1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SMP support for ppc. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 6 * deal of code from the sparc and intel versions. 7 * 8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 9 * 10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 12 */ 13 14 #undef DEBUG 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/sched/topology.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/init.h> 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/err.h> 28 #include <linux/device.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/profile.h> 33 #include <linux/processor.h> 34 #include <linux/random.h> 35 #include <linux/stackprotector.h> 36 #include <linux/pgtable.h> 37 #include <linux/clockchips.h> 38 #include <linux/kexec.h> 39 40 #include <asm/ptrace.h> 41 #include <linux/atomic.h> 42 #include <asm/irq.h> 43 #include <asm/hw_irq.h> 44 #include <asm/kvm_ppc.h> 45 #include <asm/dbell.h> 46 #include <asm/page.h> 47 #include <asm/smp.h> 48 #include <asm/time.h> 49 #include <asm/machdep.h> 50 #include <asm/cputhreads.h> 51 #include <asm/cputable.h> 52 #include <asm/mpic.h> 53 #include <asm/vdso_datapage.h> 54 #ifdef CONFIG_PPC64 55 #include <asm/paca.h> 56 #endif 57 #include <asm/vdso.h> 58 #include <asm/debug.h> 59 #include <asm/cpu_has_feature.h> 60 #include <asm/ftrace.h> 61 #include <asm/kup.h> 62 #include <asm/fadump.h> 63 64 #include <trace/events/ipi.h> 65 66 #ifdef DEBUG 67 #include <asm/udbg.h> 68 #define DBG(fmt...) udbg_printf(fmt) 69 #else 70 #define DBG(fmt...) 71 #endif 72 73 #ifdef CONFIG_HOTPLUG_CPU 74 /* State of each CPU during hotplug phases */ 75 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 76 #endif 77 78 struct task_struct *secondary_current; 79 bool has_big_cores; 80 bool coregroup_enabled; 81 bool thread_group_shares_l2; 82 bool thread_group_shares_l3; 83 84 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 85 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); 86 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 87 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 88 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map); 89 90 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 91 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 92 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 93 EXPORT_SYMBOL_GPL(has_big_cores); 94 95 enum { 96 #ifdef CONFIG_SCHED_SMT 97 smt_idx, 98 #endif 99 cache_idx, 100 mc_idx, 101 die_idx, 102 }; 103 104 #define MAX_THREAD_LIST_SIZE 8 105 #define THREAD_GROUP_SHARE_L1 1 106 #define THREAD_GROUP_SHARE_L2_L3 2 107 struct thread_groups { 108 unsigned int property; 109 unsigned int nr_groups; 110 unsigned int threads_per_group; 111 unsigned int thread_list[MAX_THREAD_LIST_SIZE]; 112 }; 113 114 /* Maximum number of properties that groups of threads within a core can share */ 115 #define MAX_THREAD_GROUP_PROPERTIES 2 116 117 struct thread_groups_list { 118 unsigned int nr_properties; 119 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES]; 120 }; 121 122 static struct thread_groups_list tgl[NR_CPUS] __initdata; 123 /* 124 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to 125 * the set its siblings that share the L1-cache. 126 */ 127 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map); 128 129 /* 130 * On some big-cores system, thread_group_l2_cache_map for each CPU 131 * corresponds to the set its siblings within the core that share the 132 * L2-cache. 133 */ 134 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map); 135 136 /* 137 * On P10, thread_group_l3_cache_map for each CPU is equal to the 138 * thread_group_l2_cache_map 139 */ 140 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map); 141 142 /* SMP operations for this machine */ 143 struct smp_ops_t *smp_ops; 144 145 /* Can't be static due to PowerMac hackery */ 146 volatile unsigned int cpu_callin_map[NR_CPUS]; 147 148 int smt_enabled_at_boot = 1; 149 150 /* 151 * Returns 1 if the specified cpu should be brought up during boot. 152 * Used to inhibit booting threads if they've been disabled or 153 * limited on the command line 154 */ 155 int smp_generic_cpu_bootable(unsigned int nr) 156 { 157 /* Special case - we inhibit secondary thread startup 158 * during boot if the user requests it. 159 */ 160 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 161 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 162 return 0; 163 if (smt_enabled_at_boot 164 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 165 return 0; 166 } 167 168 return 1; 169 } 170 171 172 #ifdef CONFIG_PPC64 173 int smp_generic_kick_cpu(int nr) 174 { 175 if (nr < 0 || nr >= nr_cpu_ids) 176 return -EINVAL; 177 178 /* 179 * The processor is currently spinning, waiting for the 180 * cpu_start field to become non-zero After we set cpu_start, 181 * the processor will continue on to secondary_start 182 */ 183 if (!paca_ptrs[nr]->cpu_start) { 184 paca_ptrs[nr]->cpu_start = 1; 185 smp_mb(); 186 return 0; 187 } 188 189 #ifdef CONFIG_HOTPLUG_CPU 190 /* 191 * Ok it's not there, so it might be soft-unplugged, let's 192 * try to bring it back 193 */ 194 generic_set_cpu_up(nr); 195 smp_wmb(); 196 smp_send_reschedule(nr); 197 #endif /* CONFIG_HOTPLUG_CPU */ 198 199 return 0; 200 } 201 #endif /* CONFIG_PPC64 */ 202 203 static irqreturn_t call_function_action(int irq, void *data) 204 { 205 generic_smp_call_function_interrupt(); 206 return IRQ_HANDLED; 207 } 208 209 static irqreturn_t reschedule_action(int irq, void *data) 210 { 211 scheduler_ipi(); 212 return IRQ_HANDLED; 213 } 214 215 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 216 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 217 { 218 timer_broadcast_interrupt(); 219 return IRQ_HANDLED; 220 } 221 #endif 222 223 #ifdef CONFIG_NMI_IPI 224 static irqreturn_t nmi_ipi_action(int irq, void *data) 225 { 226 smp_handle_nmi_ipi(get_irq_regs()); 227 return IRQ_HANDLED; 228 } 229 #endif 230 231 static irq_handler_t smp_ipi_action[] = { 232 [PPC_MSG_CALL_FUNCTION] = call_function_action, 233 [PPC_MSG_RESCHEDULE] = reschedule_action, 234 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 235 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 236 #endif 237 #ifdef CONFIG_NMI_IPI 238 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 239 #endif 240 }; 241 242 /* 243 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 244 * than going through the call function infrastructure, and strongly 245 * serialized, so it is more appropriate for debugging. 