xref: /openbmc/linux/arch/powerpc/kernel/smp.c (revision 37d838de)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SMP support for ppc.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6  * deal of code from the sparc and intel versions.
7  *
8  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9  *
10  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12  */
13 
14 #undef DEBUG
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 
39 #include <asm/ptrace.h>
40 #include <linux/atomic.h>
41 #include <asm/irq.h>
42 #include <asm/hw_irq.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/dbell.h>
45 #include <asm/page.h>
46 #include <asm/smp.h>
47 #include <asm/time.h>
48 #include <asm/machdep.h>
49 #include <asm/cputhreads.h>
50 #include <asm/cputable.h>
51 #include <asm/mpic.h>
52 #include <asm/vdso_datapage.h>
53 #ifdef CONFIG_PPC64
54 #include <asm/paca.h>
55 #endif
56 #include <asm/vdso.h>
57 #include <asm/debug.h>
58 #include <asm/kexec.h>
59 #include <asm/cpu_has_feature.h>
60 #include <asm/ftrace.h>
61 #include <asm/kup.h>
62 #include <asm/fadump.h>
63 
64 #ifdef DEBUG
65 #include <asm/udbg.h>
66 #define DBG(fmt...) udbg_printf(fmt)
67 #else
68 #define DBG(fmt...)
69 #endif
70 
71 #ifdef CONFIG_HOTPLUG_CPU
72 /* State of each CPU during hotplug phases */
73 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
74 #endif
75 
76 struct task_struct *secondary_current;
77 bool has_big_cores;
78 bool coregroup_enabled;
79 bool thread_group_shares_l2;
80 bool thread_group_shares_l3;
81 
82 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
83 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
84 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
85 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
86 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
87 
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 EXPORT_SYMBOL_GPL(has_big_cores);
92 
93 enum {
94 #ifdef CONFIG_SCHED_SMT
95 	smt_idx,
96 #endif
97 	cache_idx,
98 	mc_idx,
99 	die_idx,
100 };
101 
102 #define MAX_THREAD_LIST_SIZE	8
103 #define THREAD_GROUP_SHARE_L1   1
104 #define THREAD_GROUP_SHARE_L2_L3 2
105 struct thread_groups {
106 	unsigned int property;
107 	unsigned int nr_groups;
108 	unsigned int threads_per_group;
109 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
110 };
111 
112 /* Maximum number of properties that groups of threads within a core can share */
113 #define MAX_THREAD_GROUP_PROPERTIES 2
114 
115 struct thread_groups_list {
116 	unsigned int nr_properties;
117 	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
118 };
119 
120 static struct thread_groups_list tgl[NR_CPUS] __initdata;
121 /*
122  * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
123  * the set its siblings that share the L1-cache.
124  */
125 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
126 
127 /*
128  * On some big-cores system, thread_group_l2_cache_map for each CPU
129  * corresponds to the set its siblings within the core that share the
130  * L2-cache.
131  */
132 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
133 
134 /*
135  * On P10, thread_group_l3_cache_map for each CPU is equal to the
136  * thread_group_l2_cache_map
137  */
138 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
139 
140 /* SMP operations for this machine */
141 struct smp_ops_t *smp_ops;
142 
143 /* Can't be static due to PowerMac hackery */
144 volatile unsigned int cpu_callin_map[NR_CPUS];
145 
146 int smt_enabled_at_boot = 1;
147 
148 /*
149  * Returns 1 if the specified cpu should be brought up during boot.
150  * Used to inhibit booting threads if they've been disabled or
151  * limited on the command line
152  */
153 int smp_generic_cpu_bootable(unsigned int nr)
154 {
155 	/* Special case - we inhibit secondary thread startup
156 	 * during boot if the user requests it.
157 	 */
158 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
159 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
160 			return 0;
161 		if (smt_enabled_at_boot
162 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
163 			return 0;
164 	}
165 
166 	return 1;
167 }
168 
169 
170 #ifdef CONFIG_PPC64
171 int smp_generic_kick_cpu(int nr)
172 {
173 	if (nr < 0 || nr >= nr_cpu_ids)
174 		return -EINVAL;
175 
176 	/*
177 	 * The processor is currently spinning, waiting for the
178 	 * cpu_start field to become non-zero After we set cpu_start,
179 	 * the processor will continue on to secondary_start
180 	 */
181 	if (!paca_ptrs[nr]->cpu_start) {
182 		paca_ptrs[nr]->cpu_start = 1;
183 		smp_mb();
184 		return 0;
185 	}
186 
187 #ifdef CONFIG_HOTPLUG_CPU
188 	/*
189 	 * Ok it's not there, so it might be soft-unplugged, let's
190 	 * try to bring it back
191 	 */
192 	generic_set_cpu_up(nr);
193 	smp_wmb();
194 	smp_send_reschedule(nr);
195 #endif /* CONFIG_HOTPLUG_CPU */
196 
197 	return 0;
198 }
199 #endif /* CONFIG_PPC64 */
200 
201 static irqreturn_t call_function_action(int irq, void *data)
202 {
203 	generic_smp_call_function_interrupt();
204 	return IRQ_HANDLED;
205 }
206 
207 static irqreturn_t reschedule_action(int irq, void *data)
208 {
209 	scheduler_ipi();
210 	return IRQ_HANDLED;
211 }
212 
213 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
214 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
215 {
216 	timer_broadcast_interrupt();
217 	return IRQ_HANDLED;
218 }
219 #endif
220 
221 #ifdef CONFIG_NMI_IPI
222 static irqreturn_t nmi_ipi_action(int irq, void *data)
223 {
224 	smp_handle_nmi_ipi(get_irq_regs());
225 	return IRQ_HANDLED;
226 }
227 #endif
228 
229 static irq_handler_t smp_ipi_action[] = {
230 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
231 	[PPC_MSG_RESCHEDULE] = reschedule_action,
232 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
233 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
234 #endif
235 #ifdef CONFIG_NMI_IPI
236 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
237 #endif
238 };
239 
240 /*
241  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
242  * than going through the call function infrastructure, and strongly
243  * serialized, so it is more appropriate for debugging.
