xref: /openbmc/linux/arch/powerpc/kernel/smp.c (revision 537b9f2b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SMP support for ppc.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6  * deal of code from the sparc and intel versions.
7  *
8  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9  *
10  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12  */
13 
14 #undef DEBUG
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 
39 #include <asm/ptrace.h>
40 #include <linux/atomic.h>
41 #include <asm/irq.h>
42 #include <asm/hw_irq.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/dbell.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/kexec.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/ftrace.h>
62 #include <asm/kup.h>
63 #include <asm/fadump.h>
64 
65 #ifdef DEBUG
66 #include <asm/udbg.h>
67 #define DBG(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG(fmt...)
70 #endif
71 
72 #ifdef CONFIG_HOTPLUG_CPU
73 /* State of each CPU during hotplug phases */
74 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
75 #endif
76 
77 struct task_struct *secondary_current;
78 bool has_big_cores;
79 bool coregroup_enabled;
80 bool thread_group_shares_l2;
81 bool thread_group_shares_l3;
82 
83 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
84 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
85 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
86 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
87 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
88 
89 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92 EXPORT_SYMBOL_GPL(has_big_cores);
93 
94 enum {
95 #ifdef CONFIG_SCHED_SMT
96 	smt_idx,
97 #endif
98 	cache_idx,
99 	mc_idx,
100 	die_idx,
101 };
102 
103 #define MAX_THREAD_LIST_SIZE	8
104 #define THREAD_GROUP_SHARE_L1   1
105 #define THREAD_GROUP_SHARE_L2_L3 2
106 struct thread_groups {
107 	unsigned int property;
108 	unsigned int nr_groups;
109 	unsigned int threads_per_group;
110 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
111 };
112 
113 /* Maximum number of properties that groups of threads within a core can share */
114 #define MAX_THREAD_GROUP_PROPERTIES 2
115 
116 struct thread_groups_list {
117 	unsigned int nr_properties;
118 	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
119 };
120 
121 static struct thread_groups_list tgl[NR_CPUS] __initdata;
122 /*
123  * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
124  * the set its siblings that share the L1-cache.
125  */
126 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
127 
128 /*
129  * On some big-cores system, thread_group_l2_cache_map for each CPU
130  * corresponds to the set its siblings within the core that share the
131  * L2-cache.
132  */
133 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
134 
135 /*
136  * On P10, thread_group_l3_cache_map for each CPU is equal to the
137  * thread_group_l2_cache_map
138  */
139 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
140 
141 /* SMP operations for this machine */
142 struct smp_ops_t *smp_ops;
143 
144 /* Can't be static due to PowerMac hackery */
145 volatile unsigned int cpu_callin_map[NR_CPUS];
146 
147 int smt_enabled_at_boot = 1;
148 
149 /*
150  * Returns 1 if the specified cpu should be brought up during boot.
151  * Used to inhibit booting threads if they've been disabled or
152  * limited on the command line
153  */
154 int smp_generic_cpu_bootable(unsigned int nr)
155 {
156 	/* Special case - we inhibit secondary thread startup
157 	 * during boot if the user requests it.
158 	 */
159 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
160 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
161 			return 0;
162 		if (smt_enabled_at_boot
163 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
164 			return 0;
165 	}
166 
167 	return 1;
168 }
169 
170 
171 #ifdef CONFIG_PPC64
172 int smp_generic_kick_cpu(int nr)
173 {
174 	if (nr < 0 || nr >= nr_cpu_ids)
175 		return -EINVAL;
176 
177 	/*
178 	 * The processor is currently spinning, waiting for the
179 	 * cpu_start field to become non-zero After we set cpu_start,
180 	 * the processor will continue on to secondary_start
181 	 */
182 	if (!paca_ptrs[nr]->cpu_start) {
183 		paca_ptrs[nr]->cpu_start = 1;
184 		smp_mb();
185 		return 0;
186 	}
187 
188 #ifdef CONFIG_HOTPLUG_CPU
189 	/*
190 	 * Ok it's not there, so it might be soft-unplugged, let's
191 	 * try to bring it back
192 	 */
193 	generic_set_cpu_up(nr);
194 	smp_wmb();
195 	smp_send_reschedule(nr);
196 #endif /* CONFIG_HOTPLUG_CPU */
197 
198 	return 0;
199 }
200 #endif /* CONFIG_PPC64 */
201 
202 static irqreturn_t call_function_action(int irq, void *data)
203 {
204 	generic_smp_call_function_interrupt();
205 	return IRQ_HANDLED;
206 }
207 
208 static irqreturn_t reschedule_action(int irq, void *data)
209 {
210 	scheduler_ipi();
211 	return IRQ_HANDLED;
212 }
213 
214 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
215 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
216 {
217 	timer_broadcast_interrupt();
218 	return IRQ_HANDLED;
219 }
220 #endif
221 
222 #ifdef CONFIG_NMI_IPI
223 static irqreturn_t nmi_ipi_action(int irq, void *data)
224 {
225 	smp_handle_nmi_ipi(get_irq_regs());
226 	return IRQ_HANDLED;
227 }
228 #endif
229 
230 static irq_handler_t smp_ipi_action[] = {
231 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
232 	[PPC_MSG_RESCHEDULE] = reschedule_action,
233 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
234 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
235 #endif
236 #ifdef CONFIG_NMI_IPI
237 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
238 #endif
239 };
240 
241 /*
242  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
243  * than going through the call function infrastructure, and strongly
244  * serialized, so it is more appropriate for debugging.
245  */
246 const char *smp_ipi_name[] = {
247 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
248 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
249 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
250 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
251 #endif
252 #ifdef CONFIG_NMI_IPI
253 	[PPC_MSG_NMI_IPI] = "nmi ipi",
254 #endif
255 };
256 
257 /* optional function to request ipi, for controllers with >= 4 ipis */
258 int smp_request_message_ipi(int virq, int msg)
259 {
260 	int err;
261 
262 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
263 		return -EINVAL;
264 #ifndef CONFIG_NMI_IPI
265 	if (msg == PPC_MSG_NMI_IPI)
266 		return 1;
267 #endif
268 
269 	err = request_irq(virq, smp_ipi_action[msg],
270 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
271 			  smp_ipi_name[msg], NULL);
272 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
273 		virq, smp_ipi_name[msg], err);
274 
275 	return err;
276 }
277 
278 #ifdef CONFIG_PPC_SMP_MUXED_IPI
279 struct cpu_messages {
280 	long messages;			/* current messages */
281 };
282 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
283 
284 void smp_muxed_ipi_set_message(int cpu, int msg)
285 {
286 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
287 	char *message = (char *)&info->messages;
288 
289 	/*
290 	 * Order previous accesses before accesses in the IPI handler.
