
71 
72 #ifdef CONFIG_HOTPLUG_CPU
73 /* State of each CPU during hotplug phases */
74 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
75 #endif
76 
77 struct task_struct *secondary_current;
78 bool has_big_cores;
79 bool coregroup_enabled;
80 bool thread_group_shares_l2;
81 
82 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
83 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
84 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
85 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
86 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
87 
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 EXPORT_SYMBOL_GPL(has_big_cores);
92 
93 enum {
94 #ifdef CONFIG_SCHED_SMT
95 	smt_idx,
96 #endif
97 	cache_idx,
98 	mc_idx,
99 	die_idx,
100 };
101 
102 #define MAX_THREAD_LIST_SIZE	8
103 #define THREAD_GROUP_SHARE_L1   1
104 #define THREAD_GROUP_SHARE_L2   2
105 struct thread_groups {
106 	unsigned int property;
107 	unsigned int nr_groups;
108 	unsigned int threads_per_group;
109 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
110 };
111 
112 /* Maximum number of properties that groups of threads within a core can share */
113 #define MAX_THREAD_GROUP_PROPERTIES 2
114 
115 struct thread_groups_list {
116 	unsigned int nr_properties;
117 	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
118 };
119 
120 static struct thread_groups_list tgl[NR_CPUS] __initdata;
121 /*
122  * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
123  * the set its siblings that share the L1-cache.
124  */
125 static DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
126 
127 /*
128  * On some big-cores system, thread_group_l2_cache_map for each CPU
129  * corresponds to the set its siblings within the core that share the
130  * L2-cache.
131  */
132 static DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
133 
134 /* SMP operations for this machine */
135 struct smp_ops_t *smp_ops;
136 
137 /* Can't be static due to PowerMac hackery */
138 volatile unsigned int cpu_callin_map[NR_CPUS];
139 
140 int smt_enabled_at_boot = 1;
141 
142 /*
143  * Returns 1 if the specified cpu should be brought up during boot.
144  * Used to inhibit booting threads if they've been disabled or
145  * limited on the command line
146  */
147 int smp_generic_cpu_bootable(unsigned int nr)
148 {
149 	/* Special case - we inhibit secondary thread startup
150 	 * during boot if the user requests it.
151 	 */
152 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
153 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
154 			return 0;
155 		if (smt_enabled_at_boot
156 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
157 			return 0;
158 	}
159 
160 	return 1;
161 }
162 
163 
164 #ifdef CONFIG_PPC64
165 int smp_generic_kick_cpu(int nr)
166 {
167 	if (nr < 0 || nr >= nr_cpu_ids)
168 		return -EINVAL;
169 
170 	/*
171 	 * The processor is currently spinning, waiting for the
172 	 * cpu_start field to become non-zero After we set cpu_start,
173 	 * the processor will continue on to secondary_start
174 	 */
175 	if (!paca_ptrs[nr]->cpu_start) {
176 		paca_ptrs[nr]->cpu_start = 1;
177 		smp_mb();
178 		return 0;
179 	}
180 
181 #ifdef CONFIG_HOTPLUG_CPU
182 	/*
183 	 * Ok it's not there, so it might be soft-unplugged, let's
184 	 * try to bring it back
185 	 */
186 	generic_set_cpu_up(nr);
187 	smp_wmb();
188 	smp_send_reschedule(nr);
189 #endif /* CONFIG_HOTPLUG_CPU */
190 
191 	return 0;
192 }
193 #endif /* CONFIG_PPC64 */
194 
195 static irqreturn_t call_function_action(int irq, void *data)
196 {
197 	generic_smp_call_function_interrupt();
198 	return IRQ_HANDLED;
199 }
200 
201 static irqreturn_t reschedule_action(int irq, void *data)
202 {
203 	scheduler_ipi();
204 	return IRQ_HANDLED;
205 }
206 
207 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
208 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
209 {
210 	timer_broadcast_interrupt();
211 	return IRQ_HANDLED;
212 }
213 #endif
214 
215 #ifdef CONFIG_NMI_IPI
216 static irqreturn_t nmi_ipi_action(int irq, void *data)
217 {
218 	smp_handle_nmi_ipi(get_irq_regs());
219 	return IRQ_HANDLED;
220 }
221 #endif
222 
223 static irq_handler_t smp_ipi_action[] = {
224 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
225 	[PPC_MSG_RESCHEDULE] = reschedule_action,
226 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
227 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
228 #endif
229 #ifdef CONFIG_NMI_IPI
230 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
231 #endif
232 };
233 
234 /*
235  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
236  * than going through the call function infrastructure, and strongly
237  * serialized, so it is more appropriate for debugging.
238  */
239 const char *smp_ipi_name[] = {
240 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
241 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
244 #endif
245 #ifdef CONFIG_NMI_IPI
246 	[PPC_MSG_NMI_IPI] = "nmi ipi",
247 #endif
248 };
249 
250 /* optional function to request ipi, for controllers with >= 4 ipis */
251 int smp_request_message_ipi(int virq, int msg)
252 {
253 	int err;
254 
255 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
256 		return -EINVAL;
257 #ifndef CONFIG_NMI_IPI
258 	if (msg == PPC_MSG_NMI_IPI)
259 		return 1;
260 #endif
261 
262 	err = request_irq(virq, smp_ipi_action[msg],
263 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
264 			  smp_ipi_name[msg], NULL);
265 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
266 		virq, smp_ipi_name[msg], err);
267 
268 	return err;
269 }
270 
271 #ifdef CONFIG_PPC_SMP_MUXED_IPI
272 struct cpu_messages {
273 	long messages;			/* current messages */
274 };
275 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
276 
277 void smp_muxed_ipi_set_message(int cpu, int msg)
278 {
279 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
280 	char *message = (char *)&info->messages;
281 
282 	/*
283 	 * Order previous accesses before accesses in the IPI handler.