244  */
245 const char *smp_ipi_name[] = {
246 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
247 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
248 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
249 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
250 #endif
251 #ifdef CONFIG_NMI_IPI
252 	[PPC_MSG_NMI_IPI] = "nmi ipi",
253 #endif
254 };
255 
256 /* optional function to request ipi, for controllers with >= 4 ipis */
257 int smp_request_message_ipi(int virq, int msg)
258 {
259 	int err;
260 
261 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
262 		return -EINVAL;
263 #ifndef CONFIG_NMI_IPI
264 	if (msg == PPC_MSG_NMI_IPI)
265 		return 1;
266 #endif
267 
268 	err = request_irq(virq, smp_ipi_action[msg],
269 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
270 			  smp_ipi_name[msg], NULL);
271 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
272 		virq, smp_ipi_name[msg], err);
273 
274 	return err;
275 }
276 
277 #ifdef CONFIG_PPC_SMP_MUXED_IPI
278 struct cpu_messages {
279 	long messages;			/* current messages */
280 };
281 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
282 
283 void smp_muxed_ipi_set_message(int cpu, int msg)
284 {
285 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
286 	char *message = (char *)&info->messages;
287 
288 	/*
289 	 * Order previous accesses before accesses in the IPI handler.
290 	 */
291 	smp_mb();
292 	message[msg] = 1;
293 }
294 
295 void smp_muxed_ipi_message_pass(int cpu, int msg)
296 {
297 	smp_muxed_ipi_set_message(cpu, msg);
298 
299 	/*
300 	 * cause_ipi functions are required to include a full barrier
301 	 * before doing whatever causes the IPI.
302 	 */
303 	smp_ops->cause_ipi(cpu);
304 }
305 
306 #ifdef __BIG_ENDIAN__
307 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
308 #else
309 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
310 #endif
311 
312 irqreturn_t smp_ipi_demux(void)
313 {
314 	mb();	/* order any irq clear */
315 
316 	return smp_ipi_demux_relaxed();
317 }
318 
319 /* sync-free variant. Callers should ensure synchronization */
320 irqreturn_t smp_ipi_demux_relaxed(void)
321 {
322 	struct cpu_messages *info;
323 	unsigned long all;
324 
325 	info = this_cpu_ptr(&ipi_message);
326 	do {
327 		all = xchg(&info->messages, 0);
328 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
329 		/*
330 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
331 		 * before PPC_MSG_CALL_FUNCTION messages because when
332 		 * a VM is destroyed, we call kick_all_cpus_sync()
333 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
334 		 * messages have completed before we free any VCPUs.
335 		 */
336 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
337 			kvmppc_xics_ipi_action();
338 #endif
339 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
340 			generic_smp_call_function_interrupt();
341 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
342 			scheduler_ipi();
343 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
344 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
345 			timer_broadcast_interrupt();
346 #endif
347 #ifdef CONFIG_NMI_IPI
348 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
349 			nmi_ipi_action(0, NULL);
350 #endif
351 	} while (info->messages);
352 
353 	return IRQ_HANDLED;
354 }
355 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
356 
357 static inline void do_message_pass(int cpu, int msg)
358 {
359 	if (smp_ops->message_pass)
360 		smp_ops->message_pass(cpu, msg);
361 #ifdef CONFIG_PPC_SMP_MUXED_IPI
362 	else
363 		smp_muxed_ipi_message_pass(cpu, msg);
364 #endif
365 }
366 
367 void smp_send_reschedule(int cpu)
368 {
369 	if (likely(smp_ops))
370 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
371 }
372 EXPORT_SYMBOL_GPL(smp_send_reschedule);
373 
374 void arch_send_call_function_single_ipi(int cpu)
375 {
376 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
377 }
378 
379 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
380 {
381 	unsigned int cpu;
382 
383 	for_each_cpu(cpu, mask)
384 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
385 }
386 
387 #ifdef CONFIG_NMI_IPI
388 
389 /*
390  * "NMI IPI" system.
391  *
392  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
393  * a running system. They can be used for crash, debug, halt/reboot, etc.
394  *
395  * The IPI call waits with interrupts disabled until all targets enter the
396  * NMI handler, then returns. Subsequent IPIs can be issued before targets
397  * have returned from their handlers, so there is no guarantee about
398  * concurrency or re-entrancy.
399  *
400  * A new NMI can be issued before all targets exit the handler.
401  *
402  * The IPI call may time out without all targets entering the NMI handler.
403  * In that case, there is some logic to recover (and ignore subsequent
404  * NMI interrupts that may eventually be raised), but the platform interrupt
405  * handler may not be able to distinguish this from other exception causes,
406  * which may cause a crash.