291 	 */
292 	smp_mb();
293 	message[msg] = 1;
294 }
295 
296 void smp_muxed_ipi_message_pass(int cpu, int msg)
297 {
298 	smp_muxed_ipi_set_message(cpu, msg);
299 
300 	/*
301 	 * cause_ipi functions are required to include a full barrier
302 	 * before doing whatever causes the IPI.
303 	 */
304 	smp_ops->cause_ipi(cpu);
305 }
306 
307 #ifdef __BIG_ENDIAN__
308 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
309 #else
310 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
311 #endif
312 
313 irqreturn_t smp_ipi_demux(void)
314 {
315 	mb();	/* order any irq clear */
316 
317 	return smp_ipi_demux_relaxed();
318 }
319 
320 /* sync-free variant. Callers should ensure synchronization */
321 irqreturn_t smp_ipi_demux_relaxed(void)
322 {
323 	struct cpu_messages *info;
324 	unsigned long all;
325 
326 	info = this_cpu_ptr(&ipi_message);
327 	do {
328 		all = xchg(&info->messages, 0);
329 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
330 		/*
331 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
332 		 * before PPC_MSG_CALL_FUNCTION messages because when
333 		 * a VM is destroyed, we call kick_all_cpus_sync()
334 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
335 		 * messages have completed before we free any VCPUs.
336 		 */
337 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
338 			kvmppc_xics_ipi_action();
339 #endif
340 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
341 			generic_smp_call_function_interrupt();
342 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
343 			scheduler_ipi();
344 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
345 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
346 			timer_broadcast_interrupt();
347 #endif
348 #ifdef CONFIG_NMI_IPI
349 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
350 			nmi_ipi_action(0, NULL);
351 #endif
352 	} while (info->messages);
353 
354 	return IRQ_HANDLED;
355 }
356 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
357 
358 static inline void do_message_pass(int cpu, int msg)
359 {
360 	if (smp_ops->message_pass)
361 		smp_ops->message_pass(cpu, msg);
362 #ifdef CONFIG_PPC_SMP_MUXED_IPI
363 	else
364 		smp_muxed_ipi_message_pass(cpu, msg);
365 #endif
366 }
367 
368 void smp_send_reschedule(int cpu)
369 {
370 	if (likely(smp_ops))
371 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
372 }
373 EXPORT_SYMBOL_GPL(smp_send_reschedule);
374 
375 void arch_send_call_function_single_ipi(int cpu)
376 {
377 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
378 }
379 
380 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
381 {
382 	unsigned int cpu;
383 
384 	for_each_cpu(cpu, mask)
385 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
386 }
387 
388 #ifdef CONFIG_NMI_IPI
389 
390 /*
391  * "NMI IPI" system.
392  *
393  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
394  * a running system. They can be used for crash, debug, halt/reboot, etc.
395  *
396  * The IPI call waits with interrupts disabled until all targets enter the
397  * NMI handler, then returns. Subsequent IPIs can be issued before targets
398  * have returned from their handlers, so there is no guarantee about
399  * concurrency or re-entrancy.
400  *
401  * A new NMI can be issued before all targets exit the handler.
402  *
403  * The IPI call may time out without all targets entering the NMI handler.
404  * In that case, there is some logic to recover (and ignore subsequent
405  * NMI interrupts that may eventually be raised), but the platform interrupt
406  * handler may not be able to distinguish this from other exception causes,
407  * which may cause a crash.
408  */
409 
410 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
411 static struct cpumask nmi_ipi_pending_mask;
412 static bool nmi_ipi_busy = false;
413 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
414 
415 static void nmi_ipi_lock_start(unsigned long *flags)
416 {
417 	raw_local_irq_save(*flags);
418 	hard_irq_disable();
419 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
420 		raw_local_irq_restore(*flags);
421 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
422 		raw_local_irq_save(*flags);
423 		hard_irq_disable();
424 	}
425 }
426 
427 static void nmi_ipi_lock(void)
428 {
429 	while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
430 		spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
431 }
432 
433 static void nmi_ipi_unlock(void)
434 {
435 	smp_mb();
436 	WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
437 	atomic_set(&__nmi_ipi_lock, 0);
438 }
439 
440 static void nmi_ipi_unlock_end(unsigned long *flags)
441 {
442 	nmi_ipi_unlock();
443 	raw_local_irq_restore(*flags);
444 }
445 
446 /*
447  * Platform NMI handler calls this to ack
448  */
449 int smp_handle_nmi_ipi(struct pt_regs *regs)
450 {
451 	void (*fn)(struct pt_regs *) = NULL;
452 	unsigned long flags;
453 	int me = raw_smp_processor_id();
454 	int ret = 0;
455 
456 	/*
457 	 * Unexpected NMIs are possible here because the interrupt may not
458 	 * be able to distinguish NMI IPIs from other types of NMIs, or
459 	 * because the caller may have timed out.
460 	 */
461 	nmi_ipi_lock_start(&flags);
462 	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
463 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
464 		fn = READ_ONCE(nmi_ipi_function);
465 		WARN_ON_ONCE(!fn);
466 		ret = 1;
467 	}
468 	nmi_ipi_unlock_end(&flags);
469 
470 	if (fn)
471 		fn(regs);
472 
473 	return ret;
474 }
475 
476 static void do_smp_send_nmi_ipi(int cpu, bool safe)
477 {
478 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
479 		return;
480 
481 	if (cpu >= 0) {
482 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
483 	} else {
484 		int c;
485 
486 		for_each_online_cpu(c) {
487 			if (c == raw_smp_processor_id())
488 				continue;
489 			do_message_pass(c, PPC_MSG_NMI_IPI);
490 		}
491 	}
492 }
493 
494 /*
495  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
496  * - fn is the target callback function.
