xref: /openbmc/linux/arch/powerpc/kernel/smp.c (revision 6abeae2a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SMP support for ppc.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6  * deal of code from the sparc and intel versions.
7  *
8  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9  *
10  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12  */
13 
14 #undef DEBUG
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 
38 #include <asm/ptrace.h>
39 #include <linux/atomic.h>
40 #include <asm/irq.h>
41 #include <asm/hw_irq.h>
42 #include <asm/kvm_ppc.h>
43 #include <asm/dbell.h>
44 #include <asm/page.h>
45 #include <asm/prom.h>
46 #include <asm/smp.h>
47 #include <asm/time.h>
48 #include <asm/machdep.h>
49 #include <asm/cputhreads.h>
50 #include <asm/cputable.h>
51 #include <asm/mpic.h>
52 #include <asm/vdso_datapage.h>
53 #ifdef CONFIG_PPC64
54 #include <asm/paca.h>
55 #endif
56 #include <asm/vdso.h>
57 #include <asm/debug.h>
58 #include <asm/kexec.h>
59 #include <asm/asm-prototypes.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/ftrace.h>
62 #include <asm/kup.h>
63 
64 #ifdef DEBUG
65 #include <asm/udbg.h>
66 #define DBG(fmt...) udbg_printf(fmt)
67 #else
68 #define DBG(fmt...)
69 #endif
70 
71 #ifdef CONFIG_HOTPLUG_CPU
72 /* State of each CPU during hotplug phases */
73 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
74 #endif
75 
76 struct task_struct *secondary_current;
77 bool has_big_cores;
78 bool coregroup_enabled;
79 bool thread_group_shares_l2;
80 
81 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
82 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
83 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
84 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
85 DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
86 
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
89 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
90 EXPORT_SYMBOL_GPL(has_big_cores);
91 
92 enum {
93 #ifdef CONFIG_SCHED_SMT
94 	smt_idx,
95 #endif
96 	cache_idx,
97 	mc_idx,
98 	die_idx,
99 };
100 
101 #define MAX_THREAD_LIST_SIZE	8
102 #define THREAD_GROUP_SHARE_L1   1
103 #define THREAD_GROUP_SHARE_L2   2
104 struct thread_groups {
105 	unsigned int property;
106 	unsigned int nr_groups;
107 	unsigned int threads_per_group;
108 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
109 };
110 
111 /* Maximum number of properties that groups of threads within a core can share */
112 #define MAX_THREAD_GROUP_PROPERTIES 2
113 
114 struct thread_groups_list {
115 	unsigned int nr_properties;
116 	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
117 };
118 
119 static struct thread_groups_list tgl[NR_CPUS] __initdata;
120 /*
121  * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
122  * the set its siblings that share the L1-cache.
123  */
124 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
125 
126 /*
127  * On some big-cores system, thread_group_l2_cache_map for each CPU
128  * corresponds to the set its siblings within the core that share the
129  * L2-cache.
130  */
131 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
132 
133 /* SMP operations for this machine */
134 struct smp_ops_t *smp_ops;
135 
136 /* Can't be static due to PowerMac hackery */
137 volatile unsigned int cpu_callin_map[NR_CPUS];
138 
139 int smt_enabled_at_boot = 1;
140 
141 /*
142  * Returns 1 if the specified cpu should be brought up during boot.
143  * Used to inhibit booting threads if they've been disabled or
144  * limited on the command line
145  */
146 int smp_generic_cpu_bootable(unsigned int nr)
147 {
148 	/* Special case - we inhibit secondary thread startup
149 	 * during boot if the user requests it.
150 	 */
151 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
152 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
153 			return 0;
154 		if (smt_enabled_at_boot
155 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
156 			return 0;
157 	}
158 
159 	return 1;
160 }
161 
162 
163 #ifdef CONFIG_PPC64
164 int smp_generic_kick_cpu(int nr)
165 {
166 	if (nr < 0 || nr >= nr_cpu_ids)
167 		return -EINVAL;
168 
169 	/*
170 	 * The processor is currently spinning, waiting for the
171 	 * cpu_start field to become non-zero After we set cpu_start,
172 	 * the processor will continue on to secondary_start
173 	 */
174 	if (!paca_ptrs[nr]->cpu_start) {
175 		paca_ptrs[nr]->cpu_start = 1;
176 		smp_mb();
177 		return 0;
178 	}
179 
180 #ifdef CONFIG_HOTPLUG_CPU
181 	/*
182 	 * Ok it's not there, so it might be soft-unplugged, let's
183 	 * try to bring it back
184 	 */
185 	generic_set_cpu_up(nr);
186 	smp_wmb();
187 	smp_send_reschedule(nr);
188 #endif /* CONFIG_HOTPLUG_CPU */
189 
190 	return 0;
191 }
192 #endif /* CONFIG_PPC64 */
193 
194 static irqreturn_t call_function_action(int irq, void *data)
195 {
196 	generic_smp_call_function_interrupt();
197 	return IRQ_HANDLED;
198 }
199 
200 static irqreturn_t reschedule_action(int irq, void *data)
201 {
202 	scheduler_ipi();
203 	return IRQ_HANDLED;
204 }
205 
206 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
207 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
208 {
209 	timer_broadcast_interrupt();
210 	return IRQ_HANDLED;
211 }
212 #endif
213 
214 #ifdef CONFIG_NMI_IPI
215 static irqreturn_t nmi_ipi_action(int irq, void *data)
216 {
217 	smp_handle_nmi_ipi(get_irq_regs());
218 	return IRQ_HANDLED;
219 }
220 #endif
221 
222 static irq_handler_t smp_ipi_action[] = {
223 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
224 	[PPC_MSG_RESCHEDULE] = reschedule_action,
225 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
226 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
227 #endif
228 #ifdef CONFIG_NMI_IPI
229 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
230 #endif
231 };
232 
233 /*
234  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
235  * than going through the call function infrastructure, and strongly
236  * serialized, so it is more appropriate for debugging.