407  */
408 
409 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
410 static struct cpumask nmi_ipi_pending_mask;
411 static bool nmi_ipi_busy = false;
412 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
413 
414 noinstr static void nmi_ipi_lock_start(unsigned long *flags)
415 {
416 	raw_local_irq_save(*flags);
417 	hard_irq_disable();
418 	while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
419 		raw_local_irq_restore(*flags);
420 		spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
421 		raw_local_irq_save(*flags);
422 		hard_irq_disable();
423 	}
424 }
425 
426 noinstr static void nmi_ipi_lock(void)
427 {
428 	while (arch_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
429 		spin_until_cond(arch_atomic_read(&__nmi_ipi_lock) == 0);
430 }
431 
432 noinstr static void nmi_ipi_unlock(void)
433 {
434 	smp_mb();
435 	WARN_ON(arch_atomic_read(&__nmi_ipi_lock) != 1);
436 	arch_atomic_set(&__nmi_ipi_lock, 0);
437 }
438 
439 noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
440 {
441 	nmi_ipi_unlock();
442 	raw_local_irq_restore(*flags);
443 }
444 
445 /*
446  * Platform NMI handler calls this to ack
447  */
448 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
449 {
450 	void (*fn)(struct pt_regs *) = NULL;
451 	unsigned long flags;
452 	int me = raw_smp_processor_id();
453 	int ret = 0;
454 
455 	/*
456 	 * Unexpected NMIs are possible here because the interrupt may not
457 	 * be able to distinguish NMI IPIs from other types of NMIs, or
458 	 * because the caller may have timed out.
459 	 */
460 	nmi_ipi_lock_start(&flags);
461 	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
462 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
463 		fn = READ_ONCE(nmi_ipi_function);
464 		WARN_ON_ONCE(!fn);
465 		ret = 1;
466 	}
467 	nmi_ipi_unlock_end(&flags);
468 
469 	if (fn)
470 		fn(regs);
471 
472 	return ret;
473 }
474 
475 static void do_smp_send_nmi_ipi(int cpu, bool safe)
476 {
477 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
478 		return;
479 
480 	if (cpu >= 0) {
481 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
482 	} else {
483 		int c;
484 
485 		for_each_online_cpu(c) {
486 			if (c == raw_smp_processor_id())
487 				continue;
488 			do_message_pass(c, PPC_MSG_NMI_IPI);
489 		}
490 	}
491 }
492 
493 /*
494  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
495  * - fn is the target callback function.
496  * - delay_us > 0 is the delay before giving up waiting for targets to
497  *   begin executing the handler, == 0 specifies indefinite delay.
498  */
499 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
500 				u64 delay_us, bool safe)
501 {
502 	unsigned long flags;
503 	int me = raw_smp_processor_id();
504 	int ret = 1;
505 
506 	BUG_ON(cpu == me);
507 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
508 
509 	if (unlikely(!smp_ops))
510 		return 0;
511 
512 	nmi_ipi_lock_start(&flags);
513 	while (nmi_ipi_busy) {
514 		nmi_ipi_unlock_end(&flags);
515 		spin_until_cond(!nmi_ipi_busy);
516 		nmi_ipi_lock_start(&flags);
517 	}
518 	nmi_ipi_busy = true;
519 	nmi_ipi_function = fn;
520 
521 	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
522 
523 	if (cpu < 0) {
524 		/* ALL_OTHERS */
525 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
526 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
527 	} else {
528 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
529 	}
530 
531 	nmi_ipi_unlock();
532 
533 	/* Interrupts remain hard disabled */
534 
535 	do_smp_send_nmi_ipi(cpu, safe);
536 
537 	nmi_ipi_lock();
538 	/* nmi_ipi_busy is set here, so unlock/lock is okay */
539 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
540 		nmi_ipi_unlock();
541 		udelay(1);
542 		nmi_ipi_lock();
543 		if (delay_us) {
544 			delay_us--;
545 			if (!delay_us)
546 				break;
547 		}
548 	}
549 
550 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
551 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
552 		ret = 0;
553 		cpumask_clear(&nmi_ipi_pending_mask);
554 	}
555 
556 	nmi_ipi_function = NULL;
557 	nmi_ipi_busy = false;
558 
559 	nmi_ipi_unlock_end(&flags);
560 
561 	return ret;
562 }
563 
564 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
565 {
566 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
567 }
568 
569 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
570 {
571 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
572 }
573 #endif /* CONFIG_NMI_IPI */
574 
575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
576 void tick_broadcast(const struct cpumask *mask)
577 {
578 	unsigned int cpu;
579 
580 	for_each_cpu(cpu, mask)
581 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
582 }
583 #endif
584 
585 #ifdef CONFIG_DEBUGGER
586 static void debugger_ipi_callback(struct pt_regs *regs)
587 {
588 	debugger_ipi(regs);
589 }
590 
591 void smp_send_debugger_break(void)
592 {
593 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
594 }
595 #endif
596 
597 #ifdef CONFIG_KEXEC_CORE
598 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
599 {
600 	int cpu;
601 
602 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
603 	if (kdump_in_progress() && crash_wake_offline) {
604 		for_each_present_cpu(cpu) {
605 			if (cpu_online(cpu))
606 				continue;
607 			/*
608 			 * crash_ipi_callback will wait for
609 			 * all cpus, including offline CPUs.