497  * - delay_us > 0 is the delay before giving up waiting for targets to
498  *   begin executing the handler, == 0 specifies indefinite delay.
499  */
500 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
501 				u64 delay_us, bool safe)
502 {
503 	unsigned long flags;
504 	int me = raw_smp_processor_id();
505 	int ret = 1;
506 
507 	BUG_ON(cpu == me);
508 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
509 
510 	if (unlikely(!smp_ops))
511 		return 0;
512 
513 	nmi_ipi_lock_start(&flags);
514 	while (nmi_ipi_busy) {
515 		nmi_ipi_unlock_end(&flags);
516 		spin_until_cond(!nmi_ipi_busy);
517 		nmi_ipi_lock_start(&flags);
518 	}
519 	nmi_ipi_busy = true;
520 	nmi_ipi_function = fn;
521 
522 	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
523 
524 	if (cpu < 0) {
525 		/* ALL_OTHERS */
526 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
527 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
528 	} else {
529 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
530 	}
531 
532 	nmi_ipi_unlock();
533 
534 	/* Interrupts remain hard disabled */
535 
536 	do_smp_send_nmi_ipi(cpu, safe);
537 
538 	nmi_ipi_lock();
539 	/* nmi_ipi_busy is set here, so unlock/lock is okay */
540 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
541 		nmi_ipi_unlock();
542 		udelay(1);
543 		nmi_ipi_lock();
544 		if (delay_us) {
545 			delay_us--;
546 			if (!delay_us)
547 				break;
548 		}
549 	}
550 
551 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
552 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
553 		ret = 0;
554 		cpumask_clear(&nmi_ipi_pending_mask);
555 	}
556 
557 	nmi_ipi_function = NULL;
558 	nmi_ipi_busy = false;
559 
560 	nmi_ipi_unlock_end(&flags);
561 
562 	return ret;
563 }
564 
565 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
566 {
567 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
568 }
569 
570 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
571 {
572 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
573 }
574 #endif /* CONFIG_NMI_IPI */
575 
576 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
577 void tick_broadcast(const struct cpumask *mask)
578 {
579 	unsigned int cpu;
580 
581 	for_each_cpu(cpu, mask)
582 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
583 }
584 #endif
585 
586 #ifdef CONFIG_DEBUGGER
587 static void debugger_ipi_callback(struct pt_regs *regs)
588 {
589 	debugger_ipi(regs);
590 }
591 
592 void smp_send_debugger_break(void)
593 {
594 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
595 }
596 #endif
597 
598 #ifdef CONFIG_KEXEC_CORE
599 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
600 {
601 	int cpu;
602 
603 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
604 	if (kdump_in_progress() && crash_wake_offline) {
605 		for_each_present_cpu(cpu) {
606 			if (cpu_online(cpu))
607 				continue;
608 			/*
609 			 * crash_ipi_callback will wait for
610 			 * all cpus, including offline CPUs.
611 			 * We don't care about nmi_ipi_function.
612 			 * Offline cpus will jump straight into
613 			 * crash_ipi_callback, we can skip the
614 			 * entire NMI dance and waiting for
615 			 * cpus to clear pending mask, etc.
616 			 */
617 			do_smp_send_nmi_ipi(cpu, false);
618 		}
619 	}
620 }
621 #endif
622 
623 #ifdef CONFIG_NMI_IPI
624 static void crash_stop_this_cpu(struct pt_regs *regs)
625 #else
626 static void crash_stop_this_cpu(void *dummy)
627 #endif
628 {
629 	/*
630 	 * Just busy wait here and avoid marking CPU as offline to ensure
631 	 * register data is captured appropriately.
632 	 */
633 	while (1)
634 		cpu_relax();
635 }
636 
637 void crash_smp_send_stop(void)
638 {
639 	static bool stopped = false;
640 
641 	/*
642 	 * In case of fadump, register data for all CPUs is captured by f/w
643 	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
644 	 * this rtas call to avoid tricky post processing of those CPUs'
645 	 * backtraces.
646 	 */
647 	if (should_fadump_crash())
648 		return;
649 
650 	if (stopped)
651 		return;
652 
653 	stopped = true;
654 
655 #ifdef CONFIG_NMI_IPI
656 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000);
657 #else
658 	smp_call_function(crash_stop_this_cpu, NULL, 0);
659 #endif /* CONFIG_NMI_IPI */
660 }
661 
662 #ifdef CONFIG_NMI_IPI
663 static void nmi_stop_this_cpu(struct pt_regs *regs)
664 {
665 	/*
666 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
667 	 */
668 	set_cpu_online(smp_processor_id(), false);
669 
670 	spin_begin();
671 	while (1)
672 		spin_cpu_relax();
673 }
674 
675 void smp_send_stop(void)
676 {
677 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
678 }
679 
680 #else /* CONFIG_NMI_IPI */
681 
682 static void stop_this_cpu(void *dummy)
683 {
684 	hard_irq_disable();
685 
686 	/*
687 	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
688 	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
689 	 * to know other CPUs are offline before it breaks locks to flush
690 	 * printk buffers, in case we panic()ed while holding the lock.
691 	 */
692 	set_cpu_online(smp_processor_id(), false);
693 
694 	spin_begin();
695 	while (1)
696 		spin_cpu_relax();
697 }
698 
699 void smp_send_stop(void)
700 {
701 	static bool stopped = false;
702 
703 	/*
704 	 * Prevent waiting on csd lock from a previous smp_send_stop.
705 	 * This is racy, but in general callers try to do the right
706 	 * thing and only fire off one smp_send_stop (e.g., see
707 	 * kernel/panic.c)
708 	 */
709 	if (stopped)
710 		return;
711 
712 	stopped = true;
713 
714 	smp_call_function(stop_this_cpu, NULL, 0);
715 }
716 #endif /* CONFIG_NMI_IPI */
717 
718 static struct task_struct *current_set[NR_CPUS];
719 
720 static void smp_store_cpu_info(int id)
721 {
722 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
723 #ifdef CONFIG_PPC_FSL_BOOK3E
724 	per_cpu(next_tlbcam_idx, id)
725 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
726 #endif
727 }
728 
729 /*
730  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
731  * rather than just passing around the cpumask we pass around a function that
732  * returns the that cpumask for the given CPU.