284 	 */
285 	smp_mb();
286 	message[msg] = 1;
287 }
288 
289 void smp_muxed_ipi_message_pass(int cpu, int msg)
290 {
291 	smp_muxed_ipi_set_message(cpu, msg);
292 
293 	/*
294 	 * cause_ipi functions are required to include a full barrier
295 	 * before doing whatever causes the IPI.
296 	 */
297 	smp_ops->cause_ipi(cpu);
298 }
299 
300 #ifdef __BIG_ENDIAN__
301 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
302 #else
303 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
304 #endif
305 
306 irqreturn_t smp_ipi_demux(void)
307 {
308 	mb();	/* order any irq clear */
309 
310 	return smp_ipi_demux_relaxed();
311 }
312 
313 /* sync-free variant. Callers should ensure synchronization */
314 irqreturn_t smp_ipi_demux_relaxed(void)
315 {
316 	struct cpu_messages *info;
317 	unsigned long all;
318 
319 	info = this_cpu_ptr(&ipi_message);
320 	do {
321 		all = xchg(&info->messages, 0);
322 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
323 		/*
324 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
325 		 * before PPC_MSG_CALL_FUNCTION messages because when
326 		 * a VM is destroyed, we call kick_all_cpus_sync()
327 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
328 		 * messages have completed before we free any VCPUs.
329 		 */
330 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
331 			kvmppc_xics_ipi_action();
332 #endif
333 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
334 			generic_smp_call_function_interrupt();
335 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
336 			scheduler_ipi();
337 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
338 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
339 			timer_broadcast_interrupt();
340 #endif
341 #ifdef CONFIG_NMI_IPI
342 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
343 			nmi_ipi_action(0, NULL);
344 #endif
345 	} while (info->messages);
346 
347 	return IRQ_HANDLED;
348 }
349 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
350 
351 static inline void do_message_pass(int cpu, int msg)
352 {
353 	if (smp_ops->message_pass)
354 		smp_ops->message_pass(cpu, msg);
355 #ifdef CONFIG_PPC_SMP_MUXED_IPI
356 	else
357 		smp_muxed_ipi_message_pass(cpu, msg);
358 #endif
359 }
360 
361 void smp_send_reschedule(int cpu)
362 {
363 	if (likely(smp_ops))
364 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
365 }
366 EXPORT_SYMBOL_GPL(smp_send_reschedule);
367 
368 void arch_send_call_function_single_ipi(int cpu)
369 {
370 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
371 }
372 
373 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
374 {
375 	unsigned int cpu;
376 
377 	for_each_cpu(cpu, mask)
378 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
379 }
380 
381 #ifdef CONFIG_NMI_IPI
382 
383 /*
384  * "NMI IPI" system.
385  *
386  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
387  * a running system. They can be used for crash, debug, halt/reboot, etc.
388  *
389  * The IPI call waits with interrupts disabled until all targets enter the
390  * NMI handler, then returns. Subsequent IPIs can be issued before targets
391  * have returned from their handlers, so there is no guarantee about
392  * concurrency or re-entrancy.
393  *
394  * A new NMI can be issued before all targets exit the handler.
395  *
396  * The IPI call may time out without all targets entering the NMI handler.
397  * In that case, there is some logic to recover (and ignore subsequent
398  * NMI interrupts that may eventually be raised), but the platform interrupt
399  * handler may not be able to distinguish this from other exception causes,
400  * which may cause a crash.
401  */
402 
403 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
404 static struct cpumask nmi_ipi_pending_mask;
405 static bool nmi_ipi_busy = false;
406 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
407 
408 static void nmi_ipi_lock_start(unsigned long *flags)
409 {
410 	raw_local_irq_save(*flags);
411 	hard_irq_disable();
412 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
413 		raw_local_irq_restore(*flags);
414 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
415 		raw_local_irq_save(*flags);
416 		hard_irq_disable();
417 	}
418 }
419 
420 static void nmi_ipi_lock(void)
421 {
422 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
423 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
424 }
425 
426 static void nmi_ipi_unlock(void)
427 {
428 	smp_mb();
429 	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
430 	atomic_set(&__nmi_ipi_lock, 0);
431 }
432 
433 static void nmi_ipi_unlock_end(unsigned long *flags)
434 {
435 	nmi_ipi_unlock();
436 	raw_local_irq_restore(*flags);
437 }
438 
439 /*
440  * Platform NMI handler calls this to ack
441  */
442 int smp_handle_nmi_ipi(struct pt_regs *regs)
443 {
444 	void (*fn)(struct pt_regs *) = NULL;
445 	unsigned long flags;
446 	int me = raw_smp_processor_id();
447 	int ret = 0;
448 
449 	/*
450 	 * Unexpected NMIs are possible here because the interrupt may not
451 	 * be able to distinguish NMI IPIs from other types of NMIs, or
452 	 * because the caller may have timed out.
453 	 */
454 	nmi_ipi_lock_start(&flags);
455 	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
456 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
457 		fn = READ_ONCE(nmi_ipi_function);
458 		WARN_ON_ONCE(!fn);
459 		ret = 1;
460 	}
461 	nmi_ipi_unlock_end(&flags);
462 
463 	if (fn)
464 		fn(regs);
465 
466 	return ret;
467 }
468 
469 static void do_smp_send_nmi_ipi(int cpu, bool safe)
470 {
471 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
472 		return;
473 
474 	if (cpu >= 0) {
475 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
476 	} else {
477 		int c;
478 
479 		for_each_online_cpu(c) {
480 			if (c == raw_smp_processor_id())
481 				continue;
482 			do_message_pass(c, PPC_MSG_NMI_IPI);
483 		}
484 	}
485 }
486 
487 /*
488  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
489  * - fn is the target callback function.
490  * - delay_us > 0 is the delay before giving up waiting for targets to
491  *   begin executing the handler, == 0 specifies indefinite delay.