237  */
238 const char *smp_ipi_name[] = {
239 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
240 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
241 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
242 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
243 #endif
244 #ifdef CONFIG_NMI_IPI
245 	[PPC_MSG_NMI_IPI] = "nmi ipi",
246 #endif
247 };
248 
249 /* optional function to request ipi, for controllers with >= 4 ipis */
250 int smp_request_message_ipi(int virq, int msg)
251 {
252 	int err;
253 
254 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
255 		return -EINVAL;
256 #ifndef CONFIG_NMI_IPI
257 	if (msg == PPC_MSG_NMI_IPI)
258 		return 1;
259 #endif
260 
261 	err = request_irq(virq, smp_ipi_action[msg],
262 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
263 			  smp_ipi_name[msg], NULL);
264 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
265 		virq, smp_ipi_name[msg], err);
266 
267 	return err;
268 }
269 
270 #ifdef CONFIG_PPC_SMP_MUXED_IPI
271 struct cpu_messages {
272 	long messages;			/* current messages */
273 };
274 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
275 
276 void smp_muxed_ipi_set_message(int cpu, int msg)
277 {
278 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
279 	char *message = (char *)&info->messages;
280 
281 	/*
282 	 * Order previous accesses before accesses in the IPI handler.
283 	 */
284 	smp_mb();
285 	message[msg] = 1;
286 }
287 
288 void smp_muxed_ipi_message_pass(int cpu, int msg)
289 {
290 	smp_muxed_ipi_set_message(cpu, msg);
291 
292 	/*
293 	 * cause_ipi functions are required to include a full barrier
294 	 * before doing whatever causes the IPI.
295 	 */
296 	smp_ops->cause_ipi(cpu);
297 }
298 
299 #ifdef __BIG_ENDIAN__
300 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
301 #else
302 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
303 #endif
304 
305 irqreturn_t smp_ipi_demux(void)
306 {
307 	mb();	/* order any irq clear */
308 
309 	return smp_ipi_demux_relaxed();
310 }
311 
312 /* sync-free variant. Callers should ensure synchronization */
313 irqreturn_t smp_ipi_demux_relaxed(void)
314 {
315 	struct cpu_messages *info;
316 	unsigned long all;
317 
318 	info = this_cpu_ptr(&ipi_message);
319 	do {
320 		all = xchg(&info->messages, 0);
321 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
322 		/*
323 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
324 		 * before PPC_MSG_CALL_FUNCTION messages because when
325 		 * a VM is destroyed, we call kick_all_cpus_sync()
326 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
327 		 * messages have completed before we free any VCPUs.
328 		 */
329 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
330 			kvmppc_xics_ipi_action();
331 #endif
332 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
333 			generic_smp_call_function_interrupt();
334 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
335 			scheduler_ipi();
336 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
337 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
338 			timer_broadcast_interrupt();
339 #endif
340 #ifdef CONFIG_NMI_IPI
341 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
342 			nmi_ipi_action(0, NULL);
343 #endif
344 	} while (info->messages);
345 
346 	return IRQ_HANDLED;
347 }
348 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
349 
350 static inline void do_message_pass(int cpu, int msg)
351 {
352 	if (smp_ops->message_pass)
353 		smp_ops->message_pass(cpu, msg);
354 #ifdef CONFIG_PPC_SMP_MUXED_IPI
355 	else
356 		smp_muxed_ipi_message_pass(cpu, msg);
357 #endif
358 }
359 
360 void smp_send_reschedule(int cpu)
361 {
362 	if (likely(smp_ops))
363 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
364 }
365 EXPORT_SYMBOL_GPL(smp_send_reschedule);
366 
367 void arch_send_call_function_single_ipi(int cpu)
368 {
369 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
370 }
371 
372 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
373 {
374 	unsigned int cpu;
375 
376 	for_each_cpu(cpu, mask)
377 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
378 }
379 
380 #ifdef CONFIG_NMI_IPI
381 
382 /*
383  * "NMI IPI" system.
384  *
385  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
386  * a running system. They can be used for crash, debug, halt/reboot, etc.
387  *
388  * The IPI call waits with interrupts disabled until all targets enter the
389  * NMI handler, then returns. Subsequent IPIs can be issued before targets
390  * have returned from their handlers, so there is no guarantee about
391  * concurrency or re-entrancy.
392  *
393  * A new NMI can be issued before all targets exit the handler.
394  *
395  * The IPI call may time out without all targets entering the NMI handler.
396  * In that case, there is some logic to recover (and ignore subsequent
397  * NMI interrupts that may eventually be raised), but the platform interrupt
398  * handler may not be able to distinguish this from other exception causes,
399  * which may cause a crash.
400  */
401 
402 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
403 static struct cpumask nmi_ipi_pending_mask;
404 static bool nmi_ipi_busy = false;
405 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
406 
407 static void nmi_ipi_lock_start(unsigned long *flags)
408 {
409 	raw_local_irq_save(*flags);
410 	hard_irq_disable();
411 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
412 		raw_local_irq_restore(*flags);
413 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
414 		raw_local_irq_save(*flags);
415 		hard_irq_disable();
416 	}
417 }
418 
419 static void nmi_ipi_lock(void)
420 {
421 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
422 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
423 }
424 
425 static void nmi_ipi_unlock(void)
426 {
427 	smp_mb();
428 	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
429 	atomic_set(&__nmi_ipi_lock, 0);
430 }
431 
432 static void nmi_ipi_unlock_end(unsigned long *flags)
433 {
434 	nmi_ipi_unlock();
435 	raw_local_irq_restore(*flags);
436 }
437 
438 /*
439  * Platform NMI handler calls this to ack
440  */
441 int smp_handle_nmi_ipi(struct pt_regs *regs)
442 {
443 	void (*fn)(struct pt_regs *) = NULL;
444 	unsigned long flags;
445 	int me = raw_smp_processor_id();
446 	int ret = 0;
447 
448 	/*
449 	 * Unexpected NMIs are possible here because the interrupt may not
450 	 * be able to distinguish NMI IPIs from other types of NMIs, or
451 	 * because the caller may have timed out.