610 			 * We don't care about nmi_ipi_function.
611 			 * Offline cpus will jump straight into
612 			 * crash_ipi_callback, we can skip the
613 			 * entire NMI dance and waiting for
614 			 * cpus to clear pending mask, etc.
615 			 */
616 			do_smp_send_nmi_ipi(cpu, false);
617 		}
618 	}
619 }
620 #endif
621 
622 #ifdef CONFIG_NMI_IPI
623 static void crash_stop_this_cpu(struct pt_regs *regs)
624 #else
625 static void crash_stop_this_cpu(void *dummy)
626 #endif
627 {
628 	/*
629 	 * Just busy wait here and avoid marking CPU as offline to ensure
630 	 * register data is captured appropriately.
631 	 */
632 	while (1)
633 		cpu_relax();
634 }
635 
636 void crash_smp_send_stop(void)
637 {
638 	static bool stopped = false;
639 
640 	/*
641 	 * In case of fadump, register data for all CPUs is captured by f/w
642 	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
643 	 * this rtas call to avoid tricky post processing of those CPUs'
644 	 * backtraces.
645 	 */
646 	if (should_fadump_crash())
647 		return;
648 
649 	if (stopped)
650 		return;
651 
652 	stopped = true;
653 
654 #ifdef CONFIG_NMI_IPI
655 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000);
656 #else
657 	smp_call_function(crash_stop_this_cpu, NULL, 0);
658 #endif /* CONFIG_NMI_IPI */
659 }
660 
661 #ifdef CONFIG_NMI_IPI
662 static void nmi_stop_this_cpu(struct pt_regs *regs)
663 {
664 	/*
665 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
666 	 */
667 	set_cpu_online(smp_processor_id(), false);
668 
669 	spin_begin();
670 	while (1)
671 		spin_cpu_relax();
672 }
673 
674 void smp_send_stop(void)
675 {
676 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
677 }
678 
679 #else /* CONFIG_NMI_IPI */
680 
681 static void stop_this_cpu(void *dummy)
682 {
683 	hard_irq_disable();
684 
685 	/*
686 	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
687 	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
688 	 * to know other CPUs are offline before it breaks locks to flush
689 	 * printk buffers, in case we panic()ed while holding the lock.
690 	 */
691 	set_cpu_online(smp_processor_id(), false);
692 
693 	spin_begin();
694 	while (1)
695 		spin_cpu_relax();
696 }
697 
698 void smp_send_stop(void)
699 {
700 	static bool stopped = false;
701 
702 	/*
703 	 * Prevent waiting on csd lock from a previous smp_send_stop.
704 	 * This is racy, but in general callers try to do the right
705 	 * thing and only fire off one smp_send_stop (e.g., see
706 	 * kernel/panic.c)
707 	 */
708 	if (stopped)
709 		return;
710 
711 	stopped = true;
712 
713 	smp_call_function(stop_this_cpu, NULL, 0);
714 }
715 #endif /* CONFIG_NMI_IPI */
716 
717 static struct task_struct *current_set[NR_CPUS];
718 
719 static void smp_store_cpu_info(int id)
720 {
721 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
722 #ifdef CONFIG_PPC_FSL_BOOK3E
723 	per_cpu(next_tlbcam_idx, id)
724 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
725 #endif
726 }
727 
728 /*
729  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
730  * rather than just passing around the cpumask we pass around a function that
731  * returns the that cpumask for the given CPU.
732  */
733 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
734 {
735 	cpumask_set_cpu(i, get_cpumask(j));
736 	cpumask_set_cpu(j, get_cpumask(i));
737 }
738 
739 #ifdef CONFIG_HOTPLUG_CPU
740 static void set_cpus_unrelated(int i, int j,
741 		struct cpumask *(*get_cpumask)(int))
742 {
743 	cpumask_clear_cpu(i, get_cpumask(j));
744 	cpumask_clear_cpu(j, get_cpumask(i));
745 }
746 #endif
747 
748 /*
749  * Extends set_cpus_related. Instead of setting one CPU at a time in
750  * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
751  */
752 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
753 				struct cpumask *(*dstmask)(int))
754 {
755 	struct cpumask *mask;
756 	int k;
757 
758 	mask = srcmask(j);
759 	for_each_cpu(k, srcmask(i))
760 		cpumask_or(dstmask(k), dstmask(k), mask);
761 
762 	if (i == j)
763 		return;
764 
765 	mask = srcmask(i);
766 	for_each_cpu(k, srcmask(j))
767 		cpumask_or(dstmask(k), dstmask(k), mask);
768 }
769 
770 /*
771  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
772  *                      property for the CPU device node @dn and stores
773  *                      the parsed output in the thread_groups_list
774  *                      structure @tglp.
775  *
776  * @dn: The device node of the CPU device.
777  * @tglp: Pointer to a thread group list structure into which the parsed
778  *      output of "ibm,thread-groups" is stored.
779  *
780  * ibm,thread-groups[0..N-1] array defines which group of threads in
781  * the CPU-device node can be grouped together based on the property.
782  *
783  * This array can represent thread groupings for multiple properties.
784  *
785  * ibm,thread-groups[i + 0] tells us the property based on which the
786  * threads are being grouped together. If this value is 1, it implies
787  * that the threads in the same group share L1, translation cache. If
788  * the value is 2, it implies that the threads in the same group share
789  * the same L2 cache.