492  */
493 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
494 				u64 delay_us, bool safe)
495 {
496 	unsigned long flags;
497 	int me = raw_smp_processor_id();
498 	int ret = 1;
499 
500 	BUG_ON(cpu == me);
501 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
502 
503 	if (unlikely(!smp_ops))
504 		return 0;
505 
506 	nmi_ipi_lock_start(&flags);
507 	while (nmi_ipi_busy) {
508 		nmi_ipi_unlock_end(&flags);
509 		spin_until_cond(!nmi_ipi_busy);
510 		nmi_ipi_lock_start(&flags);
511 	}
512 	nmi_ipi_busy = true;
513 	nmi_ipi_function = fn;
514 
515 	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
516 
517 	if (cpu < 0) {
518 		/* ALL_OTHERS */
519 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
520 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
521 	} else {
522 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
523 	}
524 
525 	nmi_ipi_unlock();
526 
527 	/* Interrupts remain hard disabled */
528 
529 	do_smp_send_nmi_ipi(cpu, safe);
530 
531 	nmi_ipi_lock();
532 	/* nmi_ipi_busy is set here, so unlock/lock is okay */
533 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
534 		nmi_ipi_unlock();
535 		udelay(1);
536 		nmi_ipi_lock();
537 		if (delay_us) {
538 			delay_us--;
539 			if (!delay_us)
540 				break;
541 		}
542 	}
543 
544 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
545 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
546 		ret = 0;
547 		cpumask_clear(&nmi_ipi_pending_mask);
548 	}
549 
550 	nmi_ipi_function = NULL;
551 	nmi_ipi_busy = false;
552 
553 	nmi_ipi_unlock_end(&flags);
554 
555 	return ret;
556 }
557 
558 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
559 {
560 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
561 }
562 
563 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
564 {
565 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
566 }
567 #endif /* CONFIG_NMI_IPI */
568 
569 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
570 void tick_broadcast(const struct cpumask *mask)
571 {
572 	unsigned int cpu;
573 
574 	for_each_cpu(cpu, mask)
575 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
576 }
577 #endif
578 
579 #ifdef CONFIG_DEBUGGER
580 static void debugger_ipi_callback(struct pt_regs *regs)
581 {
582 	debugger_ipi(regs);
583 }
584 
585 void smp_send_debugger_break(void)
586 {
587 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
588 }
589 #endif
590 
591 #ifdef CONFIG_KEXEC_CORE
592 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
593 {
594 	int cpu;
595 
596 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
597 	if (kdump_in_progress() && crash_wake_offline) {
598 		for_each_present_cpu(cpu) {
599 			if (cpu_online(cpu))
600 				continue;
601 			/*
602 			 * crash_ipi_callback will wait for
603 			 * all cpus, including offline CPUs.
604 			 * We don't care about nmi_ipi_function.
605 			 * Offline cpus will jump straight into
606 			 * crash_ipi_callback, we can skip the
607 			 * entire NMI dance and waiting for
608 			 * cpus to clear pending mask, etc.
609 			 */
610 			do_smp_send_nmi_ipi(cpu, false);
611 		}
612 	}
613 }
614 #endif
615 
616 #ifdef CONFIG_NMI_IPI
617 static void nmi_stop_this_cpu(struct pt_regs *regs)
618 {
619 	/*
620 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
621 	 */
622 	set_cpu_online(smp_processor_id(), false);
623 
624 	spin_begin();
625 	while (1)
626 		spin_cpu_relax();
627 }
628 
629 void smp_send_stop(void)
630 {
631 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
632 }
633 
634 #else /* CONFIG_NMI_IPI */
635 
636 static void stop_this_cpu(void *dummy)
637 {
638 	hard_irq_disable();
639 
640 	/*
641 	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
642 	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
643 	 * to know other CPUs are offline before it breaks locks to flush
644 	 * printk buffers, in case we panic()ed while holding the lock.
645 	 */
646 	set_cpu_online(smp_processor_id(), false);
647 
648 	spin_begin();
649 	while (1)
650 		spin_cpu_relax();
651 }
652 
653 void smp_send_stop(void)
654 {
655 	static bool stopped = false;
656 
657 	/*
658 	 * Prevent waiting on csd lock from a previous smp_send_stop.
659 	 * This is racy, but in general callers try to do the right
660 	 * thing and only fire off one smp_send_stop (e.g., see
661 	 * kernel/panic.c)
662 	 */
663 	if (stopped)
664 		return;
665 
666 	stopped = true;
667 
668 	smp_call_function(stop_this_cpu, NULL, 0);
669 }
670 #endif /* CONFIG_NMI_IPI */
671 
672 struct task_struct *current_set[NR_CPUS];
673 
674 static void smp_store_cpu_info(int id)
675 {
676 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
677 #ifdef CONFIG_PPC_FSL_BOOK3E
678 	per_cpu(next_tlbcam_idx, id)
679 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
680 #endif
681 }
682 
683 /*
684  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
685  * rather than just passing around the cpumask we pass around a function that
686  * returns the that cpumask for the given CPU.
687  */
688 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
689 {
690 	cpumask_set_cpu(i, get_cpumask(j));
691 	cpumask_set_cpu(j, get_cpumask(i));
692 }
693 
694 #ifdef CONFIG_HOTPLUG_CPU
695 static void set_cpus_unrelated(int i, int j,
696 		struct cpumask *(*get_cpumask)(int))
697 {
698 	cpumask_clear_cpu(i, get_cpumask(j));
699 	cpumask_clear_cpu(j, get_cpumask(i));
700 }
701 #endif
702 
703 /*
704  * Extends set_cpus_related. Instead of setting one CPU at a time in
705  * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
706  */
707 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
708 				struct cpumask *(*dstmask)(int))
709 {
710 	struct cpumask *mask;
711 	int k;
712 
713 	mask = srcmask(j);
714 	for_each_cpu(k, srcmask(i))
715 		cpumask_or(dstmask(k), dstmask(k), mask);
716 
717 	if (i == j)
718 		return;
719 
720 	mask = srcmask(i);
721 	for_each_cpu(k, srcmask(j))
722 		cpumask_or(dstmask(k), dstmask(k), mask);
723 }
724 
725 /*
726  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
727  *                      property for the CPU device node @dn and stores
728  *                      the parsed output in the thread_groups_list
729  *                      structure @tglp.