246 */ 247 const char *smp_ipi_name[] = { 248 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 249 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 250 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 251 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 252 #endif 253 #ifdef CONFIG_NMI_IPI 254 [PPC_MSG_NMI_IPI] = "nmi ipi", 255 #endif 256 }; 257 258 /* optional function to request ipi, for controllers with >= 4 ipis */ 259 int smp_request_message_ipi(int virq, int msg) 260 { 261 int err; 262 263 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 264 return -EINVAL; 265 #ifndef CONFIG_NMI_IPI 266 if (msg == PPC_MSG_NMI_IPI) 267 return 1; 268 #endif 269 270 err = request_irq(virq, smp_ipi_action[msg], 271 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 272 smp_ipi_name[msg], NULL); 273 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 274 virq, smp_ipi_name[msg], err); 275 276 return err; 277 } 278 279 #ifdef CONFIG_PPC_SMP_MUXED_IPI 280 struct cpu_messages { 281 long messages; /* current messages */ 282 }; 283 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 284 285 void smp_muxed_ipi_set_message(int cpu, int msg) 286 { 287 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 288 char *message = (char *)&info->messages; 289 290 /* 291 * Order previous accesses before accesses in the IPI handler. 292 */ 293 smp_mb(); 294 WRITE_ONCE(message[msg], 1); 295 } 296 297 void smp_muxed_ipi_message_pass(int cpu, int msg) 298 { 299 smp_muxed_ipi_set_message(cpu, msg); 300 301 /* 302 * cause_ipi functions are required to include a full barrier 303 * before doing whatever causes the IPI. 304 */ 305 smp_ops->cause_ipi(cpu); 306 } 307 308 #ifdef __BIG_ENDIAN__ 309 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 310 #else 311 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 312 #endif 313 314 irqreturn_t smp_ipi_demux(void) 315 { 316 mb(); /* order any irq clear */ 317 318 return smp_ipi_demux_relaxed(); 319 } 320 321 /* sync-free variant. Callers should ensure synchronization */ 322 irqreturn_t smp_ipi_demux_relaxed(void) 323 { 324 struct cpu_messages *info; 325 unsigned long all; 326 327 info = this_cpu_ptr(&ipi_message); 328 do { 329 all = xchg(&info->messages, 0); 330 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 331 /* 332 * Must check for PPC_MSG_RM_HOST_ACTION messages 333 * before PPC_MSG_CALL_FUNCTION messages because when 334 * a VM is destroyed, we call kick_all_cpus_sync() 335 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 336 * messages have completed before we free any VCPUs. 337 */ 338 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 339 kvmppc_xics_ipi_action(); 340 #endif 341 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 342 generic_smp_call_function_interrupt(); 343 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 344 scheduler_ipi(); 345 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 346 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 347 timer_broadcast_interrupt(); 348 #endif 349 #ifdef CONFIG_NMI_IPI 350 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 351 nmi_ipi_action(0, NULL); 352 #endif 353 } while (READ_ONCE(info->messages)); 354 355 return IRQ_HANDLED; 356 } 357 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 358 359 static inline void do_message_pass(int cpu, int msg) 360 { 361 if (smp_ops->message_pass) 362 smp_ops->message_pass(cpu, msg); 363 #ifdef CONFIG_PPC_SMP_MUXED_IPI 364 else 365 smp_muxed_ipi_message_pass(cpu, msg); 366 #endif 367 } 368 369 void arch_smp_send_reschedule(int cpu) 370 { 371 if (likely(smp_ops)) 372 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 373 } 374 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule); 375 376 void arch_send_call_function_single_ipi(int cpu) 377 { 378 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 379 } 380 381 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 382 { 383 unsigned int cpu; 384 385 for_each_cpu(cpu, mask) 386 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 387 } 388 389 #ifdef CONFIG_NMI_IPI 390 391 /* 392 * "NMI IPI" system. 393 * 394 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 395 * a running system. They can be used for crash, debug, halt/reboot, etc. 396 * 397 * The IPI call waits with interrupts disabled until all targets enter the 398 * NMI handler, then returns. Subsequent IPIs can be issued before targets 399 * have returned from their handlers, so there is no guarantee about 400 * concurrency or re-entrancy. 401 * 402 * A new NMI can be issued before all targets exit the handler. 403 * 404 * The IPI call may time out without all targets entering the NMI handler. 405 * In that case, there is some logic to recover (and ignore subsequent 406 * NMI interrupts that may eventually be raised), but the platform interrupt 407 * handler may not be able to distinguish this from other exception causes, 408 * which may cause a crash. 