733  */
734 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
735 {
736 	cpumask_set_cpu(i, get_cpumask(j));
737 	cpumask_set_cpu(j, get_cpumask(i));
738 }
739 
740 #ifdef CONFIG_HOTPLUG_CPU
741 static void set_cpus_unrelated(int i, int j,
742 		struct cpumask *(*get_cpumask)(int))
743 {
744 	cpumask_clear_cpu(i, get_cpumask(j));
745 	cpumask_clear_cpu(j, get_cpumask(i));
746 }
747 #endif
748 
749 /*
750  * Extends set_cpus_related. Instead of setting one CPU at a time in
751  * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
752  */
753 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
754 				struct cpumask *(*dstmask)(int))
755 {
756 	struct cpumask *mask;
757 	int k;
758 
759 	mask = srcmask(j);
760 	for_each_cpu(k, srcmask(i))
761 		cpumask_or(dstmask(k), dstmask(k), mask);
762 
763 	if (i == j)
764 		return;
765 
766 	mask = srcmask(i);
767 	for_each_cpu(k, srcmask(j))
768 		cpumask_or(dstmask(k), dstmask(k), mask);
769 }
770 
771 /*
772  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
773  *                      property for the CPU device node @dn and stores
774  *                      the parsed output in the thread_groups_list
775  *                      structure @tglp.
776  *
777  * @dn: The device node of the CPU device.
778  * @tglp: Pointer to a thread group list structure into which the parsed
779  *      output of "ibm,thread-groups" is stored.
780  *
781  * ibm,thread-groups[0..N-1] array defines which group of threads in
782  * the CPU-device node can be grouped together based on the property.
783  *
784  * This array can represent thread groupings for multiple properties.
785  *
786  * ibm,thread-groups[i + 0] tells us the property based on which the
787  * threads are being grouped together. If this value is 1, it implies
788  * that the threads in the same group share L1, translation cache. If
789  * the value is 2, it implies that the threads in the same group share
790  * the same L2 cache.
791  *
792  * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
793  * property ibm,thread-groups[i]
794  *
795  * ibm,thread-groups[i+2] tells us the number of threads in each such
796  * group.
797  * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
798  *
799  * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
800  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
801  * the grouping.
802  *
803  * Example:
804  * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
805  * This can be decomposed up into two consecutive arrays:
806  * a) [1,2,4,8,10,12,14,9,11,13,15]
807  * b) [2,2,4,8,10,12,14,9,11,13,15]
808  *
809  * where in,
810  *
811  * a) provides information of Property "1" being shared by "2" groups,
812  *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
813  *  the first group is {8,10,12,14} and the
814  *  "ibm,ppc-interrupt-server#s" of the second group is
815  *  {9,11,13,15}. Property "1" is indicative of the thread in the
816  *  group sharing L1 cache, translation cache and Instruction Data
817  *  flow.
818  *
819  * b) provides information of Property "2" being shared by "2" groups,
820  *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
821  *  the first group is {8,10,12,14} and the
822  *  "ibm,ppc-interrupt-server#s" of the second group is
823  *  {9,11,13,15}. Property "2" indicates that the threads in each
824  *  group share the L2-cache.
825  *
826  * Returns 0 on success, -EINVAL if the property does not exist,
827  * -ENODATA if property does not have a value, and -EOVERFLOW if the
828  * property data isn't large enough.
829  */
830 static int parse_thread_groups(struct device_node *dn,
831 			       struct thread_groups_list *tglp)
832 {
833 	unsigned int property_idx = 0;
834 	u32 *thread_group_array;
835 	size_t total_threads;
836 	int ret = 0, count;
837 	u32 *thread_list;
838 	int i = 0;
839 
840 	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
841 	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
842 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
843 					 thread_group_array, count);
844 	if (ret)
845 		goto out_free;
846 
847 	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
848 		int j;
849 		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
850 
851 		tg->property = thread_group_array[i];
852 		tg->nr_groups = thread_group_array[i + 1];
853 		tg->threads_per_group = thread_group_array[i + 2];
854 		total_threads = tg->nr_groups * tg->threads_per_group;
855 
856 		thread_list = &thread_group_array[i + 3];
857 
858 		for (j = 0; j < total_threads; j++)
859 			tg->thread_list[j] = thread_list[j];
860 		i = i + 3 + total_threads;
861 	}
862 
863 	tglp->nr_properties = property_idx;
864 
865 out_free:
866 	kfree(thread_group_array);
867 	return ret;
868 }
869 
870 /*
871  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
872  *                              that @cpu belongs to.
873  *
874  * @cpu : The logical CPU whose thread group is being searched.
875  * @tg : The thread-group structure of the CPU node which @cpu belongs
876  *       to.
877  *
878  * Returns the index to tg->thread_list that points to the the start
879  * of the thread_group that @cpu belongs to.
880  *
881  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
882  * tg->thread_list.