452 	 */
453 	nmi_ipi_lock_start(&flags);
454 	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
455 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
456 		fn = READ_ONCE(nmi_ipi_function);
457 		WARN_ON_ONCE(!fn);
458 		ret = 1;
459 	}
460 	nmi_ipi_unlock_end(&flags);
461 
462 	if (fn)
463 		fn(regs);
464 
465 	return ret;
466 }
467 
468 static void do_smp_send_nmi_ipi(int cpu, bool safe)
469 {
470 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
471 		return;
472 
473 	if (cpu >= 0) {
474 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
475 	} else {
476 		int c;
477 
478 		for_each_online_cpu(c) {
479 			if (c == raw_smp_processor_id())
480 				continue;
481 			do_message_pass(c, PPC_MSG_NMI_IPI);
482 		}
483 	}
484 }
485 
486 /*
487  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
488  * - fn is the target callback function.
489  * - delay_us > 0 is the delay before giving up waiting for targets to
490  *   begin executing the handler, == 0 specifies indefinite delay.
491  */
492 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
493 				u64 delay_us, bool safe)
494 {
495 	unsigned long flags;
496 	int me = raw_smp_processor_id();
497 	int ret = 1;
498 
499 	BUG_ON(cpu == me);
500 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
501 
502 	if (unlikely(!smp_ops))
503 		return 0;
504 
505 	nmi_ipi_lock_start(&flags);
506 	while (nmi_ipi_busy) {
507 		nmi_ipi_unlock_end(&flags);
508 		spin_until_cond(!nmi_ipi_busy);
509 		nmi_ipi_lock_start(&flags);
510 	}
511 	nmi_ipi_busy = true;
512 	nmi_ipi_function = fn;
513 
514 	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
515 
516 	if (cpu < 0) {
517 		/* ALL_OTHERS */
518 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
519 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
520 	} else {
521 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
522 	}
523 
524 	nmi_ipi_unlock();
525 
526 	/* Interrupts remain hard disabled */
527 
528 	do_smp_send_nmi_ipi(cpu, safe);
529 
530 	nmi_ipi_lock();
531 	/* nmi_ipi_busy is set here, so unlock/lock is okay */
532 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
533 		nmi_ipi_unlock();
534 		udelay(1);
535 		nmi_ipi_lock();
536 		if (delay_us) {
537 			delay_us--;
538 			if (!delay_us)
539 				break;
540 		}
541 	}
542 
543 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
544 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
545 		ret = 0;
546 		cpumask_clear(&nmi_ipi_pending_mask);
547 	}
548 
549 	nmi_ipi_function = NULL;
550 	nmi_ipi_busy = false;
551 
552 	nmi_ipi_unlock_end(&flags);
553 
554 	return ret;
555 }
556 
557 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
558 {
559 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
560 }
561 
562 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
563 {
564 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
565 }
566 #endif /* CONFIG_NMI_IPI */
567 
568 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
569 void tick_broadcast(const struct cpumask *mask)
570 {
571 	unsigned int cpu;
572 
573 	for_each_cpu(cpu, mask)
574 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
575 }
576 #endif
577 
578 #ifdef CONFIG_DEBUGGER
579 void debugger_ipi_callback(struct pt_regs *regs)
580 {
581 	debugger_ipi(regs);
582 }
583 
584 void smp_send_debugger_break(void)
585 {
586 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
587 }
588 #endif
589 
590 #ifdef CONFIG_KEXEC_CORE
591 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
592 {
593 	int cpu;
594 
595 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
596 	if (kdump_in_progress() && crash_wake_offline) {
597 		for_each_present_cpu(cpu) {
598 			if (cpu_online(cpu))
599 				continue;
600 			/*
601 			 * crash_ipi_callback will wait for
602 			 * all cpus, including offline CPUs.
603 			 * We don't care about nmi_ipi_function.
604 			 * Offline cpus will jump straight into
605 			 * crash_ipi_callback, we can skip the
606 			 * entire NMI dance and waiting for
607 			 * cpus to clear pending mask, etc.
608 			 */
609 			do_smp_send_nmi_ipi(cpu, false);
610 		}
611 	}
612 }
613 #endif
614 
615 #ifdef CONFIG_NMI_IPI
616 static void nmi_stop_this_cpu(struct pt_regs *regs)
617 {
618 	/*
619 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
620 	 */
621 	spin_begin();
622 	while (1)
623 		spin_cpu_relax();
624 }
625 
626 void smp_send_stop(void)
627 {
628 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
629 }
630 
631 #else /* CONFIG_NMI_IPI */
632 
633 static void stop_this_cpu(void *dummy)
634 {
635 	hard_irq_disable();
636 	spin_begin();
637 	while (1)
638 		spin_cpu_relax();
639 }
640 
641 void smp_send_stop(void)
642 {
643 	static bool stopped = false;
644 
645 	/*
646 	 * Prevent waiting on csd lock from a previous smp_send_stop.
647 	 * This is racy, but in general callers try to do the right
648 	 * thing and only fire off one smp_send_stop (e.g., see
649 	 * kernel/panic.c)
650 	 */
651 	if (stopped)
652 		return;
653 
654 	stopped = true;
655 
656 	smp_call_function(stop_this_cpu, NULL, 0);
657 }
658 #endif /* CONFIG_NMI_IPI */
659 
660 struct task_struct *current_set[NR_CPUS];
661 
662 static void smp_store_cpu_info(int id)
663 {
664 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
665 #ifdef CONFIG_PPC_FSL_BOOK3E
666 	per_cpu(next_tlbcam_idx, id)
667 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
668 #endif
669 }
670 
671 /*
672  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
673  * rather than just passing around the cpumask we pass around a function that
674  * returns the that cpumask for the given CPU.