409 */ 410 411 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 412 static struct cpumask nmi_ipi_pending_mask; 413 static bool nmi_ipi_busy = false; 414 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 415 416 noinstr static void nmi_ipi_lock_start(unsigned long *flags) 417 { 418 raw_local_irq_save(*flags); 419 hard_irq_disable(); 420 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 421 raw_local_irq_restore(*flags); 422 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0); 423 raw_local_irq_save(*flags); 424 hard_irq_disable(); 425 } 426 } 427 428 noinstr static void nmi_ipi_lock(void) 429 { 430 while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 431 spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0); 432 } 433 434 noinstr static void nmi_ipi_unlock(void) 435 { 436 smp_mb(); 437 WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1); 438 raw_atomic_set(&__nmi_ipi_lock, 0); 439 } 440 441 noinstr static void nmi_ipi_unlock_end(unsigned long *flags) 442 { 443 nmi_ipi_unlock(); 444 raw_local_irq_restore(*flags); 445 } 446 447 /* 448 * Platform NMI handler calls this to ack 449 */ 450 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs) 451 { 452 void (*fn)(struct pt_regs *) = NULL; 453 unsigned long flags; 454 int me = raw_smp_processor_id(); 455 int ret = 0; 456 457 /* 458 * Unexpected NMIs are possible here because the interrupt may not 459 * be able to distinguish NMI IPIs from other types of NMIs, or 460 * because the caller may have timed out. 461 */ 462 nmi_ipi_lock_start(&flags); 463 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { 464 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 465 fn = READ_ONCE(nmi_ipi_function); 466 WARN_ON_ONCE(!fn); 467 ret = 1; 468 } 469 nmi_ipi_unlock_end(&flags); 470 471 if (fn) 472 fn(regs); 473 474 return ret; 475 } 476 477 static void do_smp_send_nmi_ipi(int cpu, bool safe) 478 { 479 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 480 return; 481 482 if (cpu >= 0) { 483 do_message_pass(cpu, PPC_MSG_NMI_IPI); 484 } else { 485 int c; 486 487 for_each_online_cpu(c) { 488 if (c == raw_smp_processor_id()) 489 continue; 490 do_message_pass(c, PPC_MSG_NMI_IPI); 491 } 492 } 493 } 494 495 /* 496 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 497 * - fn is the target callback function. 498 * - delay_us > 0 is the delay before giving up waiting for targets to 499 * begin executing the handler, == 0 specifies indefinite delay. 500 */ 501 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), 502 u64 delay_us, bool safe) 503 { 504 unsigned long flags; 505 int me = raw_smp_processor_id(); 506 int ret = 1; 507 508 BUG_ON(cpu == me); 509 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 510 511 if (unlikely(!smp_ops)) 512 return 0; 513 514 nmi_ipi_lock_start(&flags); 515 while (nmi_ipi_busy) { 516 nmi_ipi_unlock_end(&flags); 517 spin_until_cond(!nmi_ipi_busy); 518 nmi_ipi_lock_start(&flags); 519 } 520 nmi_ipi_busy = true; 521 nmi_ipi_function = fn; 522 523 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); 524 525 if (cpu < 0) { 526 /* ALL_OTHERS */ 527 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 528 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 529 } else { 530 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 531 } 532 533 nmi_ipi_unlock(); 534 535 /* Interrupts remain hard disabled */ 536 537 do_smp_send_nmi_ipi(cpu, safe); 538 539 nmi_ipi_lock(); 540 /* nmi_ipi_busy is set here, so unlock/lock is okay */ 541 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 542 nmi_ipi_unlock(); 543 udelay(1); 544 nmi_ipi_lock(); 545 if (delay_us) { 546 delay_us--; 547 if (!delay_us) 548 break; 549 } 550 } 551 552 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 553 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ 554 ret = 0; 555 cpumask_clear(&nmi_ipi_pending_mask); 556 } 557 558 nmi_ipi_function = NULL; 559 nmi_ipi_busy = false; 560 561 nmi_ipi_unlock_end(&flags); 562 563 return ret; 564 } 565 566 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 567 { 568 return __smp_send_nmi_ipi(cpu, fn, delay_us, false); 569 } 570 571 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 572 { 573 return __smp_send_nmi_ipi(cpu, fn, delay_us, true); 574 } 575 #endif /* CONFIG_NMI_IPI */ 576 577 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 578 void tick_broadcast(const struct cpumask *mask) 579 { 580 unsigned int cpu; 581 582 for_each_cpu(cpu, mask) 583 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 584 } 585 #endif 586 587 #ifdef CONFIG_DEBUGGER 588 static void debugger_ipi_callback(struct pt_regs *regs) 589 { 590 debugger_ipi(regs); 591 } 592 593 void smp_send_debugger_break(void) 594 { 595 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 596 } 597 #endif 598 599 #ifdef CONFIG_KEXEC_CORE 600 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 601 { 602 int cpu; 603 604 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 605 if (kdump_in_progress() && crash_wake_offline) { 606 for_each_present_cpu(cpu) { 607 if (cpu_online(cpu)) 608 continue; 609 /* 610 * crash_ipi_callback will wait for 611 * all cpus, including offline CPUs. 612 * We don't care about nmi_ipi_function. 613 * Offline cpus will jump straight into 614 * crash_ipi_callback, we can skip the 615 * entire NMI dance and waiting for 616 * cpus to clear pending mask, etc. 617 */ 618 do_smp_send_nmi_ipi(cpu, false); 619 } 620 } 621 } 622 #endif 623 624 void crash_smp_send_stop(void) 625 { 626 static bool stopped = false; 627 628 /* 629 * In case of fadump, register data for all CPUs is captured by f/w 630 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before 631 * this rtas call to avoid tricky post processing of those CPUs' 632 * backtraces. 633 */ 634 if (should_fadump_crash()) 635 return; 636 637 if (stopped) 638 return; 639 640 stopped = true; 641 642 #ifdef CONFIG_KEXEC_CORE 643 if (kexec_crash_image) { 644 crash_kexec_prepare(); 645 return; 646 } 647 #endif 648 649 smp_send_stop(); 650 } 651 652 #ifdef CONFIG_NMI_IPI 653 static void nmi_stop_this_cpu(struct pt_regs *regs) 654 { 655 /* 656 * IRQs are already hard disabled by the smp_handle_nmi_ipi. 657 */ 658 set_cpu_online(smp_processor_id(), false); 659 660 spin_begin(); 661 while (1) 662 spin_cpu_relax(); 663 } 664 665 void smp_send_stop(void) 666 { 667 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); 668 } 669 670 #else /* CONFIG_NMI_IPI */ 671 672 static void stop_this_cpu(void *dummy) 673 { 674 hard_irq_disable(); 675 676 /* 677 * Offlining CPUs in stop_this_cpu can result in scheduler warnings, 678 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants 679 * to know other CPUs are offline before it breaks locks to flush 680 * printk buffers, in case we panic()ed while holding the lock. 681 */ 682 set_cpu_online(smp_processor_id(), false); 683 684 spin_begin(); 685 while (1) 686 spin_cpu_relax(); 687 } 688 689 void smp_send_stop(void) 