883  */
884 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
885 {
886 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
887 	int i, j;
888 
889 	for (i = 0; i < tg->nr_groups; i++) {
890 		int group_start = i * tg->threads_per_group;
891 
892 		for (j = 0; j < tg->threads_per_group; j++) {
893 			int idx = group_start + j;
894 
895 			if (tg->thread_list[idx] == hw_cpu_id)
896 				return group_start;
897 		}
898 	}
899 
900 	return -1;
901 }
902 
903 static struct thread_groups *__init get_thread_groups(int cpu,
904 						      int group_property,
905 						      int *err)
906 {
907 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
908 	struct thread_groups_list *cpu_tgl = &tgl[cpu];
909 	struct thread_groups *tg = NULL;
910 	int i;
911 	*err = 0;
912 
913 	if (!dn) {
914 		*err = -ENODATA;
915 		return NULL;
916 	}
917 
918 	if (!cpu_tgl->nr_properties) {
919 		*err = parse_thread_groups(dn, cpu_tgl);
920 		if (*err)
921 			goto out;
922 	}
923 
924 	for (i = 0; i < cpu_tgl->nr_properties; i++) {
925 		if (cpu_tgl->property_tgs[i].property == group_property) {
926 			tg = &cpu_tgl->property_tgs[i];
927 			break;
928 		}
929 	}
930 
931 	if (!tg)
932 		*err = -EINVAL;
933 out:
934 	of_node_put(dn);
935 	return tg;
936 }
937 
938 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
939 					       int cpu, int cpu_group_start)
940 {
941 	int first_thread = cpu_first_thread_sibling(cpu);
942 	int i;
943 
944 	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
945 
946 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
947 		int i_group_start = get_cpu_thread_group_start(i, tg);
948 
949 		if (unlikely(i_group_start == -1)) {
950 			WARN_ON_ONCE(1);
951 			return -ENODATA;
952 		}
953 
954 		if (i_group_start == cpu_group_start)
955 			cpumask_set_cpu(i, *mask);
956 	}
957 
958 	return 0;
959 }
960 
961 static int __init init_thread_group_cache_map(int cpu, int cache_property)
962 
963 {
964 	int cpu_group_start = -1, err = 0;
965 	struct thread_groups *tg = NULL;
966 	cpumask_var_t *mask = NULL;
967 
968 	if (cache_property != THREAD_GROUP_SHARE_L1 &&
969 	    cache_property != THREAD_GROUP_SHARE_L2_L3)
970 		return -EINVAL;
971 
972 	tg = get_thread_groups(cpu, cache_property, &err);
973 
974 	if (!tg)
975 		return err;
976 
977 	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
978 
979 	if (unlikely(cpu_group_start == -1)) {
980 		WARN_ON_ONCE(1);
981 		return -ENODATA;
982 	}
983 
984 	if (cache_property == THREAD_GROUP_SHARE_L1) {
985 		mask = &per_cpu(thread_group_l1_cache_map, cpu);
986 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
987 	}
988 	else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
989 		mask = &per_cpu(thread_group_l2_cache_map, cpu);
990 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
991 		mask = &per_cpu(thread_group_l3_cache_map, cpu);
992 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
993 	}
994 
995 
996 	return 0;
997 }
998 
999 static bool shared_caches;
1000 
1001 #ifdef CONFIG_SCHED_SMT
1002 /* cpumask of CPUs with asymmetric SMT dependency */
1003 static int powerpc_smt_flags(void)
1004 {
1005 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1006 
1007 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1008 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1009 		flags |= SD_ASYM_PACKING;
1010 	}
1011 	return flags;
1012 }
1013 #endif
1014 
1015 /*
1016  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1017  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1018  * since the migrated task remains cache hot. We want to take advantage of this
1019  * at the scheduler level so an extra topology level is required.
1020  */
1021 static int powerpc_shared_cache_flags(void)
1022 {
1023 	return SD_SHARE_PKG_RESOURCES;
1024 }
1025 
1026 /*
1027  * We can't just pass cpu_l2_cache_mask() directly because
1028  * returns a non-const pointer and the compiler barfs on that.
1029  */
1030 static const struct cpumask *shared_cache_mask(int cpu)
1031 {
1032 	return per_cpu(cpu_l2_cache_map, cpu);
1033 }
1034 
1035 #ifdef CONFIG_SCHED_SMT
1036 static const struct cpumask *smallcore_smt_mask(int cpu)
1037 {
1038 	return cpu_smallcore_mask(cpu);
1039 }
1040 #endif
1041 
1042 static struct cpumask *cpu_coregroup_mask(int cpu)
1043 {
1044 	return per_cpu(cpu_coregroup_map, cpu);
1045 }
1046 
1047 static bool has_coregroup_support(void)
1048 {
1049 	return coregroup_enabled;
1050 }
1051 
1052 static const struct cpumask *cpu_mc_mask(int cpu)
1053 {
1054 	return cpu_coregroup_mask(cpu);
1055 }
1056 
1057 static struct sched_domain_topology_level powerpc_topology[] = {
1058 #ifdef CONFIG_SCHED_SMT
1059 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1060 #endif
1061 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1062 	{ cpu_mc_mask, SD_INIT_NAME(MC) },
1063 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1064 	{ NULL, },
1065 };
1066 
1067 static int __init init_big_cores(void)
1068 {
1069 	int cpu;
1070 
1071 	for_each_possible_cpu(cpu) {
1072 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1073 
1074 		if (err)
1075 			return err;
1076 
1077 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1078 					GFP_KERNEL,
1079 					cpu_to_node(cpu));
1080 	}
1081 
1082 	has_big_cores = true;
1083 
1084 	for_each_possible_cpu(cpu) {
1085 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1086 
1087 		if (err)
1088 			return err;
1089 	}
1090 
1091 	thread_group_shares_l2 = true;
1092 	thread_group_shares_l3 = true;
1093 	pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1094 
1095 	return 0;
1096 }
1097 
1098 void __init smp_prepare_cpus(unsigned int max_cpus)
1099 {
1100 	unsigned int cpu;
1101 
1102 	DBG("smp_prepare_cpus\n");
1103 
1104 	/*
1105 	 * setup_cpu may need to be called on the boot cpu. We havent
1106 	 * spun any cpus up but lets be paranoid.
1107 	 */
1108 	BUG_ON(boot_cpuid != smp_processor_id());
1109 
1110 	/* Fixup boot cpu */
1111 	smp_store_cpu_info(boot_cpuid);
1112 	cpu_callin_map[boot_cpuid] = 1;
1113 
1114 	for_each_possible_cpu(cpu) {
1115 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1116 					GFP_KERNEL, cpu_to_node(cpu));
1117 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1118 					GFP_KERNEL, cpu_to_node(cpu));
1119 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1120 					GFP_KERNEL, cpu_to_node(cpu));
1121 		if (has_coregroup_support())
1122 			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1123 						GFP_KERNEL, cpu_to_node(cpu));
1124 
1125 #ifdef CONFIG_NUMA
1126 		/*
1127 		 * numa_node_id() works after this.
1128 		 */
1129 		if (cpu_present(cpu)) {
1130 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1131 			set_cpu_numa_mem(cpu,
1132 				local_memory_node(numa_cpu_lookup_table[cpu]));
1133 		}
1134 #endif
1135 	}
1136 
1137 	/* Init the cpumasks so the boot CPU is related to itself */
1138 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1139 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1140 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1141 
1142 	if (has_coregroup_support())
1143 		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1144 
1145 	init_big_cores();
1146 	if (has_big_cores) {
1147 		cpumask_set_cpu(boot_cpuid,
1148 				cpu_smallcore_mask(boot_cpuid));
1149 	}
1150 
1151 	if (cpu_to_chip_id(boot_cpuid) != -1) {
1152 		int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1153 
1154 		/*
1155 		 * All threads of a core will all belong to the same core,
1156 		 * chip_id_lookup_table will have one entry per core.