675  */
676 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
677 {
678 	cpumask_set_cpu(i, get_cpumask(j));
679 	cpumask_set_cpu(j, get_cpumask(i));
680 }
681 
682 #ifdef CONFIG_HOTPLUG_CPU
683 static void set_cpus_unrelated(int i, int j,
684 		struct cpumask *(*get_cpumask)(int))
685 {
686 	cpumask_clear_cpu(i, get_cpumask(j));
687 	cpumask_clear_cpu(j, get_cpumask(i));
688 }
689 #endif
690 
691 /*
692  * Extends set_cpus_related. Instead of setting one CPU at a time in
693  * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
694  */
695 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
696 				struct cpumask *(*dstmask)(int))
697 {
698 	struct cpumask *mask;
699 	int k;
700 
701 	mask = srcmask(j);
702 	for_each_cpu(k, srcmask(i))
703 		cpumask_or(dstmask(k), dstmask(k), mask);
704 
705 	if (i == j)
706 		return;
707 
708 	mask = srcmask(i);
709 	for_each_cpu(k, srcmask(j))
710 		cpumask_or(dstmask(k), dstmask(k), mask);
711 }
712 
713 /*
714  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
715  *                      property for the CPU device node @dn and stores
716  *                      the parsed output in the thread_groups_list
717  *                      structure @tglp.
718  *
719  * @dn: The device node of the CPU device.
720  * @tglp: Pointer to a thread group list structure into which the parsed
721  *      output of "ibm,thread-groups" is stored.
722  *
723  * ibm,thread-groups[0..N-1] array defines which group of threads in
724  * the CPU-device node can be grouped together based on the property.
725  *
726  * This array can represent thread groupings for multiple properties.
727  *
728  * ibm,thread-groups[i + 0] tells us the property based on which the
729  * threads are being grouped together. If this value is 1, it implies
730  * that the threads in the same group share L1, translation cache. If
731  * the value is 2, it implies that the threads in the same group share
732  * the same L2 cache.
733  *
734  * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
735  * property ibm,thread-groups[i]
736  *
737  * ibm,thread-groups[i+2] tells us the number of threads in each such
738  * group.
739  * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
740  *
741  * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
742  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
743  * the grouping.
744  *
745  * Example:
746  * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
747  * This can be decomposed up into two consecutive arrays:
748  * a) [1,2,4,8,10,12,14,9,11,13,15]
749  * b) [2,2,4,8,10,12,14,9,11,13,15]
750  *
751  * where in,
752  *
753  * a) provides information of Property "1" being shared by "2" groups,
754  *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
755  *  the first group is {8,10,12,14} and the
756  *  "ibm,ppc-interrupt-server#s" of the second group is
757  *  {9,11,13,15}. Property "1" is indicative of the thread in the
758  *  group sharing L1 cache, translation cache and Instruction Data
759  *  flow.
760  *
761  * b) provides information of Property "2" being shared by "2" groups,
762  *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
763  *  the first group is {8,10,12,14} and the
764  *  "ibm,ppc-interrupt-server#s" of the second group is
765  *  {9,11,13,15}. Property "2" indicates that the threads in each
766  *  group share the L2-cache.
767  *
768  * Returns 0 on success, -EINVAL if the property does not exist,
769  * -ENODATA if property does not have a value, and -EOVERFLOW if the
770  * property data isn't large enough.
771  */
772 static int parse_thread_groups(struct device_node *dn,
773 			       struct thread_groups_list *tglp)
774 {
775 	unsigned int property_idx = 0;
776 	u32 *thread_group_array;
777 	size_t total_threads;
778 	int ret = 0, count;
779 	u32 *thread_list;
780 	int i = 0;
781 
782 	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
783 	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
784 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
785 					 thread_group_array, count);
786 	if (ret)
787 		goto out_free;
788 
789 	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
790 		int j;
791 		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
792 
793 		tg->property = thread_group_array[i];
794 		tg->nr_groups = thread_group_array[i + 1];
795 		tg->threads_per_group = thread_group_array[i + 2];
796 		total_threads = tg->nr_groups * tg->threads_per_group;
797 
798 		thread_list = &thread_group_array[i + 3];
799 
800 		for (j = 0; j < total_threads; j++)
801 			tg->thread_list[j] = thread_list[j];
802 		i = i + 3 + total_threads;
803 	}
804 
805 	tglp->nr_properties = property_idx;
806 
807 out_free:
808 	kfree(thread_group_array);
809 	return ret;
810 }
811 
812 /*
813  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
814  *                              that @cpu belongs to.
815  *
816  * @cpu : The logical CPU whose thread group is being searched.
817  * @tg : The thread-group structure of the CPU node which @cpu belongs
818  *       to.
819  *
820  * Returns the index to tg->thread_list that points to the the start
821  * of the thread_group that @cpu belongs to.
822  *
823  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
824  * tg->thread_list.