690 { 691 static bool stopped = false; 692 693 /* 694 * Prevent waiting on csd lock from a previous smp_send_stop. 695 * This is racy, but in general callers try to do the right 696 * thing and only fire off one smp_send_stop (e.g., see 697 * kernel/panic.c) 698 */ 699 if (stopped) 700 return; 701 702 stopped = true; 703 704 smp_call_function(stop_this_cpu, NULL, 0); 705 } 706 #endif /* CONFIG_NMI_IPI */ 707 708 static struct task_struct *current_set[NR_CPUS]; 709 710 static void smp_store_cpu_info(int id) 711 { 712 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 713 #ifdef CONFIG_PPC_E500 714 per_cpu(next_tlbcam_idx, id) 715 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 716 #endif 717 } 718 719 /* 720 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 721 * rather than just passing around the cpumask we pass around a function that 722 * returns the that cpumask for the given CPU. 723 */ 724 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 725 { 726 cpumask_set_cpu(i, get_cpumask(j)); 727 cpumask_set_cpu(j, get_cpumask(i)); 728 } 729 730 #ifdef CONFIG_HOTPLUG_CPU 731 static void set_cpus_unrelated(int i, int j, 732 struct cpumask *(*get_cpumask)(int)) 733 { 734 cpumask_clear_cpu(i, get_cpumask(j)); 735 cpumask_clear_cpu(j, get_cpumask(i)); 736 } 737 #endif 738 739 /* 740 * Extends set_cpus_related. Instead of setting one CPU at a time in 741 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask. 742 */ 743 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int), 744 struct cpumask *(*dstmask)(int)) 745 { 746 struct cpumask *mask; 747 int k; 748 749 mask = srcmask(j); 750 for_each_cpu(k, srcmask(i)) 751 cpumask_or(dstmask(k), dstmask(k), mask); 752 753 if (i == j) 754 return; 755 756 mask = srcmask(i); 757 for_each_cpu(k, srcmask(j)) 758 cpumask_or(dstmask(k), dstmask(k), mask); 759 } 760 761 /* 762 * parse_thread_groups: Parses the "ibm,thread-groups" device tree 763 * property for the CPU device node @dn and stores 764 * the parsed output in the thread_groups_list 765 * structure @tglp. 766 * 767 * @dn: The device node of the CPU device. 768 * @tglp: Pointer to a thread group list structure into which the parsed 769 * output of "ibm,thread-groups" is stored. 770 * 771 * ibm,thread-groups[0..N-1] array defines which group of threads in 772 * the CPU-device node can be grouped together based on the property. 773 * 774 * This array can represent thread groupings for multiple properties. 775 * 776 * ibm,thread-groups[i + 0] tells us the property based on which the 777 * threads are being grouped together. If this value is 1, it implies 778 * that the threads in the same group share L1, translation cache. If 779 * the value is 2, it implies that the threads in the same group share 780 * the same L2 cache. 781 * 782 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the 783 * property ibm,thread-groups[i] 784 * 785 * ibm,thread-groups[i+2] tells us the number of threads in each such 786 * group. 787 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then, 788 * 789 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by 790 * "ibm,ppc-interrupt-server#s" arranged as per their membership in 791 * the grouping. 792 * 793 * Example: 794 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15] 795 * This can be decomposed up into two consecutive arrays: 796 * a) [1,2,4,8,10,12,14,9,11,13,15] 797 * b) [2,2,4,8,10,12,14,9,11,13,15] 798 * 799 * where in, 800 * 801 * a) provides information of Property "1" being shared by "2" groups, 802 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of 803 * the first group is {8,10,12,14} and the 804 * "ibm,ppc-interrupt-server#s" of the second group is 805 * {9,11,13,15}. Property "1" is indicative of the thread in the 806 * group sharing L1 cache, translation cache and Instruction Data 807 * flow. 808 * 809 * b) provides information of Property "2" being shared by "2" groups, 810 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of 811 * the first group is {8,10,12,14} and the 812 * "ibm,ppc-interrupt-server#s" of the second group is 813 * {9,11,13,15}. Property "2" indicates that the threads in each 814 * group share the L2-cache. 815 * 816 * Returns 0 on success, -EINVAL if the property does not exist, 817 * -ENODATA if property does not have a value, and -EOVERFLOW if the 818 * property data isn't large enough. 819 */ 820 static int parse_thread_groups(struct device_node *dn, 821 struct thread_groups_list *tglp) 822 { 823 unsigned int property_idx = 0; 824 u32 *thread_group_array; 825 size_t total_threads; 826 int ret = 0, count; 827 u32 *thread_list; 828 int i = 0; 829 830 count = of_property_count_u32_elems(dn, "ibm,thread-groups"); 831 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL); 832 ret = of_property_read_u32_array(dn, "ibm,thread-groups", 833 thread_group_array, count); 834 if (ret) 835 goto out_free; 836 837 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) { 838 int j; 839 struct thread_groups *tg = &tglp->property_tgs[property_idx++]; 840 841 tg->property = thread_group_array[i]; 842 tg->nr_groups = thread_group_array[i + 1]; 843 tg->threads_per_group = thread_group_array[i + 2]; 844 total_threads = tg->nr_groups * tg->threads_per_group; 845 846 thread_list = &thread_group_array[i + 3]; 847 848 for (j = 0; j < total_threads; j++) 849 tg->thread_list[j] = thread_list[j]; 850 i = i + 3 + total_threads; 851 } 852 853 tglp->nr_properties = property_idx; 854 855 out_free: 856 kfree(thread_group_array); 857 return ret; 858 } 859 860 /* 861 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list 862 * that @cpu belongs to. 863 * 864 * @cpu : The logical CPU whose thread group is being searched. 