730  *
731  * @dn: The device node of the CPU device.
732  * @tglp: Pointer to a thread group list structure into which the parsed
733  *      output of "ibm,thread-groups" is stored.
734  *
735  * ibm,thread-groups[0..N-1] array defines which group of threads in
736  * the CPU-device node can be grouped together based on the property.
737  *
738  * This array can represent thread groupings for multiple properties.
739  *
740  * ibm,thread-groups[i + 0] tells us the property based on which the
741  * threads are being grouped together. If this value is 1, it implies
742  * that the threads in the same group share L1, translation cache. If
743  * the value is 2, it implies that the threads in the same group share
744  * the same L2 cache.
745  *
746  * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
747  * property ibm,thread-groups[i]
748  *
749  * ibm,thread-groups[i+2] tells us the number of threads in each such
750  * group.
751  * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
752  *
753  * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
754  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
755  * the grouping.
756  *
757  * Example:
758  * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
759  * This can be decomposed up into two consecutive arrays:
760  * a) [1,2,4,8,10,12,14,9,11,13,15]
761  * b) [2,2,4,8,10,12,14,9,11,13,15]
762  *
763  * where in,
764  *
765  * a) provides information of Property "1" being shared by "2" groups,
766  *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
767  *  the first group is {8,10,12,14} and the
768  *  "ibm,ppc-interrupt-server#s" of the second group is
769  *  {9,11,13,15}. Property "1" is indicative of the thread in the
770  *  group sharing L1 cache, translation cache and Instruction Data
771  *  flow.
772  *
773  * b) provides information of Property "2" being shared by "2" groups,
774  *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
775  *  the first group is {8,10,12,14} and the
776  *  "ibm,ppc-interrupt-server#s" of the second group is
777  *  {9,11,13,15}. Property "2" indicates that the threads in each
778  *  group share the L2-cache.
779  *
780  * Returns 0 on success, -EINVAL if the property does not exist,
781  * -ENODATA if property does not have a value, and -EOVERFLOW if the
782  * property data isn't large enough.
783  */
784 static int parse_thread_groups(struct device_node *dn,
785 			       struct thread_groups_list *tglp)
786 {
787 	unsigned int property_idx = 0;
788 	u32 *thread_group_array;
789 	size_t total_threads;
790 	int ret = 0, count;
791 	u32 *thread_list;
792 	int i = 0;
793 
794 	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
795 	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
796 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
797 					 thread_group_array, count);
798 	if (ret)
799 		goto out_free;
800 
801 	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
802 		int j;
803 		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
804 
805 		tg->property = thread_group_array[i];
806 		tg->nr_groups = thread_group_array[i + 1];
807 		tg->threads_per_group = thread_group_array[i + 2];
808 		total_threads = tg->nr_groups * tg->threads_per_group;
809 
810 		thread_list = &thread_group_array[i + 3];
811 
812 		for (j = 0; j < total_threads; j++)
813 			tg->thread_list[j] = thread_list[j];
814 		i = i + 3 + total_threads;
815 	}
816 
817 	tglp->nr_properties = property_idx;
818 
819 out_free:
820 	kfree(thread_group_array);
821 	return ret;
822 }
823 
824 /*
825  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
826  *                              that @cpu belongs to.
827  *
828  * @cpu : The logical CPU whose thread group is being searched.
829  * @tg : The thread-group structure of the CPU node which @cpu belongs
830  *       to.
831  *
832  * Returns the index to tg->thread_list that points to the the start
833  * of the thread_group that @cpu belongs to.
834  *
835  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
836  * tg->thread_list.
837  */
838 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
839 {
840 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
841 	int i, j;
842 
843 	for (i = 0; i < tg->nr_groups; i++) {
844 		int group_start = i * tg->threads_per_group;
845 
846 		for (j = 0; j < tg->threads_per_group; j++) {
847 			int idx = group_start + j;
848 
849 			if (tg->thread_list[idx] == hw_cpu_id)
850 				return group_start;
851 		}
852 	}
853 
854 	return -1;
855 }
856 
857 static struct thread_groups *__init get_thread_groups(int cpu,
858 						      int group_property,
859 						      int *err)
860 {
861 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
862 	struct thread_groups_list *cpu_tgl = &tgl[cpu];
863 	struct thread_groups *tg = NULL;
864 	int i;
865 	*err = 0;
866 
867 	if (!dn) {
868 		*err = -ENODATA;
869 		return NULL;
870 	}
871 
872 	if (!cpu_tgl->nr_properties) {
873 		*err = parse_thread_groups(dn, cpu_tgl);
874 		if (*err)
875 			goto out;
876 	}
877 
878 	for (i = 0; i < cpu_tgl->nr_properties; i++) {
879 		if (cpu_tgl->property_tgs[i].property == group_property) {
880 			tg = &cpu_tgl->property_tgs[i];
881 			break;
882 		}
883 	}
884 
885 	if (!tg)
886 		*err = -EINVAL;
887 out:
888 	of_node_put(dn);
889 	return tg;
890 }
891 
892 static int __init init_thread_group_cache_map(int cpu, int cache_property)
893 
894 {
895 	int first_thread = cpu_first_thread_sibling(cpu);
896 	int i, cpu_group_start = -1, err = 0;
897 	struct thread_groups *tg = NULL;
898 	cpumask_var_t *mask = NULL;
899 
900 	if (cache_property != THREAD_GROUP_SHARE_L1 &&
901 	    cache_property != THREAD_GROUP_SHARE_L2)
902 		return -EINVAL;
903 
904 	tg = get_thread_groups(cpu, cache_property, &err);
905 	if (!tg)
906 		return err;
907 
908 	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
909 
910 	if (unlikely(cpu_group_start == -1)) {
911 		WARN_ON_ONCE(1);
912 		return -ENODATA;
913 	}
914 
915 	if (cache_property == THREAD_GROUP_SHARE_L1)
916 		mask = &per_cpu(thread_group_l1_cache_map, cpu);
917 	else if (cache_property == THREAD_GROUP_SHARE_L2)
918 		mask = &per_cpu(thread_group_l2_cache_map, cpu);
919 
920 	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
921 
922 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
923 		int i_group_start = get_cpu_thread_group_start(i, tg);
924 
925 		if (unlikely(i_group_start == -1)) {
926 			WARN_ON_ONCE(1);
927 			return -ENODATA;
928 		}
929 
930 		if (i_group_start == cpu_group_start)
931 			cpumask_set_cpu(i, *mask);
932 	}
933 
934 	return 0;
935 }
936 
937 static bool shared_caches;
938 
939 #ifdef CONFIG_SCHED_SMT
940 /* cpumask of CPUs with asymmetric SMT dependency */
941 static int powerpc_smt_flags(void)
942 {
943 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
944 
945 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
946 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
947 		flags |= SD_ASYM_PACKING;
948 	}
949 	return flags;
950 }
951 #endif
952 
953 /*
954  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
955  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
956  * since the migrated task remains cache hot. We want to take advantage of this
957  * at the scheduler level so an extra topology level is required.