825  */
826 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
827 {
828 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
829 	int i, j;
830 
831 	for (i = 0; i < tg->nr_groups; i++) {
832 		int group_start = i * tg->threads_per_group;
833 
834 		for (j = 0; j < tg->threads_per_group; j++) {
835 			int idx = group_start + j;
836 
837 			if (tg->thread_list[idx] == hw_cpu_id)
838 				return group_start;
839 		}
840 	}
841 
842 	return -1;
843 }
844 
845 static struct thread_groups *__init get_thread_groups(int cpu,
846 						      int group_property,
847 						      int *err)
848 {
849 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
850 	struct thread_groups_list *cpu_tgl = &tgl[cpu];
851 	struct thread_groups *tg = NULL;
852 	int i;
853 	*err = 0;
854 
855 	if (!dn) {
856 		*err = -ENODATA;
857 		return NULL;
858 	}
859 
860 	if (!cpu_tgl->nr_properties) {
861 		*err = parse_thread_groups(dn, cpu_tgl);
862 		if (*err)
863 			goto out;
864 	}
865 
866 	for (i = 0; i < cpu_tgl->nr_properties; i++) {
867 		if (cpu_tgl->property_tgs[i].property == group_property) {
868 			tg = &cpu_tgl->property_tgs[i];
869 			break;
870 		}
871 	}
872 
873 	if (!tg)
874 		*err = -EINVAL;
875 out:
876 	of_node_put(dn);
877 	return tg;
878 }
879 
880 static int __init init_thread_group_cache_map(int cpu, int cache_property)
881 
882 {
883 	int first_thread = cpu_first_thread_sibling(cpu);
884 	int i, cpu_group_start = -1, err = 0;
885 	struct thread_groups *tg = NULL;
886 	cpumask_var_t *mask = NULL;
887 
888 	if (cache_property != THREAD_GROUP_SHARE_L1 &&
889 	    cache_property != THREAD_GROUP_SHARE_L2)
890 		return -EINVAL;
891 
892 	tg = get_thread_groups(cpu, cache_property, &err);
893 	if (!tg)
894 		return err;
895 
896 	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
897 
898 	if (unlikely(cpu_group_start == -1)) {
899 		WARN_ON_ONCE(1);
900 		return -ENODATA;
901 	}
902 
903 	if (cache_property == THREAD_GROUP_SHARE_L1)
904 		mask = &per_cpu(thread_group_l1_cache_map, cpu);
905 	else if (cache_property == THREAD_GROUP_SHARE_L2)
906 		mask = &per_cpu(thread_group_l2_cache_map, cpu);
907 
908 	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
909 
910 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
911 		int i_group_start = get_cpu_thread_group_start(i, tg);
912 
913 		if (unlikely(i_group_start == -1)) {
914 			WARN_ON_ONCE(1);
915 			return -ENODATA;
916 		}
917 
918 		if (i_group_start == cpu_group_start)
919 			cpumask_set_cpu(i, *mask);
920 	}
921 
922 	return 0;
923 }
924 
925 static bool shared_caches;
926 
927 #ifdef CONFIG_SCHED_SMT
928 /* cpumask of CPUs with asymmetric SMT dependency */
929 static int powerpc_smt_flags(void)
930 {
931 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
932 
933 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
934 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
935 		flags |= SD_ASYM_PACKING;
936 	}
937 	return flags;
938 }
939 #endif
940 
941 /*
942  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
943  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
944  * since the migrated task remains cache hot. We want to take advantage of this
945  * at the scheduler level so an extra topology level is required.
946  */
947 static int powerpc_shared_cache_flags(void)
948 {
949 	return SD_SHARE_PKG_RESOURCES;
950 }
951 
952 /*
953  * We can't just pass cpu_l2_cache_mask() directly because
954  * returns a non-const pointer and the compiler barfs on that.
955  */
956 static const struct cpumask *shared_cache_mask(int cpu)
957 {
958 	return per_cpu(cpu_l2_cache_map, cpu);
959 }
960 
961 #ifdef CONFIG_SCHED_SMT
962 static const struct cpumask *smallcore_smt_mask(int cpu)
963 {
964 	return cpu_smallcore_mask(cpu);
965 }
966 #endif
967 
968 static struct cpumask *cpu_coregroup_mask(int cpu)
969 {
970 	return per_cpu(cpu_coregroup_map, cpu);
971 }
972 
973 static bool has_coregroup_support(void)
974 {
975 	return coregroup_enabled;
976 }
977 
978 static const struct cpumask *cpu_mc_mask(int cpu)
979 {
980 	return cpu_coregroup_mask(cpu);
981 }
982 
983 static struct sched_domain_topology_level powerpc_topology[] = {
984 #ifdef CONFIG_SCHED_SMT
985 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
986 #endif
987 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
988 	{ cpu_mc_mask, SD_INIT_NAME(MC) },
989 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
990 	{ NULL, },
991 };
992 
993 static int __init init_big_cores(void)
994 {
995 	int cpu;
996 
997 	for_each_possible_cpu(cpu) {
998 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
999 
1000 		if (err)
1001 			return err;
1002 
1003 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1004 					GFP_KERNEL,
1005 					cpu_to_node(cpu));
1006 	}
1007 
1008 	has_big_cores = true;
1009 
1010 	for_each_possible_cpu(cpu) {
1011 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2);
1012 
1013 		if (err)
1014 			return err;
1015 	}
1016 
1017 	thread_group_shares_l2 = true;
1018 	pr_debug("L2 cache only shared by the threads in the small core\n");
1019 	return 0;
1020 }
1021 
1022 void __init smp_prepare_cpus(unsigned int max_cpus)
1023 {
1024 	unsigned int cpu;
1025 
1026 	DBG("smp_prepare_cpus\n");
1027 
1028 	/*
1029 	 * setup_cpu may need to be called on the boot cpu. We havent
1030 	 * spun any cpus up but lets be paranoid.
1031 	 */
1032 	BUG_ON(boot_cpuid != smp_processor_id());
1033 
1034 	/* Fixup boot cpu */
1035 	smp_store_cpu_info(boot_cpuid);
1036 	cpu_callin_map[boot_cpuid] = 1;
1037 
1038 	for_each_possible_cpu(cpu) {
1039 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1040 					GFP_KERNEL, cpu_to_node(cpu));
1041 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1042 					GFP_KERNEL, cpu_to_node(cpu));
1043 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1044 					GFP_KERNEL, cpu_to_node(cpu));
1045 		if (has_coregroup_support())
1046 			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1047 						GFP_KERNEL, cpu_to_node(cpu));
1048 
1049 #ifdef CONFIG_NEED_MULTIPLE_NODES
1050 		/*
1051 		 * numa_node_id() works after this.
1052 		 */
1053 		if (cpu_present(cpu)) {
1054 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1055 			set_cpu_numa_mem(cpu,
1056 				local_memory_node(numa_cpu_lookup_table[cpu]));
1057 		}
1058 #endif
1059 		/*
1060 		 * cpu_core_map is now more updated and exists only since
1061 		 * its been exported for long. It only will have a snapshot
1062 		 * of cpu_cpu_mask.