865 * @tg : The thread-group structure of the CPU node which @cpu belongs 866 * to. 867 * 868 * Returns the index to tg->thread_list that points to the start 869 * of the thread_group that @cpu belongs to. 870 * 871 * Returns -1 if cpu doesn't belong to any of the groups pointed to by 872 * tg->thread_list. 873 */ 874 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) 875 { 876 int hw_cpu_id = get_hard_smp_processor_id(cpu); 877 int i, j; 878 879 for (i = 0; i < tg->nr_groups; i++) { 880 int group_start = i * tg->threads_per_group; 881 882 for (j = 0; j < tg->threads_per_group; j++) { 883 int idx = group_start + j; 884 885 if (tg->thread_list[idx] == hw_cpu_id) 886 return group_start; 887 } 888 } 889 890 return -1; 891 } 892 893 static struct thread_groups *__init get_thread_groups(int cpu, 894 int group_property, 895 int *err) 896 { 897 struct device_node *dn = of_get_cpu_node(cpu, NULL); 898 struct thread_groups_list *cpu_tgl = &tgl[cpu]; 899 struct thread_groups *tg = NULL; 900 int i; 901 *err = 0; 902 903 if (!dn) { 904 *err = -ENODATA; 905 return NULL; 906 } 907 908 if (!cpu_tgl->nr_properties) { 909 *err = parse_thread_groups(dn, cpu_tgl); 910 if (*err) 911 goto out; 912 } 913 914 for (i = 0; i < cpu_tgl->nr_properties; i++) { 915 if (cpu_tgl->property_tgs[i].property == group_property) { 916 tg = &cpu_tgl->property_tgs[i]; 917 break; 918 } 919 } 920 921 if (!tg) 922 *err = -EINVAL; 923 out: 924 of_node_put(dn); 925 return tg; 926 } 927 928 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, 929 int cpu, int cpu_group_start) 930 { 931 int first_thread = cpu_first_thread_sibling(cpu); 932 int i; 933 934 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu)); 935 936 for (i = first_thread; i < first_thread + threads_per_core; i++) { 937 int i_group_start = get_cpu_thread_group_start(i, tg); 938 939 if (unlikely(i_group_start == -1)) { 940 WARN_ON_ONCE(1); 941 return -ENODATA; 942 } 943 944 if (i_group_start == cpu_group_start) 945 cpumask_set_cpu(i, *mask); 946 } 947 948 return 0; 949 } 950 951 static int __init init_thread_group_cache_map(int cpu, int cache_property) 952 953 { 954 int cpu_group_start = -1, err = 0; 955 struct thread_groups *tg = NULL; 956 cpumask_var_t *mask = NULL; 957 958 if (cache_property != THREAD_GROUP_SHARE_L1 && 959 cache_property != THREAD_GROUP_SHARE_L2_L3) 960 return -EINVAL; 961 962 tg = get_thread_groups(cpu, cache_property, &err); 963 964 if (!tg) 965 return err; 966 967 cpu_group_start = get_cpu_thread_group_start(cpu, tg); 968 969 if (unlikely(cpu_group_start == -1)) { 970 WARN_ON_ONCE(1); 971 return -ENODATA; 972 } 973 974 if (cache_property == THREAD_GROUP_SHARE_L1) { 975 mask = &per_cpu(thread_group_l1_cache_map, cpu); 976 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 977 } 978 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) { 979 mask = &per_cpu(thread_group_l2_cache_map, cpu); 980 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 981 mask = &per_cpu(thread_group_l3_cache_map, cpu); 982 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 983 } 984 985 986 return 0; 987 } 988 989 static bool shared_caches; 990 991 #ifdef CONFIG_SCHED_SMT 992 /* cpumask of CPUs with asymmetric SMT dependency */ 993 static int powerpc_smt_flags(void) 994 { 995 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 996 997 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 998 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 999 flags |= SD_ASYM_PACKING; 1000 } 1001 return flags; 1002 } 1003 #endif 1004 1005 /* 1006 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 1007 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 1008 * since the migrated task remains cache hot. We want to take advantage of this 1009 * at the scheduler level so an extra topology level is required. 1010 */ 1011 static int powerpc_shared_cache_flags(void) 1012 { 1013 return SD_SHARE_PKG_RESOURCES; 1014 } 1015 1016 /* 1017 * We can't just pass cpu_l2_cache_mask() directly because 1018 * returns a non-const pointer and the compiler barfs on that. 1019 */ 1020 static const struct cpumask *shared_cache_mask(int cpu) 1021 { 1022 return per_cpu(cpu_l2_cache_map, cpu); 1023 } 1024 1025 #ifdef CONFIG_SCHED_SMT 1026 static const struct cpumask *smallcore_smt_mask(int cpu) 1027 { 1028 return cpu_smallcore_mask(cpu); 1029 } 1030 #endif 1031 1032 static struct cpumask *cpu_coregroup_mask(int cpu) 1033 { 1034 return per_cpu(cpu_coregroup_map, cpu); 1035 } 1036 1037 static bool has_coregroup_support(void) 1038 { 1039 return coregroup_enabled; 1040 } 1041 1042 static const struct cpumask *cpu_mc_mask(int cpu) 1043 { 1044 return cpu_coregroup_mask(cpu); 1045 } 1046 1047 static struct sched_domain_topology_level powerpc_topology[] = { 1048 #ifdef CONFIG_SCHED_SMT 1049 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1050 #endif 1051 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, 1052 { cpu_mc_mask, SD_INIT_NAME(MC) }, 1053 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1054 { NULL, }, 1055 }; 1056 1057 static int __init init_big_cores(void) 1058 { 1059 int cpu; 1060 1061 for_each_possible_cpu(cpu) { 1062 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1); 1063 1064 if (err) 1065 return err; 1066 1067 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), 1068 GFP_KERNEL, 1069 cpu_to_node(cpu)); 1070 } 1071 1072 has_big_cores = true; 1073 1074 for_each_possible_cpu(cpu) { 1075 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3); 1076 1077 if (err) 1078 return err; 1079 } 1080 1081 thread_group_shares_l2 = true; 1082 thread_group_shares_l3 = true; 1083 pr_debug("L2/L3 cache only shared by the threads in the small core\n"); 1084 1085 return 0; 1086 } 1087 1088 void __init smp_prepare_cpus(unsigned int max_cpus) 1089 { 1090 unsigned int cpu; 1091 1092 DBG("smp_prepare_cpus\n"); 1093 1094 /* 1095 * setup_cpu may need to be called on the boot cpu. We haven't 1096 * spun any cpus up but lets be paranoid. 