958  */
959 static int powerpc_shared_cache_flags(void)
960 {
961 	return SD_SHARE_PKG_RESOURCES;
962 }
963 
964 /*
965  * We can't just pass cpu_l2_cache_mask() directly because
966  * returns a non-const pointer and the compiler barfs on that.
967  */
968 static const struct cpumask *shared_cache_mask(int cpu)
969 {
970 	return per_cpu(cpu_l2_cache_map, cpu);
971 }
972 
973 #ifdef CONFIG_SCHED_SMT
974 static const struct cpumask *smallcore_smt_mask(int cpu)
975 {
976 	return cpu_smallcore_mask(cpu);
977 }
978 #endif
979 
980 static struct cpumask *cpu_coregroup_mask(int cpu)
981 {
982 	return per_cpu(cpu_coregroup_map, cpu);
983 }
984 
985 static bool has_coregroup_support(void)
986 {
987 	return coregroup_enabled;
988 }
989 
990 static const struct cpumask *cpu_mc_mask(int cpu)
991 {
992 	return cpu_coregroup_mask(cpu);
993 }
994 
995 static struct sched_domain_topology_level powerpc_topology[] = {
996 #ifdef CONFIG_SCHED_SMT
997 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
998 #endif
999 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1000 	{ cpu_mc_mask, SD_INIT_NAME(MC) },
1001 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1002 	{ NULL, },
1003 };
1004 
1005 static int __init init_big_cores(void)
1006 {
1007 	int cpu;
1008 
1009 	for_each_possible_cpu(cpu) {
1010 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1011 
1012 		if (err)
1013 			return err;
1014 
1015 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1016 					GFP_KERNEL,
1017 					cpu_to_node(cpu));
1018 	}
1019 
1020 	has_big_cores = true;
1021 
1022 	for_each_possible_cpu(cpu) {
1023 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2);
1024 
1025 		if (err)
1026 			return err;
1027 	}
1028 
1029 	thread_group_shares_l2 = true;
1030 	pr_debug("L2 cache only shared by the threads in the small core\n");
1031 	return 0;
1032 }
1033 
1034 void __init smp_prepare_cpus(unsigned int max_cpus)
1035 {
1036 	unsigned int cpu;
1037 
1038 	DBG("smp_prepare_cpus\n");
1039 
1040 	/*
1041 	 * setup_cpu may need to be called on the boot cpu. We havent
1042 	 * spun any cpus up but lets be paranoid.
1043 	 */
1044 	BUG_ON(boot_cpuid != smp_processor_id());
1045 
1046 	/* Fixup boot cpu */
1047 	smp_store_cpu_info(boot_cpuid);
1048 	cpu_callin_map[boot_cpuid] = 1;
1049 
1050 	for_each_possible_cpu(cpu) {
1051 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1052 					GFP_KERNEL, cpu_to_node(cpu));
1053 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1054 					GFP_KERNEL, cpu_to_node(cpu));
1055 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1056 					GFP_KERNEL, cpu_to_node(cpu));
1057 		if (has_coregroup_support())
1058 			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1059 						GFP_KERNEL, cpu_to_node(cpu));
1060 
1061 #ifdef CONFIG_NUMA
1062 		/*
1063 		 * numa_node_id() works after this.
1064 		 */
1065 		if (cpu_present(cpu)) {
1066 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1067 			set_cpu_numa_mem(cpu,
1068 				local_memory_node(numa_cpu_lookup_table[cpu]));
1069 		}
1070 #endif
1071 	}
1072 
1073 	/* Init the cpumasks so the boot CPU is related to itself */
1074 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1075 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1076 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1077 
1078 	if (has_coregroup_support())
1079 		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1080 
1081 	init_big_cores();
1082 	if (has_big_cores) {
1083 		cpumask_set_cpu(boot_cpuid,
1084 				cpu_smallcore_mask(boot_cpuid));
1085 	}
1086 
1087 	if (cpu_to_chip_id(boot_cpuid) != -1) {
1088 		int idx = num_possible_cpus() / threads_per_core;
1089 
1090 		/*
1091 		 * All threads of a core will all belong to the same core,
1092 		 * chip_id_lookup_table will have one entry per core.
1093 		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1094 		 * other CPUs, will also not have chip-id.