1157 		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1158 		 * other CPUs, will also not have chip-id.
1159 		 */
1160 		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1161 		if (chip_id_lookup_table)
1162 			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1163 	}
1164 
1165 	if (smp_ops && smp_ops->probe)
1166 		smp_ops->probe();
1167 }
1168 
1169 void smp_prepare_boot_cpu(void)
1170 {
1171 	BUG_ON(smp_processor_id() != boot_cpuid);
1172 #ifdef CONFIG_PPC64
1173 	paca_ptrs[boot_cpuid]->__current = current;
1174 #endif
1175 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1176 	current_set[boot_cpuid] = current;
1177 }
1178 
1179 #ifdef CONFIG_HOTPLUG_CPU
1180 
1181 int generic_cpu_disable(void)
1182 {
1183 	unsigned int cpu = smp_processor_id();
1184 
1185 	if (cpu == boot_cpuid)
1186 		return -EBUSY;
1187 
1188 	set_cpu_online(cpu, false);
1189 #ifdef CONFIG_PPC64
1190 	vdso_data->processorCount--;
1191 #endif
1192 	/* Update affinity of all IRQs previously aimed at this CPU */
1193 	irq_migrate_all_off_this_cpu();
1194 
1195 	/*
1196 	 * Depending on the details of the interrupt controller, it's possible
1197 	 * that one of the interrupts we just migrated away from this CPU is
1198 	 * actually already pending on this CPU. If we leave it in that state
1199 	 * the interrupt will never be EOI'ed, and will never fire again. So
1200 	 * temporarily enable interrupts here, to allow any pending interrupt to
1201 	 * be received (and EOI'ed), before we take this CPU offline.
1202 	 */
1203 	local_irq_enable();
1204 	mdelay(1);
1205 	local_irq_disable();
1206 
1207 	return 0;
1208 }
1209 
1210 void generic_cpu_die(unsigned int cpu)
1211 {
1212 	int i;
1213 
1214 	for (i = 0; i < 100; i++) {
1215 		smp_rmb();
1216 		if (is_cpu_dead(cpu))
1217 			return;
1218 		msleep(100);
1219 	}
1220 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1221 }
1222 
1223 void generic_set_cpu_dead(unsigned int cpu)
1224 {
1225 	per_cpu(cpu_state, cpu) = CPU_DEAD;
1226 }
1227 
1228 /*
1229  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1230  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1231  * which makes the delay in generic_cpu_die() not happen.
1232  */
1233 void generic_set_cpu_up(unsigned int cpu)
1234 {
1235 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1236 }
1237 
1238 int generic_check_cpu_restart(unsigned int cpu)
1239 {
1240 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1241 }
1242 
1243 int is_cpu_dead(unsigned int cpu)
1244 {
1245 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1246 }
1247 
1248 static bool secondaries_inhibited(void)
1249 {
1250 	return kvm_hv_mode_active();
1251 }
1252 
1253 #else /* HOTPLUG_CPU */
1254 
1255 #define secondaries_inhibited()		0
1256 
1257 #endif
1258 
1259 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1260 {
1261 #ifdef CONFIG_PPC64
1262 	paca_ptrs[cpu]->__current = idle;
1263 	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1264 				 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1265 #endif
1266 	task_thread_info(idle)->cpu = cpu;
1267 	secondary_current = current_set[cpu] = idle;
1268 }
1269 
1270 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1271 {
1272 	int rc, c;
1273 
1274 	/*
1275 	 * Don't allow secondary threads to come online if inhibited
1276 	 */
1277 	if (threads_per_core > 1 && secondaries_inhibited() &&
1278 	    cpu_thread_in_subcore(cpu))
1279 		return -EBUSY;
1280 
1281 	if (smp_ops == NULL ||
1282 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1283 		return -EINVAL;
1284 
1285 	cpu_idle_thread_init(cpu, tidle);
1286 
1287 	/*
1288 	 * The platform might need to allocate resources prior to bringing
1289 	 * up the CPU
1290 	 */
1291 	if (smp_ops->prepare_cpu) {
1292 		rc = smp_ops->prepare_cpu(cpu);
1293 		if (rc)
1294 			return rc;
1295 	}
1296 
1297 	/* Make sure callin-map entry is 0 (can be leftover a CPU
1298 	 * hotplug
1299 	 */
1300 	cpu_callin_map[cpu] = 0;
1301 
1302 	/* The information for processor bringup must
1303 	 * be written out to main store before we release
1304 	 * the processor.
1305 	 */
1306 	smp_mb();
1307 
1308 	/* wake up cpus */
1309 	DBG("smp: kicking cpu %d\n", cpu);
1310 	rc = smp_ops->kick_cpu(cpu);
1311 	if (rc) {
1312 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1313 		return rc;
1314 	}
1315 
1316 	/*
1317 	 * wait to see if the cpu made a callin (is actually up).
1318 	 * use this value that I found through experimentation.
1319 	 * -- Cort
1320 	 */
1321 	if (system_state < SYSTEM_RUNNING)
1322 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1323 			udelay(100);
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 	else
1326 		/*
1327 		 * CPUs can take much longer to come up in the
1328 		 * hotplug case.  Wait five seconds.
1329 		 */
1330 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1331 			msleep(1);
1332 #endif
1333 
1334 	if (!cpu_callin_map[cpu]) {
1335 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1336 		return -ENOENT;
1337 	}
1338 
1339 	DBG("Processor %u found.\n", cpu);
1340 
1341 	if (smp_ops->give_timebase)
1342 		smp_ops->give_timebase();
1343 
1344 	/* Wait until cpu puts itself in the online & active maps */
1345 	spin_until_cond(cpu_online(cpu));
1346 
1347 	return 0;
1348 }
1349 
1350 /* Return the value of the reg property corresponding to the given
1351  * logical cpu.