790  *
791  * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
792  * property ibm,thread-groups[i]
793  *
794  * ibm,thread-groups[i+2] tells us the number of threads in each such
795  * group.
796  * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
797  *
798  * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
799  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
800  * the grouping.
801  *
802  * Example:
803  * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
804  * This can be decomposed up into two consecutive arrays:
805  * a) [1,2,4,8,10,12,14,9,11,13,15]
806  * b) [2,2,4,8,10,12,14,9,11,13,15]
807  *
808  * where in,
809  *
810  * a) provides information of Property "1" being shared by "2" groups,
811  *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
812  *  the first group is {8,10,12,14} and the
813  *  "ibm,ppc-interrupt-server#s" of the second group is
814  *  {9,11,13,15}. Property "1" is indicative of the thread in the
815  *  group sharing L1 cache, translation cache and Instruction Data
816  *  flow.
817  *
818  * b) provides information of Property "2" being shared by "2" groups,
819  *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
820  *  the first group is {8,10,12,14} and the
821  *  "ibm,ppc-interrupt-server#s" of the second group is
822  *  {9,11,13,15}. Property "2" indicates that the threads in each
823  *  group share the L2-cache.
824  *
825  * Returns 0 on success, -EINVAL if the property does not exist,
826  * -ENODATA if property does not have a value, and -EOVERFLOW if the
827  * property data isn't large enough.
828  */
829 static int parse_thread_groups(struct device_node *dn,
830 			       struct thread_groups_list *tglp)
831 {
832 	unsigned int property_idx = 0;
833 	u32 *thread_group_array;
834 	size_t total_threads;
835 	int ret = 0, count;
836 	u32 *thread_list;
837 	int i = 0;
838 
839 	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
840 	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
841 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
842 					 thread_group_array, count);
843 	if (ret)
844 		goto out_free;
845 
846 	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
847 		int j;
848 		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
849 
850 		tg->property = thread_group_array[i];
851 		tg->nr_groups = thread_group_array[i + 1];
852 		tg->threads_per_group = thread_group_array[i + 2];
853 		total_threads = tg->nr_groups * tg->threads_per_group;
854 
855 		thread_list = &thread_group_array[i + 3];
856 
857 		for (j = 0; j < total_threads; j++)
858 			tg->thread_list[j] = thread_list[j];
859 		i = i + 3 + total_threads;
860 	}
861 
862 	tglp->nr_properties = property_idx;
863 
864 out_free:
865 	kfree(thread_group_array);
866 	return ret;
867 }
868 
869 /*
870  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
871  *                              that @cpu belongs to.
872  *
873  * @cpu : The logical CPU whose thread group is being searched.
874  * @tg : The thread-group structure of the CPU node which @cpu belongs
875  *       to.
876  *
877  * Returns the index to tg->thread_list that points to the start
878  * of the thread_group that @cpu belongs to.
879  *
880  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
881  * tg->thread_list.
882  */
883 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
884 {
885 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
886 	int i, j;
887 
888 	for (i = 0; i < tg->nr_groups; i++) {
889 		int group_start = i * tg->threads_per_group;
890 
891 		for (j = 0; j < tg->threads_per_group; j++) {
892 			int idx = group_start + j;
893 
894 			if (tg->thread_list[idx] == hw_cpu_id)
895 				return group_start;
896 		}
897 	}
898 
899 	return -1;
900 }
901 
902 static struct thread_groups *__init get_thread_groups(int cpu,
903 						      int group_property,
904 						      int *err)
905 {
906 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
907 	struct thread_groups_list *cpu_tgl = &tgl[cpu];
908 	struct thread_groups *tg = NULL;
909 	int i;
910 	*err = 0;
911 
912 	if (!dn) {
913 		*err = -ENODATA;
914 		return NULL;
915 	}
916 
917 	if (!cpu_tgl->nr_properties) {
918 		*err = parse_thread_groups(dn, cpu_tgl);
919 		if (*err)
920 			goto out;
921 	}
922 
923 	for (i = 0; i < cpu_tgl->nr_properties; i++) {
924 		if (cpu_tgl->property_tgs[i].property == group_property) {
925 			tg = &cpu_tgl->property_tgs[i];
926 			break;
927 		}
928 	}
929 
930 	if (!tg)
931 		*err = -EINVAL;
932 out:
933 	of_node_put(dn);
934 	return tg;
935 }
936 
937 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
938 					       int cpu, int cpu_group_start)
939 {
940 	int first_thread = cpu_first_thread_sibling(cpu);
941 	int i;
942 
943 	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
944 
945 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
946 		int i_group_start = get_cpu_thread_group_start(i, tg);
947 
948 		if (unlikely(i_group_start == -1)) {
949 			WARN_ON_ONCE(1);
950 			return -ENODATA;
951 		}
952 
953 		if (i_group_start == cpu_group_start)
954 			cpumask_set_cpu(i, *mask);
955 	}
956 
957 	return 0;
958 }
959 
960 static int __init init_thread_group_cache_map(int cpu, int cache_property)
961 
962 {
963 	int cpu_group_start = -1, err = 0;
964 	struct thread_groups *tg = NULL;
965 	cpumask_var_t *mask = NULL;
966 
967 	if (cache_property != THREAD_GROUP_SHARE_L1 &&
968 	    cache_property != THREAD_GROUP_SHARE_L2_L3)
969 		return -EINVAL;
970 
971 	tg = get_thread_groups(cpu, cache_property, &err);
972 
973 	if (!tg)
974 		return err;
975 
976 	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
977 
978 	if (unlikely(cpu_group_start == -1)) {
979 		WARN_ON_ONCE(1);
980 		return -ENODATA;
981 	}
982 
983 	if (cache_property == THREAD_GROUP_SHARE_L1) {
984 		mask = &per_cpu(thread_group_l1_cache_map, cpu);
985 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
986 	}
987 	else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
988 		mask = &per_cpu(thread_group_l2_cache_map, cpu);
989 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
990 		mask = &per_cpu(thread_group_l3_cache_map, cpu);
991 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
992 	}
993 
994 
995 	return 0;
996 }
997 
998 static bool shared_caches;
999 
1000 #ifdef CONFIG_SCHED_SMT
1001 /* cpumask of CPUs with asymmetric SMT dependency */
1002 static int powerpc_smt_flags(void)
1003 {
1004 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1005 
1006 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1007 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1008 		flags |= SD_ASYM_PACKING;
1009 	}
1010 	return flags;
1011 }
1012 #endif
1013 
1014 /*
1015  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1016  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1017  * since the migrated task remains cache hot. We want to take advantage of this
1018  * at the scheduler level so an extra topology level is required.