1095 		 */
1096 		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1097 		if (chip_id_lookup_table)
1098 			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1099 	}
1100 
1101 	if (smp_ops && smp_ops->probe)
1102 		smp_ops->probe();
1103 }
1104 
1105 void smp_prepare_boot_cpu(void)
1106 {
1107 	BUG_ON(smp_processor_id() != boot_cpuid);
1108 #ifdef CONFIG_PPC64
1109 	paca_ptrs[boot_cpuid]->__current = current;
1110 #endif
1111 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1112 	current_set[boot_cpuid] = current;
1113 }
1114 
1115 #ifdef CONFIG_HOTPLUG_CPU
1116 
1117 int generic_cpu_disable(void)
1118 {
1119 	unsigned int cpu = smp_processor_id();
1120 
1121 	if (cpu == boot_cpuid)
1122 		return -EBUSY;
1123 
1124 	set_cpu_online(cpu, false);
1125 #ifdef CONFIG_PPC64
1126 	vdso_data->processorCount--;
1127 #endif
1128 	/* Update affinity of all IRQs previously aimed at this CPU */
1129 	irq_migrate_all_off_this_cpu();
1130 
1131 	/*
1132 	 * Depending on the details of the interrupt controller, it's possible
1133 	 * that one of the interrupts we just migrated away from this CPU is
1134 	 * actually already pending on this CPU. If we leave it in that state
1135 	 * the interrupt will never be EOI'ed, and will never fire again. So
1136 	 * temporarily enable interrupts here, to allow any pending interrupt to
1137 	 * be received (and EOI'ed), before we take this CPU offline.
1138 	 */
1139 	local_irq_enable();
1140 	mdelay(1);
1141 	local_irq_disable();
1142 
1143 	return 0;
1144 }
1145 
1146 void generic_cpu_die(unsigned int cpu)
1147 {
1148 	int i;
1149 
1150 	for (i = 0; i < 100; i++) {
1151 		smp_rmb();
1152 		if (is_cpu_dead(cpu))
1153 			return;
1154 		msleep(100);
1155 	}
1156 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1157 }
1158 
1159 void generic_set_cpu_dead(unsigned int cpu)
1160 {
1161 	per_cpu(cpu_state, cpu) = CPU_DEAD;
1162 }
1163 
1164 /*
1165  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1166  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1167  * which makes the delay in generic_cpu_die() not happen.
1168  */
1169 void generic_set_cpu_up(unsigned int cpu)
1170 {
1171 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1172 }
1173 
1174 int generic_check_cpu_restart(unsigned int cpu)
1175 {
1176 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1177 }
1178 
1179 int is_cpu_dead(unsigned int cpu)
1180 {
1181 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1182 }
1183 
1184 static bool secondaries_inhibited(void)
1185 {
1186 	return kvm_hv_mode_active();
1187 }
1188 
1189 #else /* HOTPLUG_CPU */
1190 
1191 #define secondaries_inhibited()		0
1192 
1193 #endif
1194 
1195 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1196 {
1197 #ifdef CONFIG_PPC64
1198 	paca_ptrs[cpu]->__current = idle;
1199 	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1200 				 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1201 #endif
1202 	idle->cpu = cpu;
1203 	secondary_current = current_set[cpu] = idle;
1204 }
1205 
1206 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1207 {
1208 	int rc, c;
1209 
1210 	/*
1211 	 * Don't allow secondary threads to come online if inhibited
1212 	 */
1213 	if (threads_per_core > 1 && secondaries_inhibited() &&
1214 	    cpu_thread_in_subcore(cpu))
1215 		return -EBUSY;
1216 
1217 	if (smp_ops == NULL ||
1218 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1219 		return -EINVAL;
1220 
1221 	cpu_idle_thread_init(cpu, tidle);
1222 
1223 	/*
1224 	 * The platform might need to allocate resources prior to bringing
1225 	 * up the CPU
1226 	 */
1227 	if (smp_ops->prepare_cpu) {
1228 		rc = smp_ops->prepare_cpu(cpu);
1229 		if (rc)
1230 			return rc;
1231 	}
1232 
1233 	/* Make sure callin-map entry is 0 (can be leftover a CPU
1234 	 * hotplug
1235 	 */
1236 	cpu_callin_map[cpu] = 0;
1237 
1238 	/* The information for processor bringup must
1239 	 * be written out to main store before we release
1240 	 * the processor.
1241 	 */
1242 	smp_mb();
1243 
1244 	/* wake up cpus */
1245 	DBG("smp: kicking cpu %d\n", cpu);
1246 	rc = smp_ops->kick_cpu(cpu);
1247 	if (rc) {
1248 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1249 		return rc;
1250 	}
1251 
1252 	/*
1253 	 * wait to see if the cpu made a callin (is actually up).
1254 	 * use this value that I found through experimentation.
1255 	 * -- Cort
1256 	 */
1257 	if (system_state < SYSTEM_RUNNING)
1258 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1259 			udelay(100);
1260 #ifdef CONFIG_HOTPLUG_CPU
1261 	else
1262 		/*
1263 		 * CPUs can take much longer to come up in the
1264 		 * hotplug case.  Wait five seconds.
1265 		 */
1266 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1267 			msleep(1);
1268 #endif
1269 
1270 	if (!cpu_callin_map[cpu]) {
1271 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1272 		return -ENOENT;
1273 	}
1274 
1275 	DBG("Processor %u found.\n", cpu);
1276 
1277 	if (smp_ops->give_timebase)
1278 		smp_ops->give_timebase();
1279 
1280 	/* Wait until cpu puts itself in the online & active maps */
1281 	spin_until_cond(cpu_online(cpu));
1282 
1283 	return 0;
1284 }
1285 
1286 /* Return the value of the reg property corresponding to the given
1287  * logical cpu.
1288  */
1289 int cpu_to_core_id(int cpu)
1290 {
1291 	struct device_node *np;
1292 	const __be32 *reg;
1293 	int id = -1;
1294 
1295 	np = of_get_cpu_node(cpu, NULL);
1296 	if (!np)
1297 		goto out;
1298 
1299 	reg = of_get_property(np, "reg", NULL);
1300 	if (!reg)
1301 		goto out;
1302 
1303 	id = be32_to_cpup(reg);
1304 out:
1305 	of_node_put(np);
1306 	return id;
1307 }
1308 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1309 
1310 /* Helper routines for cpu to core mapping */
1311 int cpu_core_index_of_thread(int cpu)
1312 {
1313 	return cpu >> threads_shift;
1314 }
1315 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1316 
1317 int cpu_first_thread_of_core(int core)
1318 {
1319 	return core << threads_shift;
1320 }
1321 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1322 
1323 /* Must be called when no change can occur to cpu_present_mask,
1324  * i.e. during cpu online or offline.