1097 */ 1098 BUG_ON(boot_cpuid != smp_processor_id()); 1099 1100 /* Fixup boot cpu */ 1101 smp_store_cpu_info(boot_cpuid); 1102 cpu_callin_map[boot_cpuid] = 1; 1103 1104 for_each_possible_cpu(cpu) { 1105 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 1106 GFP_KERNEL, cpu_to_node(cpu)); 1107 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 1108 GFP_KERNEL, cpu_to_node(cpu)); 1109 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 1110 GFP_KERNEL, cpu_to_node(cpu)); 1111 if (has_coregroup_support()) 1112 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu), 1113 GFP_KERNEL, cpu_to_node(cpu)); 1114 1115 #ifdef CONFIG_NUMA 1116 /* 1117 * numa_node_id() works after this. 1118 */ 1119 if (cpu_present(cpu)) { 1120 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 1121 set_cpu_numa_mem(cpu, 1122 local_memory_node(numa_cpu_lookup_table[cpu])); 1123 } 1124 #endif 1125 } 1126 1127 /* Init the cpumasks so the boot CPU is related to itself */ 1128 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 1129 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 1130 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 1131 1132 if (has_coregroup_support()) 1133 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid)); 1134 1135 init_big_cores(); 1136 if (has_big_cores) { 1137 cpumask_set_cpu(boot_cpuid, 1138 cpu_smallcore_mask(boot_cpuid)); 1139 } 1140 1141 if (cpu_to_chip_id(boot_cpuid) != -1) { 1142 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1143 1144 /* 1145 * All threads of a core will all belong to the same core, 1146 * chip_id_lookup_table will have one entry per core. 1147 * Assumption: if boot_cpuid doesn't have a chip-id, then no 1148 * other CPUs, will also not have chip-id. 1149 */ 1150 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL); 1151 if (chip_id_lookup_table) 1152 memset(chip_id_lookup_table, -1, sizeof(int) * idx); 1153 } 1154 1155 if (smp_ops && smp_ops->probe) 1156 smp_ops->probe(); 1157 } 1158 1159 void smp_prepare_boot_cpu(void) 1160 { 1161 BUG_ON(smp_processor_id() != boot_cpuid); 1162 #ifdef CONFIG_PPC64 1163 paca_ptrs[boot_cpuid]->__current = current; 1164 #endif 1165 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 1166 current_set[boot_cpuid] = current; 1167 } 1168 1169 #ifdef CONFIG_HOTPLUG_CPU 1170 1171 int generic_cpu_disable(void) 1172 { 1173 unsigned int cpu = smp_processor_id(); 1174 1175 if (cpu == boot_cpuid) 1176 return -EBUSY; 1177 1178 set_cpu_online(cpu, false); 1179 #ifdef CONFIG_PPC64 1180 vdso_data->processorCount--; 1181 #endif 1182 /* Update affinity of all IRQs previously aimed at this CPU */ 1183 irq_migrate_all_off_this_cpu(); 1184 1185 /* 1186 * Depending on the details of the interrupt controller, it's possible 1187 * that one of the interrupts we just migrated away from this CPU is 1188 * actually already pending on this CPU. If we leave it in that state 1189 * the interrupt will never be EOI'ed, and will never fire again. So 1190 * temporarily enable interrupts here, to allow any pending interrupt to 1191 * be received (and EOI'ed), before we take this CPU offline. 1192 */ 1193 local_irq_enable(); 1194 mdelay(1); 1195 local_irq_disable(); 1196 1197 return 0; 1198 } 1199 1200 void generic_cpu_die(unsigned int cpu) 1201 { 1202 int i; 1203 1204 for (i = 0; i < 100; i++) { 1205 smp_rmb(); 1206 if (is_cpu_dead(cpu)) 1207 return; 1208 msleep(100); 1209 } 1210 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 1211 } 1212 1213 void generic_set_cpu_dead(unsigned int cpu) 1214 { 1215 per_cpu(cpu_state, cpu) = CPU_DEAD; 1216 } 1217 1218 /* 1219 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 1220 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 1221 * which makes the delay in generic_cpu_die() not happen. 1222 */ 1223 void generic_set_cpu_up(unsigned int cpu) 1224 { 1225 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 1226 } 1227 1228 int generic_check_cpu_restart(unsigned int cpu) 1229 { 1230 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 1231 } 1232 1233 int is_cpu_dead(unsigned int cpu) 1234 { 1235 return per_cpu(cpu_state, cpu) == CPU_DEAD; 1236 } 1237 1238 static bool secondaries_inhibited(void) 1239 { 1240 return kvm_hv_mode_active(); 1241 } 1242 1243 #else /* HOTPLUG_CPU */ 1244 1245 #define secondaries_inhibited() 0 1246 1247 #endif 1248 1249 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 1250 { 1251 #ifdef CONFIG_PPC64 1252 paca_ptrs[cpu]->__current = idle; 1253 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + 1254 THREAD_SIZE - STACK_FRAME_MIN_SIZE; 1255 #endif 1256 task_thread_info(idle)->cpu = cpu; 1257 secondary_current = current_set[cpu] = idle; 1258 } 1259 1260 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1261 { 1262 const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC; 1263 const bool booting = system_state < SYSTEM_RUNNING; 1264 const unsigned long hp_spin_ms = 1; 1265 unsigned long deadline; 1266 int rc; 1267 const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms; 1268 1269 /* 1270 * Don't allow secondary threads to come online if inhibited 1271 */ 1272 if (threads_per_core > 1 && secondaries_inhibited() && 1273 cpu_thread_in_subcore(cpu)) 1274 return -EBUSY; 1275 1276 if (smp_ops == NULL || 1277 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 1278 return -EINVAL; 1279 1280 cpu_idle_thread_init(cpu, tidle); 1281 1282 /* 1283 * The platform might need to allocate resources prior to bringing 1284 * up the CPU 1285 */ 1286 if (smp_ops->prepare_cpu) { 1287 rc = smp_ops->prepare_cpu(cpu); 1288 if (rc) 1289 return rc; 1290 } 1291 1292 /* Make sure callin-map entry is 0 (can be leftover a CPU 1293 * hotplug 1294 */ 1295 cpu_callin_map[cpu] = 0; 1296 1297 /* The information for processor bringup must 1298 * be written out to main store before we release 1299 * the processor. 1300 */ 1301 smp_mb(); 1302 1303 /* wake up cpus */ 1304 DBG("smp: kicking cpu %d\n", cpu); 1305 rc = smp_ops->kick_cpu(cpu); 1306 if (rc) { 1307 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 1308 return rc; 1309 } 1310 1311 /* 1312 * At boot time, simply spin on the callin word until the 1313 * deadline passes. 1314 * 1315 * At run time, spin for an optimistic amount of time to avoid 1316 * sleeping in the common case. 1317 */ 1318 deadline = jiffies + msecs_to_jiffies(spin_wait_ms); 1319 spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline)); 1320 1321 if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) { 1322 const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC; 1323 const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC; 1324 1325 deadline = jiffies + msecs_to_jiffies(sleep_wait_ms); 1326 while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline)) 1327 fsleep(sleep_interval_us); 1328 } 1329 1330 if (!cpu_callin_map[cpu]) { 1331 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 1332 return -ENOENT; 1333 } 1334 1335 DBG("Processor %u found.