1063 		 */
1064 		cpumask_copy(per_cpu(cpu_core_map, cpu), cpu_cpu_mask(cpu));
1065 	}
1066 
1067 	/* Init the cpumasks so the boot CPU is related to itself */
1068 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1069 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1070 
1071 	if (has_coregroup_support())
1072 		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1073 
1074 	init_big_cores();
1075 	if (has_big_cores) {
1076 		cpumask_set_cpu(boot_cpuid,
1077 				cpu_smallcore_mask(boot_cpuid));
1078 	}
1079 
1080 	if (smp_ops && smp_ops->probe)
1081 		smp_ops->probe();
1082 }
1083 
1084 void smp_prepare_boot_cpu(void)
1085 {
1086 	BUG_ON(smp_processor_id() != boot_cpuid);
1087 #ifdef CONFIG_PPC64
1088 	paca_ptrs[boot_cpuid]->__current = current;
1089 #endif
1090 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1091 	current_set[boot_cpuid] = current;
1092 }
1093 
1094 #ifdef CONFIG_HOTPLUG_CPU
1095 
1096 int generic_cpu_disable(void)
1097 {
1098 	unsigned int cpu = smp_processor_id();
1099 
1100 	if (cpu == boot_cpuid)
1101 		return -EBUSY;
1102 
1103 	set_cpu_online(cpu, false);
1104 #ifdef CONFIG_PPC64
1105 	vdso_data->processorCount--;
1106 #endif
1107 	/* Update affinity of all IRQs previously aimed at this CPU */
1108 	irq_migrate_all_off_this_cpu();
1109 
1110 	/*
1111 	 * Depending on the details of the interrupt controller, it's possible
1112 	 * that one of the interrupts we just migrated away from this CPU is
1113 	 * actually already pending on this CPU. If we leave it in that state
1114 	 * the interrupt will never be EOI'ed, and will never fire again. So
1115 	 * temporarily enable interrupts here, to allow any pending interrupt to
1116 	 * be received (and EOI'ed), before we take this CPU offline.
1117 	 */
1118 	local_irq_enable();
1119 	mdelay(1);
1120 	local_irq_disable();
1121 
1122 	return 0;
1123 }
1124 
1125 void generic_cpu_die(unsigned int cpu)
1126 {
1127 	int i;
1128 
1129 	for (i = 0; i < 100; i++) {
1130 		smp_rmb();
1131 		if (is_cpu_dead(cpu))
1132 			return;
1133 		msleep(100);
1134 	}
1135 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1136 }
1137 
1138 void generic_set_cpu_dead(unsigned int cpu)
1139 {
1140 	per_cpu(cpu_state, cpu) = CPU_DEAD;
1141 }
1142 
1143 /*
1144  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1145  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1146  * which makes the delay in generic_cpu_die() not happen.
1147  */
1148 void generic_set_cpu_up(unsigned int cpu)
1149 {
1150 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1151 }
1152 
1153 int generic_check_cpu_restart(unsigned int cpu)
1154 {
1155 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1156 }
1157 
1158 int is_cpu_dead(unsigned int cpu)
1159 {
1160 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1161 }
1162 
1163 static bool secondaries_inhibited(void)
1164 {
1165 	return kvm_hv_mode_active();
1166 }
1167 
1168 #else /* HOTPLUG_CPU */
1169 
1170 #define secondaries_inhibited()		0
1171 
1172 #endif
1173 
1174 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1175 {
1176 #ifdef CONFIG_PPC64
1177 	paca_ptrs[cpu]->__current = idle;
1178 	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1179 				 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1180 #endif
1181 	idle->cpu = cpu;
1182 	secondary_current = current_set[cpu] = idle;
1183 }
1184 
1185 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1186 {
1187 	int rc, c;
1188 
1189 	/*
1190 	 * Don't allow secondary threads to come online if inhibited
1191 	 */
1192 	if (threads_per_core > 1 && secondaries_inhibited() &&
1193 	    cpu_thread_in_subcore(cpu))
1194 		return -EBUSY;
1195 
1196 	if (smp_ops == NULL ||
1197 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1198 		return -EINVAL;
1199 
1200 	cpu_idle_thread_init(cpu, tidle);
1201 
1202 	/*
1203 	 * The platform might need to allocate resources prior to bringing
1204 	 * up the CPU
1205 	 */
1206 	if (smp_ops->prepare_cpu) {
1207 		rc = smp_ops->prepare_cpu(cpu);
1208 		if (rc)
1209 			return rc;
1210 	}
1211 
1212 	/* Make sure callin-map entry is 0 (can be leftover a CPU
1213 	 * hotplug
1214 	 */
1215 	cpu_callin_map[cpu] = 0;
1216 
1217 	/* The information for processor bringup must
1218 	 * be written out to main store before we release
1219 	 * the processor.
1220 	 */
1221 	smp_mb();
1222 
1223 	/* wake up cpus */
1224 	DBG("smp: kicking cpu %d\n", cpu);
1225 	rc = smp_ops->kick_cpu(cpu);
1226 	if (rc) {
1227 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1228 		return rc;
1229 	}
1230 
1231 	/*
1232 	 * wait to see if the cpu made a callin (is actually up).
1233 	 * use this value that I found through experimentation.
1234 	 * -- Cort
1235 	 */
1236 	if (system_state < SYSTEM_RUNNING)
1237 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1238 			udelay(100);
1239 #ifdef CONFIG_HOTPLUG_CPU
1240 	else
1241 		/*
1242 		 * CPUs can take much longer to come up in the
1243 		 * hotplug case.  Wait five seconds.