1325  */
1326 static struct device_node *cpu_to_l2cache(int cpu)
1327 {
1328 	struct device_node *np;
1329 	struct device_node *cache;
1330 
1331 	if (!cpu_present(cpu))
1332 		return NULL;
1333 
1334 	np = of_get_cpu_node(cpu, NULL);
1335 	if (np == NULL)
1336 		return NULL;
1337 
1338 	cache = of_find_next_cache_node(np);
1339 
1340 	of_node_put(np);
1341 
1342 	return cache;
1343 }
1344 
1345 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1346 {
1347 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1348 	struct device_node *l2_cache, *np;
1349 	int i;
1350 
1351 	if (has_big_cores)
1352 		submask_fn = cpu_smallcore_mask;
1353 
1354 	/*
1355 	 * If the threads in a thread-group share L2 cache, then the
1356 	 * L2-mask can be obtained from thread_group_l2_cache_map.
1357 	 */
1358 	if (thread_group_shares_l2) {
1359 		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1360 
1361 		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1362 			if (cpu_online(i))
1363 				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1364 		}
1365 
1366 		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1367 		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1368 		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1369 			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1370 				     cpu);
1371 		}
1372 
1373 		return true;
1374 	}
1375 
1376 	l2_cache = cpu_to_l2cache(cpu);
1377 	if (!l2_cache || !*mask) {
1378 		/* Assume only core siblings share cache with this CPU */
1379 		for_each_cpu(i, submask_fn(cpu))
1380 			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1381 
1382 		return false;
1383 	}
1384 
1385 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1386 
1387 	/* Update l2-cache mask with all the CPUs that are part of submask */
1388 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1389 
1390 	/* Skip all CPUs already part of current CPU l2-cache mask */
1391 	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1392 
1393 	for_each_cpu(i, *mask) {
1394 		/*
1395 		 * when updating the marks the current CPU has not been marked
1396 		 * online, but we need to update the cache masks
1397 		 */
1398 		np = cpu_to_l2cache(i);
1399 
1400 		/* Skip all CPUs already part of current CPU l2-cache */
1401 		if (np == l2_cache) {
1402 			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1403 			cpumask_andnot(*mask, *mask, submask_fn(i));
1404 		} else {
1405 			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1406 		}
1407 
1408 		of_node_put(np);
1409 	}
1410 	of_node_put(l2_cache);
1411 
1412 	return true;
1413 }
1414 
1415 #ifdef CONFIG_HOTPLUG_CPU
1416 static void remove_cpu_from_masks(int cpu)
1417 {
1418 	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1419 	int i;
1420 
1421 	if (shared_caches)
1422 		mask_fn = cpu_l2_cache_mask;
1423 
1424 	for_each_cpu(i, mask_fn(cpu)) {
1425 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1426 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1427 		if (has_big_cores)
1428 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1429 	}
1430 
1431 	for_each_cpu(i, cpu_core_mask(cpu))
1432 		set_cpus_unrelated(cpu, i, cpu_core_mask);
1433 
1434 	if (has_coregroup_support()) {
1435 		for_each_cpu(i, cpu_coregroup_mask(cpu))
1436 			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1437 	}
1438 }
1439 #endif
1440 
1441 static inline void add_cpu_to_smallcore_masks(int cpu)
1442 {
1443 	int i;
1444 
1445 	if (!has_big_cores)
1446 		return;
1447 
1448 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1449 
1450 	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1451 		if (cpu_online(i))
1452 			set_cpus_related(i, cpu, cpu_smallcore_mask);
1453 	}
1454 }
1455 
1456 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1457 {
1458 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1459 	int coregroup_id = cpu_to_coregroup_id(cpu);
1460 	int i;
1461 
1462 	if (shared_caches)
1463 		submask_fn = cpu_l2_cache_mask;
1464 
1465 	if (!*mask) {
1466 		/* Assume only siblings are part of this CPU's coregroup */
1467 		for_each_cpu(i, submask_fn(cpu))
1468 			set_cpus_related(cpu, i, cpu_coregroup_mask);
1469 
1470 		return;
1471 	}
1472 
1473 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1474 
1475 	/* Update coregroup mask with all the CPUs that are part of submask */
1476 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1477 
1478 	/* Skip all CPUs already part of coregroup mask */
1479 	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1480 
1481 	for_each_cpu(i, *mask) {
1482 		/* Skip all CPUs not part of this coregroup */
1483 		if (coregroup_id == cpu_to_coregroup_id(i)) {
1484 			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1485 			cpumask_andnot(*mask, *mask, submask_fn(i));
1486 		} else {
1487 			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1488 		}
1489 	}
1490 }
1491 
1492 static void add_cpu_to_masks(int cpu)
1493 {
1494 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1495 	int first_thread = cpu_first_thread_sibling(cpu);
1496 	cpumask_var_t mask;
1497 	int chip_id = -1;
1498 	bool ret;
1499 	int i;
1500 
1501 	/*
1502 	 * This CPU will not be in the online mask yet so we need to manually
1503 	 * add it to it's own thread sibling mask.