\n", cpu); 1336 1337 if (smp_ops->give_timebase) 1338 smp_ops->give_timebase(); 1339 1340 /* Wait until cpu puts itself in the online & active maps */ 1341 spin_until_cond(cpu_online(cpu)); 1342 1343 return 0; 1344 } 1345 1346 /* Return the value of the reg property corresponding to the given 1347 * logical cpu. 1348 */ 1349 int cpu_to_core_id(int cpu) 1350 { 1351 struct device_node *np; 1352 int id = -1; 1353 1354 np = of_get_cpu_node(cpu, NULL); 1355 if (!np) 1356 goto out; 1357 1358 id = of_get_cpu_hwid(np, 0); 1359 out: 1360 of_node_put(np); 1361 return id; 1362 } 1363 EXPORT_SYMBOL_GPL(cpu_to_core_id); 1364 1365 /* Helper routines for cpu to core mapping */ 1366 int cpu_core_index_of_thread(int cpu) 1367 { 1368 return cpu >> threads_shift; 1369 } 1370 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 1371 1372 int cpu_first_thread_of_core(int core) 1373 { 1374 return core << threads_shift; 1375 } 1376 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 1377 1378 /* Must be called when no change can occur to cpu_present_mask, 1379 * i.e. during cpu online or offline. 1380 */ 1381 static struct device_node *cpu_to_l2cache(int cpu) 1382 { 1383 struct device_node *np; 1384 struct device_node *cache; 1385 1386 if (!cpu_present(cpu)) 1387 return NULL; 1388 1389 np = of_get_cpu_node(cpu, NULL); 1390 if (np == NULL) 1391 return NULL; 1392 1393 cache = of_find_next_cache_node(np); 1394 1395 of_node_put(np); 1396 1397 return cache; 1398 } 1399 1400 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask) 1401 { 1402 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1403 struct device_node *l2_cache, *np; 1404 int i; 1405 1406 if (has_big_cores) 1407 submask_fn = cpu_smallcore_mask; 1408 1409 /* 1410 * If the threads in a thread-group share L2 cache, then the 1411 * L2-mask can be obtained from thread_group_l2_cache_map. 1412 */ 1413 if (thread_group_shares_l2) { 1414 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu)); 1415 1416 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) { 1417 if (cpu_online(i)) 1418 set_cpus_related(i, cpu, cpu_l2_cache_mask); 1419 } 1420 1421 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */ 1422 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) && 1423 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) { 1424 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n", 1425 cpu); 1426 } 1427 1428 return true; 1429 } 1430 1431 l2_cache = cpu_to_l2cache(cpu); 1432 if (!l2_cache || !*mask) { 1433 /* Assume only core siblings share cache with this CPU */ 1434 for_each_cpu(i, cpu_sibling_mask(cpu)) 1435 set_cpus_related(cpu, i, cpu_l2_cache_mask); 1436 1437 return false; 1438 } 1439 1440 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1441 1442 /* Update l2-cache mask with all the CPUs that are part of submask */ 1443 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask); 1444 1445 /* Skip all CPUs already part of current CPU l2-cache mask */ 1446 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu)); 1447 1448 for_each_cpu(i, *mask) { 1449 /* 1450 * when updating the marks the current CPU has not been marked 1451 * online, but we need to update the cache masks 1452 */ 1453 np = cpu_to_l2cache(i); 1454 1455 /* Skip all CPUs already part of current CPU l2-cache */ 1456 if (np == l2_cache) { 1457 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask); 1458 cpumask_andnot(*mask, *mask, submask_fn(i)); 1459 } else { 1460 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i)); 1461 } 1462 1463 of_node_put(np); 1464 } 1465 of_node_put(l2_cache); 1466 1467 return true; 1468 } 1469 1470 #ifdef CONFIG_HOTPLUG_CPU 1471 static void remove_cpu_from_masks(int cpu) 1472 { 1473 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask; 1474 int i; 1475 1476 unmap_cpu_from_node(cpu); 1477 1478 if (shared_caches) 1479 mask_fn = cpu_l2_cache_mask; 1480 1481 for_each_cpu(i, mask_fn(cpu)) { 1482 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 1483 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 1484 if (has_big_cores) 1485 set_cpus_unrelated(cpu, i, cpu_smallcore_mask); 1486 } 1487 1488 for_each_cpu(i, cpu_core_mask(cpu)) 1489 set_cpus_unrelated(cpu, i, cpu_core_mask); 1490 1491 if (has_coregroup_support()) { 1492 for_each_cpu(i, cpu_coregroup_mask(cpu)) 1493 set_cpus_unrelated(cpu, i, cpu_coregroup_mask); 1494 } 1495 } 1496 #endif 1497 1498 static inline void add_cpu_to_smallcore_masks(int cpu) 1499 { 1500 int i; 1501 1502 if (!has_big_cores) 1503 return; 1504 1505 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); 1506 1507 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) { 1508 if (cpu_online(i)) 1509 set_cpus_related(i, cpu, cpu_smallcore_mask); 1510 } 1511 } 1512 1513 static void update_coregroup_mask(int cpu, cpumask_var_t *mask) 1514 { 1515 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1516 int coregroup_id = cpu_to_coregroup_id(cpu); 1517 int i; 1518 1519 if (shared_caches) 1520 submask_fn = cpu_l2_cache_mask; 1521 1522 if (!