1352  */
1353 int cpu_to_core_id(int cpu)
1354 {
1355 	struct device_node *np;
1356 	int id = -1;
1357 
1358 	np = of_get_cpu_node(cpu, NULL);
1359 	if (!np)
1360 		goto out;
1361 
1362 	id = of_get_cpu_hwid(np, 0);
1363 out:
1364 	of_node_put(np);
1365 	return id;
1366 }
1367 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1368 
1369 /* Helper routines for cpu to core mapping */
1370 int cpu_core_index_of_thread(int cpu)
1371 {
1372 	return cpu >> threads_shift;
1373 }
1374 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1375 
1376 int cpu_first_thread_of_core(int core)
1377 {
1378 	return core << threads_shift;
1379 }
1380 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1381 
1382 /* Must be called when no change can occur to cpu_present_mask,
1383  * i.e. during cpu online or offline.
1384  */
1385 static struct device_node *cpu_to_l2cache(int cpu)
1386 {
1387 	struct device_node *np;
1388 	struct device_node *cache;
1389 
1390 	if (!cpu_present(cpu))
1391 		return NULL;
1392 
1393 	np = of_get_cpu_node(cpu, NULL);
1394 	if (np == NULL)
1395 		return NULL;
1396 
1397 	cache = of_find_next_cache_node(np);
1398 
1399 	of_node_put(np);
1400 
1401 	return cache;
1402 }
1403 
1404 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1405 {
1406 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1407 	struct device_node *l2_cache, *np;
1408 	int i;
1409 
1410 	if (has_big_cores)
1411 		submask_fn = cpu_smallcore_mask;
1412 
1413 	/*
1414 	 * If the threads in a thread-group share L2 cache, then the
1415 	 * L2-mask can be obtained from thread_group_l2_cache_map.
1416 	 */
1417 	if (thread_group_shares_l2) {
1418 		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1419 
1420 		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1421 			if (cpu_online(i))
1422 				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1423 		}
1424 
1425 		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1426 		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1427 		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1428 			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1429 				     cpu);
1430 		}
1431 
1432 		return true;
1433 	}
1434 
1435 	l2_cache = cpu_to_l2cache(cpu);
1436 	if (!l2_cache || !*mask) {
1437 		/* Assume only core siblings share cache with this CPU */
1438 		for_each_cpu(i, cpu_sibling_mask(cpu))
1439 			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1440 
1441 		return false;
1442 	}
1443 
1444 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1445 
1446 	/* Update l2-cache mask with all the CPUs that are part of submask */
1447 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1448 
1449 	/* Skip all CPUs already part of current CPU l2-cache mask */
1450 	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1451 
1452 	for_each_cpu(i, *mask) {
1453 		/*
1454 		 * when updating the marks the current CPU has not been marked
1455 		 * online, but we need to update the cache masks
1456 		 */
1457 		np = cpu_to_l2cache(i);
1458 
1459 		/* Skip all CPUs already part of current CPU l2-cache */
1460 		if (np == l2_cache) {
1461 			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1462 			cpumask_andnot(*mask, *mask, submask_fn(i));
1463 		} else {
1464 			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1465 		}
1466 
1467 		of_node_put(np);
1468 	}
1469 	of_node_put(l2_cache);
1470 
1471 	return true;
1472 }
1473 
1474 #ifdef CONFIG_HOTPLUG_CPU
1475 static void remove_cpu_from_masks(int cpu)
1476 {
1477 	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1478 	int i;
1479 
1480 	unmap_cpu_from_node(cpu);
1481 
1482 	if (shared_caches)
1483 		mask_fn = cpu_l2_cache_mask;
1484 
1485 	for_each_cpu(i, mask_fn(cpu)) {
1486 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1487 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1488 		if (has_big_cores)
1489 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1490 	}
1491 
1492 	for_each_cpu(i, cpu_core_mask(cpu))
1493 		set_cpus_unrelated(cpu, i, cpu_core_mask);
1494 
1495 	if (has_coregroup_support()) {
1496 		for_each_cpu(i, cpu_coregroup_mask(cpu))
1497 			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1498 	}
1499 }
1500 #endif
1501 
1502 static inline void add_cpu_to_smallcore_masks(int cpu)
1503 {
1504 	int i;
1505 
1506 	if (!has_big_cores)
1507 		return;
1508 
1509 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1510 
1511 	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1512 		if (cpu_online(i))
1513 			set_cpus_related(i, cpu, cpu_smallcore_mask);
1514 	}
1515 }
1516 
1517 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1518 {
1519 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1520 	int coregroup_id = cpu_to_coregroup_id(cpu);
1521 	int i;
1522 
1523 	if (shared_caches)
1524 		submask_fn = cpu_l2_cache_mask;
1525 
1526 	if (!*mask) {
1527 		/* Assume only siblings are part of this CPU's coregroup */
1528 		for_each_cpu(i, submask_fn(cpu))
1529 			set_cpus_related(cpu, i, cpu_coregroup_mask);
1530 
1531 		return;
1532 	}
1533 
1534 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1535 
1536 	/* Update coregroup mask with all the CPUs that are part of submask */
1537 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1538 
1539 	/* Skip all CPUs already part of coregroup mask */
1540 	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1541 
1542 	for_each_cpu(i, *mask) {
1543 		/* Skip all CPUs not part of this coregroup */
1544 		if (coregroup_id == cpu_to_coregroup_id(i)) {
1545 			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1546 			cpumask_andnot(*mask, *mask, submask_fn(i));
1547 		} else {
1548 			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1549 		}
1550 	}
1551 }
1552 
1553 static void add_cpu_to_masks(int cpu)
1554 {
1555 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1556 	int first_thread = cpu_first_thread_sibling(cpu);
1557 	cpumask_var_t mask;
1558 	int chip_id = -1;
1559 	bool ret;
1560 	int i;
1561 
1562 	/*
1563 	 * This CPU will not be in the online mask yet so we need to manually
1564 	 * add it to it's own thread sibling mask.