1019  */
1020 static int powerpc_shared_cache_flags(void)
1021 {
1022 	return SD_SHARE_PKG_RESOURCES;
1023 }
1024 
1025 /*
1026  * We can't just pass cpu_l2_cache_mask() directly because
1027  * returns a non-const pointer and the compiler barfs on that.
1028  */
1029 static const struct cpumask *shared_cache_mask(int cpu)
1030 {
1031 	return per_cpu(cpu_l2_cache_map, cpu);
1032 }
1033 
1034 #ifdef CONFIG_SCHED_SMT
1035 static const struct cpumask *smallcore_smt_mask(int cpu)
1036 {
1037 	return cpu_smallcore_mask(cpu);
1038 }
1039 #endif
1040 
1041 static struct cpumask *cpu_coregroup_mask(int cpu)
1042 {
1043 	return per_cpu(cpu_coregroup_map, cpu);
1044 }
1045 
1046 static bool has_coregroup_support(void)
1047 {
1048 	return coregroup_enabled;
1049 }
1050 
1051 static const struct cpumask *cpu_mc_mask(int cpu)
1052 {
1053 	return cpu_coregroup_mask(cpu);
1054 }
1055 
1056 static struct sched_domain_topology_level powerpc_topology[] = {
1057 #ifdef CONFIG_SCHED_SMT
1058 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1059 #endif
1060 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1061 	{ cpu_mc_mask, SD_INIT_NAME(MC) },
1062 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1063 	{ NULL, },
1064 };
1065 
1066 static int __init init_big_cores(void)
1067 {
1068 	int cpu;
1069 
1070 	for_each_possible_cpu(cpu) {
1071 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1072 
1073 		if (err)
1074 			return err;
1075 
1076 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1077 					GFP_KERNEL,
1078 					cpu_to_node(cpu));
1079 	}
1080 
1081 	has_big_cores = true;
1082 
1083 	for_each_possible_cpu(cpu) {
1084 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1085 
1086 		if (err)
1087 			return err;
1088 	}
1089 
1090 	thread_group_shares_l2 = true;
1091 	thread_group_shares_l3 = true;
1092 	pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1093 
1094 	return 0;
1095 }
1096 
1097 void __init smp_prepare_cpus(unsigned int max_cpus)
1098 {
1099 	unsigned int cpu;
1100 
1101 	DBG("smp_prepare_cpus\n");
1102 
1103 	/*
1104 	 * setup_cpu may need to be called on the boot cpu. We haven't
1105 	 * spun any cpus up but lets be paranoid.
1106 	 */
1107 	BUG_ON(boot_cpuid != smp_processor_id());
1108 
1109 	/* Fixup boot cpu */
1110 	smp_store_cpu_info(boot_cpuid);
1111 	cpu_callin_map[boot_cpuid] = 1;
1112 
1113 	for_each_possible_cpu(cpu) {
1114 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1115 					GFP_KERNEL, cpu_to_node(cpu));
1116 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1117 					GFP_KERNEL, cpu_to_node(cpu));
1118 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1119 					GFP_KERNEL, cpu_to_node(cpu));
1120 		if (has_coregroup_support())
1121 			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1122 						GFP_KERNEL, cpu_to_node(cpu));
1123 
1124 #ifdef CONFIG_NUMA
1125 		/*
1126 		 * numa_node_id() works after this.
1127 		 */
1128 		if (cpu_present(cpu)) {
1129 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1130 			set_cpu_numa_mem(cpu,
1131 				local_memory_node(numa_cpu_lookup_table[cpu]));
1132 		}
1133 #endif
1134 	}
1135 
1136 	/* Init the cpumasks so the boot CPU is related to itself */
1137 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1138 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1139 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1140 
1141 	if (has_coregroup_support())
1142 		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1143 
1144 	init_big_cores();
1145 	if (has_big_cores) {
1146 		cpumask_set_cpu(boot_cpuid,
1147 				cpu_smallcore_mask(boot_cpuid));
1148 	}
1149 
1150 	if (cpu_to_chip_id(boot_cpuid) != -1) {
1151 		int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1152 
1153 		/*
1154 		 * All threads of a core will all belong to the same core,
1155 		 * chip_id_lookup_table will have one entry per core.