*mask) { 1523 /* Assume only siblings are part of this CPU's coregroup */ 1524 for_each_cpu(i, submask_fn(cpu)) 1525 set_cpus_related(cpu, i, cpu_coregroup_mask); 1526 1527 return; 1528 } 1529 1530 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1531 1532 /* Update coregroup mask with all the CPUs that are part of submask */ 1533 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask); 1534 1535 /* Skip all CPUs already part of coregroup mask */ 1536 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu)); 1537 1538 for_each_cpu(i, *mask) { 1539 /* Skip all CPUs not part of this coregroup */ 1540 if (coregroup_id == cpu_to_coregroup_id(i)) { 1541 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask); 1542 cpumask_andnot(*mask, *mask, submask_fn(i)); 1543 } else { 1544 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i)); 1545 } 1546 } 1547 } 1548 1549 static void add_cpu_to_masks(int cpu) 1550 { 1551 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1552 int first_thread = cpu_first_thread_sibling(cpu); 1553 cpumask_var_t mask; 1554 int chip_id = -1; 1555 bool ret; 1556 int i; 1557 1558 /* 1559 * This CPU will not be in the online mask yet so we need to manually 1560 * add it to it's own thread sibling mask. 1561 */ 1562 map_cpu_to_node(cpu, cpu_to_node(cpu)); 1563 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 1564 cpumask_set_cpu(cpu, cpu_core_mask(cpu)); 1565 1566 for (i = first_thread; i < first_thread + threads_per_core; i++) 1567 if (cpu_online(i)) 1568 set_cpus_related(i, cpu, cpu_sibling_mask); 1569 1570 add_cpu_to_smallcore_masks(cpu); 1571 1572 /* In CPU-hotplug path, hence use GFP_ATOMIC */ 1573 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu)); 1574 update_mask_by_l2(cpu, &mask); 1575 1576 if (has_coregroup_support()) 1577 update_coregroup_mask(cpu, &mask); 1578 1579 if (chip_id_lookup_table && ret) 1580 chip_id = cpu_to_chip_id(cpu); 1581 1582 if (shared_caches) 1583 submask_fn = cpu_l2_cache_mask; 1584 1585 /* Update core_mask with all the CPUs that are part of submask */ 1586 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask); 1587 1588 /* Skip all CPUs already part of current CPU core mask */ 1589 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu)); 1590 1591 /* If chip_id is -1; limit the cpu_core_mask to within DIE*/ 1592 if (chip_id == -1) 1593 cpumask_and(mask, mask, cpu_cpu_mask(cpu)); 1594 1595 for_each_cpu(i, mask) { 1596 if (chip_id == cpu_to_chip_id(i)) { 1597 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask); 1598 cpumask_andnot(mask, mask, submask_fn(i)); 1599 } else { 1600 cpumask_andnot(mask, mask, cpu_core_mask(i)); 1601 } 1602 } 1603 1604 free_cpumask_var(mask); 1605 } 1606 1607 /* Activate a secondary processor. */ 1608 __no_stack_protector 1609 void start_secondary(void *unused) 1610 { 1611 unsigned int cpu = raw_smp_processor_id(); 1612 1613 /* PPC64 calls setup_kup() in early_setup_secondary() */ 1614 if (IS_ENABLED(CONFIG_PPC32)) 1615 setup_kup(); 1616 1617 mmgrab_lazy_tlb(&init_mm); 1618 current->active_mm = &init_mm; 1619 1620 smp_store_cpu_info(cpu); 1621 set_dec(tb_ticks_per_jiffy); 1622 rcu_cpu_starting(cpu); 1623 cpu_callin_map[cpu] = 1; 1624 1625 if (smp_ops->setup_cpu) 1626 smp_ops->setup_cpu(cpu); 1627 if (smp_ops->take_timebase) 1628 smp_ops->take_timebase(); 1629 1630 secondary_cpu_time_init(); 1631 1632 #ifdef CONFIG_PPC64 1633 if (system_state == SYSTEM_RUNNING) 1634 vdso_data->processorCount++; 1635 1636 vdso_getcpu_init(); 1637 #endif 1638 set_numa_node(numa_cpu_lookup_table[cpu]); 1639 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1640 1641 /* Update topology CPU masks */ 1642 add_cpu_to_masks(cpu); 1643 1644 /* 1645 * Check for any shared caches. Note that this must be done on a 1646 * per-core basis because one core in the pair might be disabled. 1647 */ 1648 if (!shared_caches) { 1649 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; 1650 struct cpumask *mask = cpu_l2_cache_mask(cpu); 1651 1652 if (has_big_cores) 1653 sibling_mask = cpu_smallcore_mask; 1654 1655 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu))) 1656 shared_caches = true; 1657 } 1658 1659 smp_wmb(); 1660 notify_cpu_starting(cpu); 1661 set_cpu_online(cpu, true); 1662 1663 boot_init_stack_canary(); 1664 1665 local_irq_enable(); 1666 1667 /* We can enable ftrace for secondary cpus now */ 1668 this_cpu_enable_ftrace(); 1669 1670 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1671 1672 BUG(); 1673 } 1674 1675 static void __init fixup_topology(void) 1676 { 1677 int i; 1678 1679 #ifdef CONFIG_SCHED_SMT 1680 if (has_big_cores) { 1681 pr_info("Big cores detected but using small core scheduling\n"); 1682 powerpc_topology[smt_idx].mask = smallcore_smt_mask; 1683 } 1684 #endif 1685 1686 if (!has_coregroup_support()) 1687 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask; 1688 1689 /* 1690 * Try to consolidate topology levels here instead of 1691 * allowing scheduler to degenerate. 1692 * - Dont consolidate if masks are different. 1693 * - Dont consolidate if sd_flags exists and are different. 1694 */ 1695 for (i = 1; i <= die_idx; i++) { 1696 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask) 1697 continue; 1698 1699 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags && 1700 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags) 1701 continue; 1702 1703 if (!powerpc_topology[i - 1].sd_flags) 1704 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags; 1705 1706 powerpc_topology[i].mask = powerpc_topology[i + 1].mask; 1707 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags; 1708 #ifdef CONFIG_SCHED_DEBUG 1709 powerpc_topology[i].name = powerpc_topology[i + 1].name; 1710 #endif 1711 } 1712 } 1713 1714 void __init smp_cpus_done(unsigned int max_cpus) 1715 { 1716 /* 1717 * We are running pinned to the boot CPU, see rest_init(). 1718 */ 1719 if (smp_ops && smp_ops->setup_cpu) 1720 smp_ops->setup_cpu(boot_cpuid); 1721 1722 if (smp_ops && smp_ops->bringup_done) 1723 smp_ops->bringup_done(); 1724 1725 dump_numa_cpu_topology(); 1726 1727 fixup_topology(); 1728 set_sched_topology(powerpc_topology); 1729 } 1730 1731 #ifdef CONFIG_HOTPLUG_CPU 1732 int __cpu_disable(void) 1733 { 1734 int cpu = smp_processor_id(); 1735 int err; 1736 1737 if (!smp_ops->cpu_disable) 1738 return -ENOSYS; 1739 1740 this_cpu_disable_ftrace(); 1741 1742 err = smp_ops->cpu_disable(); 1743 if (err) 1744 return err; 1745 1746 /* Update sibling maps */ 1747 remove_cpu_from_masks(cpu); 1748 1749 return 0; 1750 } 1751 1752 void __cpu_die(unsigned int cpu) 1753 { 1754 if (smp_ops->cpu_die) 1755 smp_ops->cpu_die(cpu); 1756 } 1757 1758 void __noreturn arch_cpu_idle_dead(void) 1759 { 1760 /* 1761 * Disable on the down path. This will be re-enabled by 1762 * start_secondary() via start_secondary_resume() below 1763 */ 1764 this_cpu_disable_ftrace(); 1765 1766 if (smp_ops->cpu_offline_self) 1767 smp_ops->cpu_offline_self(); 1768 1769 /* If we return, we re-enter start_secondary */ 1770 start_secondary_resume(); 1771 } 1772 1773 #endif 1774