1565 	 */
1566 	map_cpu_to_node(cpu, cpu_to_node(cpu));
1567 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1568 	cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1569 
1570 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1571 		if (cpu_online(i))
1572 			set_cpus_related(i, cpu, cpu_sibling_mask);
1573 
1574 	add_cpu_to_smallcore_masks(cpu);
1575 
1576 	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1577 	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1578 	update_mask_by_l2(cpu, &mask);
1579 
1580 	if (has_coregroup_support())
1581 		update_coregroup_mask(cpu, &mask);
1582 
1583 	if (chip_id_lookup_table && ret)
1584 		chip_id = cpu_to_chip_id(cpu);
1585 
1586 	if (shared_caches)
1587 		submask_fn = cpu_l2_cache_mask;
1588 
1589 	/* Update core_mask with all the CPUs that are part of submask */
1590 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1591 
1592 	/* Skip all CPUs already part of current CPU core mask */
1593 	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1594 
1595 	/* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1596 	if (chip_id == -1)
1597 		cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1598 
1599 	for_each_cpu(i, mask) {
1600 		if (chip_id == cpu_to_chip_id(i)) {
1601 			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1602 			cpumask_andnot(mask, mask, submask_fn(i));
1603 		} else {
1604 			cpumask_andnot(mask, mask, cpu_core_mask(i));
1605 		}
1606 	}
1607 
1608 	free_cpumask_var(mask);
1609 }
1610 
1611 /* Activate a secondary processor. */
1612 void start_secondary(void *unused)
1613 {
1614 	unsigned int cpu = raw_smp_processor_id();
1615 
1616 	/* PPC64 calls setup_kup() in early_setup_secondary() */
1617 	if (IS_ENABLED(CONFIG_PPC32))
1618 		setup_kup();
1619 
1620 	mmgrab(&init_mm);
1621 	current->active_mm = &init_mm;
1622 
1623 	smp_store_cpu_info(cpu);
1624 	set_dec(tb_ticks_per_jiffy);
1625 	rcu_cpu_starting(cpu);
1626 	cpu_callin_map[cpu] = 1;
1627 
1628 	if (smp_ops->setup_cpu)
1629 		smp_ops->setup_cpu(cpu);
1630 	if (smp_ops->take_timebase)
1631 		smp_ops->take_timebase();
1632 
1633 	secondary_cpu_time_init();
1634 
1635 #ifdef CONFIG_PPC64
1636 	if (system_state == SYSTEM_RUNNING)
1637 		vdso_data->processorCount++;
1638 
1639 	vdso_getcpu_init();
1640 #endif
1641 	set_numa_node(numa_cpu_lookup_table[cpu]);
1642 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1643 
1644 	/* Update topology CPU masks */
1645 	add_cpu_to_masks(cpu);
1646 
1647 	/*
1648 	 * Check for any shared caches. Note that this must be done on a
1649 	 * per-core basis because one core in the pair might be disabled.
1650 	 */
1651 	if (!shared_caches) {
1652 		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1653 		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1654 
1655 		if (has_big_cores)
1656 			sibling_mask = cpu_smallcore_mask;
1657 
1658 		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1659 			shared_caches = true;
1660 	}
1661 
1662 	smp_wmb();
1663 	notify_cpu_starting(cpu);
1664 	set_cpu_online(cpu, true);
1665 
1666 	boot_init_stack_canary();
1667 
1668 	local_irq_enable();
1669 
1670 	/* We can enable ftrace for secondary cpus now */
1671 	this_cpu_enable_ftrace();
1672 
1673 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1674 
1675 	BUG();
1676 }
1677 
1678 #ifdef CONFIG_PROFILING
1679 int setup_profiling_timer(unsigned int multiplier)
1680 {
1681 	return 0;
1682 }
1683 #endif
1684 
1685 static void __init fixup_topology(void)
1686 {
1687 	int i;
1688 
1689 #ifdef CONFIG_SCHED_SMT
1690 	if (has_big_cores) {
1691 		pr_info("Big cores detected but using small core scheduling\n");
1692 		powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1693 	}
1694 #endif
1695 
1696 	if (!has_coregroup_support())
1697 		powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1698 
1699 	/*
1700 	 * Try to consolidate topology levels here instead of
1701 	 * allowing scheduler to degenerate.
1702 	 * - Dont consolidate if masks are different.
1703 	 * - Dont consolidate if sd_flags exists and are different.
1704 	 */
1705 	for (i = 1; i <= die_idx; i++) {
1706 		if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1707 			continue;
1708 
1709 		if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1710 				powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1711 			continue;
1712 
1713 		if (!powerpc_topology[i - 1].sd_flags)
1714 			powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1715 
1716 		powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1717 		powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1718 #ifdef CONFIG_SCHED_DEBUG
1719 		powerpc_topology[i].name = powerpc_topology[i + 1].name;
1720 #endif
1721 	}
1722 }
1723 
1724 void __init smp_cpus_done(unsigned int max_cpus)
1725 {
1726 	/*
1727 	 * We are running pinned to the boot CPU, see rest_init().
1728 	 */
1729 	if (smp_ops && smp_ops->setup_cpu)
1730 		smp_ops->setup_cpu(boot_cpuid);
1731 
1732 	if (smp_ops && smp_ops->bringup_done)
1733 		smp_ops->bringup_done();
1734 
1735 	dump_numa_cpu_topology();
1736 
1737 	fixup_topology();
1738 	set_sched_topology(powerpc_topology);
1739 }
1740 
1741 #ifdef CONFIG_HOTPLUG_CPU
1742 int __cpu_disable(void)
1743 {
1744 	int cpu = smp_processor_id();
1745 	int err;
1746 
1747 	if (!smp_ops->cpu_disable)
1748 		return -ENOSYS;
1749 
1750 	this_cpu_disable_ftrace();
1751 
1752 	err = smp_ops->cpu_disable();
1753 	if (err)
1754 		return err;
1755 
1756 	/* Update sibling maps */
1757 	remove_cpu_from_masks(cpu);
1758 
1759 	return 0;
1760 }
1761 
1762 void __cpu_die(unsigned int cpu)
1763 {
1764 	if (smp_ops->cpu_die)
1765 		smp_ops->cpu_die(cpu);
1766 }
1767 
1768 void arch_cpu_idle_dead(void)
1769 {
1770 	/*
1771 	 * Disable on the down path. This will be re-enabled by
1772 	 * start_secondary() via start_secondary_resume() below
1773 	 */
1774 	this_cpu_disable_ftrace();
1775 
1776 	if (smp_ops->cpu_offline_self)
1777 		smp_ops->cpu_offline_self();
1778 
1779 	/* If we return, we re-enter start_secondary */
1780 	start_secondary_resume();
1781 }
1782 
1783 #endif
1784