1156 		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1157 		 * other CPUs, will also not have chip-id.
1158 		 */
1159 		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1160 		if (chip_id_lookup_table)
1161 			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1162 	}
1163 
1164 	if (smp_ops && smp_ops->probe)
1165 		smp_ops->probe();
1166 }
1167 
1168 void smp_prepare_boot_cpu(void)
1169 {
1170 	BUG_ON(smp_processor_id() != boot_cpuid);
1171 #ifdef CONFIG_PPC64
1172 	paca_ptrs[boot_cpuid]->__current = current;
1173 #endif
1174 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1175 	current_set[boot_cpuid] = current;
1176 }
1177 
1178 #ifdef CONFIG_HOTPLUG_CPU
1179 
1180 int generic_cpu_disable(void)
1181 {
1182 	unsigned int cpu = smp_processor_id();
1183 
1184 	if (cpu == boot_cpuid)
1185 		return -EBUSY;
1186 
1187 	set_cpu_online(cpu, false);
1188 #ifdef CONFIG_PPC64
1189 	vdso_data->processorCount--;
1190 #endif
1191 	/* Update affinity of all IRQs previously aimed at this CPU */
1192 	irq_migrate_all_off_this_cpu();
1193 
1194 	/*
1195 	 * Depending on the details of the interrupt controller, it's possible
1196 	 * that one of the interrupts we just migrated away from this CPU is
1197 	 * actually already pending on this CPU. If we leave it in that state
1198 	 * the interrupt will never be EOI'ed, and will never fire again. So
1199 	 * temporarily enable interrupts here, to allow any pending interrupt to
1200 	 * be received (and EOI'ed), before we take this CPU offline.
1201 	 */
1202 	local_irq_enable();
1203 	mdelay(1);
1204 	local_irq_disable();
1205 
1206 	return 0;
1207 }
1208 
1209 void generic_cpu_die(unsigned int cpu)
1210 {
1211 	int i;
1212 
1213 	for (i = 0; i < 100; i++) {
1214 		smp_rmb();
1215 		if (is_cpu_dead(cpu))
1216 			return;
1217 		msleep(100);
1218 	}
1219 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1220 }
1221 
1222 void generic_set_cpu_dead(unsigned int cpu)
1223 {
1224 	per_cpu(cpu_state, cpu) = CPU_DEAD;
1225 }
1226 
1227 /*
1228  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1229  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1230  * which makes the delay in generic_cpu_die() not happen.
1231  */
1232 void generic_set_cpu_up(unsigned int cpu)
1233 {
1234 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1235 }
1236 
1237 int generic_check_cpu_restart(unsigned int cpu)
1238 {
1239 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1240 }
1241 
1242 int is_cpu_dead(unsigned int cpu)
1243 {
1244 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1245 }
1246 
1247 static bool secondaries_inhibited(void)
1248 {
1249 	return kvm_hv_mode_active();
1250 }
1251 
1252 #else /* HOTPLUG_CPU */
1253 
1254 #define secondaries_inhibited()		0
1255 
1256 #endif
1257 
1258 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1259 {
1260 #ifdef CONFIG_PPC64
1261 	paca_ptrs[cpu]->__current = idle;
1262 	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1263 				 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1264 #endif
1265 	task_thread_info(idle)->cpu = cpu;
1266 	secondary_current = current_set[cpu] = idle;
1267 }
1268 
1269 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1270 {
1271 	int rc, c;
1272 
1273 	/*
1274 	 * Don't allow secondary threads to come online if inhibited
1275 	 */
1276 	if (threads_per_core > 1 && secondaries_inhibited() &&
1277 	    cpu_thread_in_subcore(cpu))
1278 		return -EBUSY;
1279 
1280 	if (smp_ops == NULL ||
1281 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1282 		return -EINVAL;
1283 
1284 	cpu_idle_thread_init(cpu, tidle);
1285 
1286 	/*
1287 	 * The platform might need to allocate resources prior to bringing
1288 	 * up the CPU
1289 	 */
1290 	if (smp_ops->prepare_cpu) {
1291 		rc = smp_ops->prepare_cpu(cpu);
1292 		if (rc)
1293 			return rc;
1294 	}
1295 
1296 	/* Make sure callin-map entry is 0 (can be leftover a CPU
1297 	 * hotplug
1298 	 */
1299 	cpu_callin_map[cpu] = 0;
1300 
1301 	/* The information for processor bringup must
1302 	 * be written out to main store before we release
1303 	 * the processor.
1304 	 */
1305 	smp_mb();
1306 
1307 	/* wake up cpus */
1308 	DBG("smp: kicking cpu %d\n", cpu);
1309 	rc = smp_ops->kick_cpu(cpu);
1310 	if (rc) {
1311 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1312 		return rc;
1313 	}
1314 
1315 	/*
1316 	 * wait to see if the cpu made a callin (is actually up).
1317 	 * use this value that I found through experimentation.