1244 		 */
1245 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1246 			msleep(1);
1247 #endif
1248 
1249 	if (!cpu_callin_map[cpu]) {
1250 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1251 		return -ENOENT;
1252 	}
1253 
1254 	DBG("Processor %u found.\n", cpu);
1255 
1256 	if (smp_ops->give_timebase)
1257 		smp_ops->give_timebase();
1258 
1259 	/* Wait until cpu puts itself in the online & active maps */
1260 	spin_until_cond(cpu_online(cpu));
1261 
1262 	return 0;
1263 }
1264 
1265 /* Return the value of the reg property corresponding to the given
1266  * logical cpu.
1267  */
1268 int cpu_to_core_id(int cpu)
1269 {
1270 	struct device_node *np;
1271 	const __be32 *reg;
1272 	int id = -1;
1273 
1274 	np = of_get_cpu_node(cpu, NULL);
1275 	if (!np)
1276 		goto out;
1277 
1278 	reg = of_get_property(np, "reg", NULL);
1279 	if (!reg)
1280 		goto out;
1281 
1282 	id = be32_to_cpup(reg);
1283 out:
1284 	of_node_put(np);
1285 	return id;
1286 }
1287 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1288 
1289 /* Helper routines for cpu to core mapping */
1290 int cpu_core_index_of_thread(int cpu)
1291 {
1292 	return cpu >> threads_shift;
1293 }
1294 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1295 
1296 int cpu_first_thread_of_core(int core)
1297 {
1298 	return core << threads_shift;
1299 }
1300 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1301 
1302 /* Must be called when no change can occur to cpu_present_mask,
1303  * i.e. during cpu online or offline.
1304  */
1305 static struct device_node *cpu_to_l2cache(int cpu)
1306 {
1307 	struct device_node *np;
1308 	struct device_node *cache;
1309 
1310 	if (!cpu_present(cpu))
1311 		return NULL;
1312 
1313 	np = of_get_cpu_node(cpu, NULL);
1314 	if (np == NULL)
1315 		return NULL;
1316 
1317 	cache = of_find_next_cache_node(np);
1318 
1319 	of_node_put(np);
1320 
1321 	return cache;
1322 }
1323 
1324 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1325 {
1326 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1327 	struct device_node *l2_cache, *np;
1328 	int i;
1329 
1330 	if (has_big_cores)
1331 		submask_fn = cpu_smallcore_mask;
1332 
1333 	/*
1334 	 * If the threads in a thread-group share L2 cache, then the
1335 	 * L2-mask can be obtained from thread_group_l2_cache_map.
1336 	 */
1337 	if (thread_group_shares_l2) {
1338 		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1339 
1340 		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1341 			if (cpu_online(i))
1342 				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1343 		}
1344 
1345 		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1346 		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1347 		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1348 			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1349 				     cpu);
1350 		}
1351 
1352 		return true;
1353 	}
1354 
1355 	l2_cache = cpu_to_l2cache(cpu);
1356 	if (!l2_cache || !*mask) {
1357 		/* Assume only core siblings share cache with this CPU */
1358 		for_each_cpu(i, submask_fn(cpu))
1359 			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1360 
1361 		return false;
1362 	}
1363 
1364 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1365 
1366 	/* Update l2-cache mask with all the CPUs that are part of submask */
1367 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1368 
1369 	/* Skip all CPUs already part of current CPU l2-cache mask */
1370 	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1371 
1372 	for_each_cpu(i, *mask) {
1373 		/*
1374 		 * when updating the marks the current CPU has not been marked
1375 		 * online, but we need to update the cache masks
1376 		 */
1377 		np = cpu_to_l2cache(i);
1378 
1379 		/* Skip all CPUs already part of current CPU l2-cache */
1380 		if (np == l2_cache) {
1381 			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1382 			cpumask_andnot(*mask, *mask, submask_fn(i));
1383 		} else {
1384 			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1385 		}
1386 
1387 		of_node_put(np);
1388 	}
1389 	of_node_put(l2_cache);
1390 
1391 	return true;
1392 }
1393 
1394 #ifdef CONFIG_HOTPLUG_CPU
1395 static void remove_cpu_from_masks(int cpu)
1396 {
1397 	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1398 	int i;
1399 
1400 	if (shared_caches)
1401 		mask_fn = cpu_l2_cache_mask;
1402 
1403 	for_each_cpu(i, mask_fn(cpu)) {
1404 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1405 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1406 		if (has_big_cores)
1407 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1408 	}
1409 
1410 	if (has_coregroup_support()) {
1411 		for_each_cpu(i, cpu_coregroup_mask(cpu))
1412 			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1413 	}
1414 }
1415 #endif
1416 
1417 static inline void add_cpu_to_smallcore_masks(int cpu)
1418 {
1419 	int i;
1420 
1421 	if (!has_big_cores)
1422 		return;
1423 
1424 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1425 
1426 	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1427 		if (cpu_online(i))
1428 			set_cpus_related(i, cpu, cpu_smallcore_mask);
1429 	}
1430 }
1431 
1432 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1433 {
1434 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1435 	int coregroup_id = cpu_to_coregroup_id(cpu);
1436 	int i;
1437 
1438 	if (shared_caches)
1439 		submask_fn = cpu_l2_cache_mask;
1440 
1441 	if (!*mask) {
1442 		/* Assume only siblings are part of this CPU's coregroup */
1443 		for_each_cpu(i, submask_fn(cpu))
1444 			set_cpus_related(cpu, i, cpu_coregroup_mask);
1445 
1446 		return;
1447 	}
1448 
1449 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1450 
1451 	/* Update coregroup mask with all the CPUs that are part of submask */
1452 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1453 
1454 	/* Skip all CPUs already part of coregroup mask */
1455 	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1456 
1457 	for_each_cpu(i, *mask) {
1458 		/* Skip all CPUs not part of this coregroup */
1459 		if (coregroup_id == cpu_to_coregroup_id(i)) {
1460 			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1461 			cpumask_andnot(*mask, *mask, submask_fn(i));
1462 		} else {
1463 			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1464 		}
1465 	}
1466 }
1467 
1468 static void add_cpu_to_masks(int cpu)
1469 {
1470 	int first_thread = cpu_first_thread_sibling(cpu);
1471 	cpumask_var_t mask;
1472 	int i;
1473 
1474 	/*
1475 	 * This CPU will not be in the online mask yet so we need to manually
1476 	 * add it to it's own thread sibling mask.