1504 	 */
1505 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1506 
1507 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1508 		if (cpu_online(i))
1509 			set_cpus_related(i, cpu, cpu_sibling_mask);
1510 
1511 	add_cpu_to_smallcore_masks(cpu);
1512 
1513 	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1514 	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1515 	update_mask_by_l2(cpu, &mask);
1516 
1517 	if (has_coregroup_support())
1518 		update_coregroup_mask(cpu, &mask);
1519 
1520 	if (chip_id_lookup_table && ret)
1521 		chip_id = cpu_to_chip_id(cpu);
1522 
1523 	if (chip_id == -1) {
1524 		cpumask_copy(per_cpu(cpu_core_map, cpu), cpu_cpu_mask(cpu));
1525 		goto out;
1526 	}
1527 
1528 	if (shared_caches)
1529 		submask_fn = cpu_l2_cache_mask;
1530 
1531 	/* Update core_mask with all the CPUs that are part of submask */
1532 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1533 
1534 	/* Skip all CPUs already part of current CPU core mask */
1535 	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1536 
1537 	for_each_cpu(i, mask) {
1538 		if (chip_id == cpu_to_chip_id(i)) {
1539 			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1540 			cpumask_andnot(mask, mask, submask_fn(i));
1541 		} else {
1542 			cpumask_andnot(mask, mask, cpu_core_mask(i));
1543 		}
1544 	}
1545 
1546 out:
1547 	free_cpumask_var(mask);
1548 }
1549 
1550 /* Activate a secondary processor. */
1551 void start_secondary(void *unused)
1552 {
1553 	unsigned int cpu = raw_smp_processor_id();
1554 
1555 	/* PPC64 calls setup_kup() in early_setup_secondary() */
1556 	if (IS_ENABLED(CONFIG_PPC32))
1557 		setup_kup();
1558 
1559 	mmgrab(&init_mm);
1560 	current->active_mm = &init_mm;
1561 
1562 	smp_store_cpu_info(cpu);
1563 	set_dec(tb_ticks_per_jiffy);
1564 	rcu_cpu_starting(cpu);
1565 	cpu_callin_map[cpu] = 1;
1566 
1567 	if (smp_ops->setup_cpu)
1568 		smp_ops->setup_cpu(cpu);
1569 	if (smp_ops->take_timebase)
1570 		smp_ops->take_timebase();
1571 
1572 	secondary_cpu_time_init();
1573 
1574 #ifdef CONFIG_PPC64
1575 	if (system_state == SYSTEM_RUNNING)
1576 		vdso_data->processorCount++;
1577 
1578 	vdso_getcpu_init();
1579 #endif
1580 	set_numa_node(numa_cpu_lookup_table[cpu]);
1581 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1582 
1583 	/* Update topology CPU masks */
1584 	add_cpu_to_masks(cpu);
1585 
1586 	/*
1587 	 * Check for any shared caches. Note that this must be done on a
1588 	 * per-core basis because one core in the pair might be disabled.
1589 	 */
1590 	if (!shared_caches) {
1591 		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1592 		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1593 
1594 		if (has_big_cores)
1595 			sibling_mask = cpu_smallcore_mask;
1596 
1597 		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1598 			shared_caches = true;
1599 	}
1600 
1601 	smp_wmb();
1602 	notify_cpu_starting(cpu);
1603 	set_cpu_online(cpu, true);
1604 
1605 	boot_init_stack_canary();
1606 
1607 	local_irq_enable();
1608 
1609 	/* We can enable ftrace for secondary cpus now */
1610 	this_cpu_enable_ftrace();
1611 
1612 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1613 
1614 	BUG();
1615 }
1616 
1617 int setup_profiling_timer(unsigned int multiplier)
1618 {
1619 	return 0;
1620 }
1621 
1622 static void fixup_topology(void)
1623 {
1624 	int i;
1625 
1626 #ifdef CONFIG_SCHED_SMT
1627 	if (has_big_cores) {
1628 		pr_info("Big cores detected but using small core scheduling\n");
1629 		powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1630 	}
1631 #endif
1632 
1633 	if (!has_coregroup_support())
1634 		powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1635 
1636 	/*
1637 	 * Try to consolidate topology levels here instead of
1638 	 * allowing scheduler to degenerate.
1639 	 * - Dont consolidate if masks are different.
1640 	 * - Dont consolidate if sd_flags exists and are different.
1641 	 */
1642 	for (i = 1; i <= die_idx; i++) {
1643 		if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1644 			continue;
1645 
1646 		if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1647 				powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1648 			continue;
1649 
1650 		if (!powerpc_topology[i - 1].sd_flags)
1651 			powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1652 
1653 		powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1654 		powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1655 #ifdef CONFIG_SCHED_DEBUG
1656 		powerpc_topology[i].name = powerpc_topology[i + 1].name;
1657 #endif
1658 	}
1659 }
1660 
1661 void __init smp_cpus_done(unsigned int max_cpus)
1662 {
1663 	/*
1664 	 * We are running pinned to the boot CPU, see rest_init().
1665 	 */
1666 	if (smp_ops && smp_ops->setup_cpu)
1667 		smp_ops->setup_cpu(boot_cpuid);
1668 
1669 	if (smp_ops && smp_ops->bringup_done)
1670 		smp_ops->bringup_done();
1671 
1672 	dump_numa_cpu_topology();
1673 
1674 	fixup_topology();
1675 	set_sched_topology(powerpc_topology);
1676 }
1677 
1678 #ifdef CONFIG_HOTPLUG_CPU
1679 int __cpu_disable(void)
1680 {
1681 	int cpu = smp_processor_id();
1682 	int err;
1683 
1684 	if (!smp_ops->cpu_disable)
1685 		return -ENOSYS;
1686 
1687 	this_cpu_disable_ftrace();
1688 
1689 	err = smp_ops->cpu_disable();
1690 	if (err)
1691 		return err;
1692 
1693 	/* Update sibling maps */
1694 	remove_cpu_from_masks(cpu);
1695 
1696 	return 0;
1697 }
1698 
1699 void __cpu_die(unsigned int cpu)
1700 {
1701 	if (smp_ops->cpu_die)
1702 		smp_ops->cpu_die(cpu);
1703 }
1704 
1705 void arch_cpu_idle_dead(void)
1706 {
1707 	sched_preempt_enable_no_resched();
1708 
1709 	/*
1710 	 * Disable on the down path. This will be re-enabled by
1711 	 * start_secondary() via start_secondary_resume() below
1712 	 */
1713 	this_cpu_disable_ftrace();
1714 
1715 	if (smp_ops->cpu_offline_self)
1716 		smp_ops->cpu_offline_self();
1717 
1718 	/* If we return, we re-enter start_secondary */
1719 	start_secondary_resume();
1720 }
1721 
1722 #endif
1723