1477 	 */
1478 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1479 
1480 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1481 		if (cpu_online(i))
1482 			set_cpus_related(i, cpu, cpu_sibling_mask);
1483 
1484 	add_cpu_to_smallcore_masks(cpu);
1485 
1486 	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1487 	alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1488 	update_mask_by_l2(cpu, &mask);
1489 
1490 	if (has_coregroup_support())
1491 		update_coregroup_mask(cpu, &mask);
1492 
1493 	free_cpumask_var(mask);
1494 }
1495 
1496 /* Activate a secondary processor. */
1497 void start_secondary(void *unused)
1498 {
1499 	unsigned int cpu = raw_smp_processor_id();
1500 
1501 	mmgrab(&init_mm);
1502 	current->active_mm = &init_mm;
1503 
1504 	smp_store_cpu_info(cpu);
1505 	set_dec(tb_ticks_per_jiffy);
1506 	rcu_cpu_starting(cpu);
1507 	preempt_disable();
1508 	cpu_callin_map[cpu] = 1;
1509 
1510 	if (smp_ops->setup_cpu)
1511 		smp_ops->setup_cpu(cpu);
1512 	if (smp_ops->take_timebase)
1513 		smp_ops->take_timebase();
1514 
1515 	secondary_cpu_time_init();
1516 
1517 #ifdef CONFIG_PPC64
1518 	if (system_state == SYSTEM_RUNNING)
1519 		vdso_data->processorCount++;
1520 
1521 	vdso_getcpu_init();
1522 #endif
1523 	/* Update topology CPU masks */
1524 	add_cpu_to_masks(cpu);
1525 
1526 	/*
1527 	 * Check for any shared caches. Note that this must be done on a
1528 	 * per-core basis because one core in the pair might be disabled.
1529 	 */
1530 	if (!shared_caches) {
1531 		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1532 		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1533 
1534 		if (has_big_cores)
1535 			sibling_mask = cpu_smallcore_mask;
1536 
1537 		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1538 			shared_caches = true;
1539 	}
1540 
1541 	set_numa_node(numa_cpu_lookup_table[cpu]);
1542 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1543 
1544 	smp_wmb();
1545 	notify_cpu_starting(cpu);
1546 	set_cpu_online(cpu, true);
1547 
1548 	boot_init_stack_canary();
1549 
1550 	local_irq_enable();
1551 
1552 	/* We can enable ftrace for secondary cpus now */
1553 	this_cpu_enable_ftrace();
1554 
1555 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1556 
1557 	BUG();
1558 }
1559 
1560 int setup_profiling_timer(unsigned int multiplier)
1561 {
1562 	return 0;
1563 }
1564 
1565 static void fixup_topology(void)
1566 {
1567 	int i;
1568 
1569 #ifdef CONFIG_SCHED_SMT
1570 	if (has_big_cores) {
1571 		pr_info("Big cores detected but using small core scheduling\n");
1572 		powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1573 	}
1574 #endif
1575 
1576 	if (!has_coregroup_support())
1577 		powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1578 
1579 	/*
1580 	 * Try to consolidate topology levels here instead of
1581 	 * allowing scheduler to degenerate.
1582 	 * - Dont consolidate if masks are different.
1583 	 * - Dont consolidate if sd_flags exists and are different.
1584 	 */
1585 	for (i = 1; i <= die_idx; i++) {
1586 		if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1587 			continue;
1588 
1589 		if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1590 				powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1591 			continue;
1592 
1593 		if (!powerpc_topology[i - 1].sd_flags)
1594 			powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1595 
1596 		powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1597 		powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1598 #ifdef CONFIG_SCHED_DEBUG
1599 		powerpc_topology[i].name = powerpc_topology[i + 1].name;
1600 #endif
1601 	}
1602 }
1603 
1604 void __init smp_cpus_done(unsigned int max_cpus)
1605 {
1606 	/*
1607 	 * We are running pinned to the boot CPU, see rest_init().
1608 	 */
1609 	if (smp_ops && smp_ops->setup_cpu)
1610 		smp_ops->setup_cpu(boot_cpuid);
1611 
1612 	if (smp_ops && smp_ops->bringup_done)
1613 		smp_ops->bringup_done();
1614 
1615 	dump_numa_cpu_topology();
1616 
1617 	fixup_topology();
1618 	set_sched_topology(powerpc_topology);
1619 }
1620 
1621 #ifdef CONFIG_HOTPLUG_CPU
1622 int __cpu_disable(void)
1623 {
1624 	int cpu = smp_processor_id();
1625 	int err;
1626 
1627 	if (!smp_ops->cpu_disable)
1628 		return -ENOSYS;
1629 
1630 	this_cpu_disable_ftrace();
1631 
1632 	err = smp_ops->cpu_disable();
1633 	if (err)
1634 		return err;
1635 
1636 	/* Update sibling maps */
1637 	remove_cpu_from_masks(cpu);
1638 
1639 	return 0;
1640 }
1641 
1642 void __cpu_die(unsigned int cpu)
1643 {
1644 	if (smp_ops->cpu_die)
1645 		smp_ops->cpu_die(cpu);
1646 }
1647 
1648 void arch_cpu_idle_dead(void)
1649 {
1650 	sched_preempt_enable_no_resched();
1651 
1652 	/*
1653 	 * Disable on the down path. This will be re-enabled by
1654 	 * start_secondary() via start_secondary_resume() below
1655 	 */
1656 	this_cpu_disable_ftrace();
1657 
1658 	if (smp_ops->cpu_offline_self)
1659 		smp_ops->cpu_offline_self();
1660 
1661 	/* If we return, we re-enter start_secondary */
1662 	start_secondary_resume();
1663 }
1664 
1665 #endif
1666