1318 	 * -- Cort
1319 	 */
1320 	if (system_state < SYSTEM_RUNNING)
1321 		for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1322 			udelay(100);
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 	else
1325 		/*
1326 		 * CPUs can take much longer to come up in the
1327 		 * hotplug case.  Wait five seconds.
1328 		 */
1329 		for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1330 			msleep(1);
1331 #endif
1332 
1333 	if (!cpu_callin_map[cpu]) {
1334 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1335 		return -ENOENT;
1336 	}
1337 
1338 	DBG("Processor %u found.\n", cpu);
1339 
1340 	if (smp_ops->give_timebase)
1341 		smp_ops->give_timebase();
1342 
1343 	/* Wait until cpu puts itself in the online & active maps */
1344 	spin_until_cond(cpu_online(cpu));
1345 
1346 	return 0;
1347 }
1348 
1349 /* Return the value of the reg property corresponding to the given
1350  * logical cpu.
1351  */
1352 int cpu_to_core_id(int cpu)
1353 {
1354 	struct device_node *np;
1355 	int id = -1;
1356 
1357 	np = of_get_cpu_node(cpu, NULL);
1358 	if (!np)
1359 		goto out;
1360 
1361 	id = of_get_cpu_hwid(np, 0);
1362 out:
1363 	of_node_put(np);
1364 	return id;
1365 }
1366 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1367 
1368 /* Helper routines for cpu to core mapping */
1369 int cpu_core_index_of_thread(int cpu)
1370 {
1371 	return cpu >> threads_shift;
1372 }
1373 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1374 
1375 int cpu_first_thread_of_core(int core)
1376 {
1377 	return core << threads_shift;
1378 }
1379 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1380 
1381 /* Must be called when no change can occur to cpu_present_mask,
1382  * i.e. during cpu online or offline.
1383  */
1384 static struct device_node *cpu_to_l2cache(int cpu)
1385 {
1386 	struct device_node *np;
1387 	struct device_node *cache;
1388 
1389 	if (!cpu_present(cpu))
1390 		return NULL;
1391 
1392 	np = of_get_cpu_node(cpu, NULL);
1393 	if (np == NULL)
1394 		return NULL;
1395 
1396 	cache = of_find_next_cache_node(np);
1397 
1398 	of_node_put(np);
1399 
1400 	return cache;
1401 }
1402 
1403 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1404 {
1405 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1406 	struct device_node *l2_cache, *np;
1407 	int i;
1408 
1409 	if (has_big_cores)
1410 		submask_fn = cpu_smallcore_mask;
1411 
1412 	/*
1413 	 * If the threads in a thread-group share L2 cache, then the
1414 	 * L2-mask can be obtained from thread_group_l2_cache_map.
1415 	 */
1416 	if (thread_group_shares_l2) {
1417 		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1418 
1419 		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1420 			if (cpu_online(i))
1421 				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1422 		}
1423 
1424 		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1425 		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1426 		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1427 			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1428 				     cpu);
1429 		}
1430 
1431 		return true;
1432 	}
1433 
1434 	l2_cache = cpu_to_l2cache(cpu);
1435 	if (!l2_cache || !*mask) {
1436 		/* Assume only core siblings share cache with this CPU */
1437 		for_each_cpu(i, cpu_sibling_mask(cpu))
1438 			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1439 
1440 		return false;
1441 	}
1442 
1443 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1444 
1445 	/* Update l2-cache mask with all the CPUs that are part of submask */
1446 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1447 
1448 	/* Skip all CPUs already part of current CPU l2-cache mask */
1449 	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1450 
1451 	for_each_cpu(i, *mask) {
1452 		/*
1453 		 * when updating the marks the current CPU has not been marked
1454 		 * online, but we need to update the cache masks
1455 		 */
1456 		np = cpu_to_l2cache(i);
1457 
1458 		/* Skip all CPUs already part of current CPU l2-cache */
1459 		if (np == l2_cache) {
1460 			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1461 			cpumask_andnot(*mask, *mask, submask_fn(i));
1462 		} else {
1463 			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1464 		}
1465 
1466 		of_node_put(np);
1467 	}
1468 	of_node_put(l2_cache);
1469 
1470 	return true;
1471 }
1472 
1473 #ifdef CONFIG_HOTPLUG_CPU
1474 static void remove_cpu_from_masks(int cpu)
1475 {
1476 	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1477 	int i;
1478 
1479 	unmap_cpu_from_node(cpu);
1480 
1481 	if (shared_caches)
1482 		mask_fn = cpu_l2_cache_mask;
1483 
1484 	for_each_cpu(i, mask_fn(cpu)) {
1485 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1486 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1487 		if (has_big_cores)
1488 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1489 	}
1490 
1491 	for_each_cpu(i, cpu_core_mask(cpu))
1492 		set_cpus_unrelated(cpu, i, cpu_core_mask);
1493 
1494 	if (has_coregroup_support()) {
1495 		for_each_cpu(i, cpu_coregroup_mask(cpu))
1496 			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1497 	}
1498 }
1499 #endif
1500 
1501 static inline void add_cpu_to_smallcore_masks(int cpu)
1502 {
1503 	int i;
1504 
1505 	if (!has_big_cores)
1506 		return;
1507 
1508 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1509 
1510 	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1511 		if (cpu_online(i))
1512 			set_cpus_related(i, cpu, cpu_smallcore_mask);
1513 	}
1514 }
1515 
1516 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1517 {
1518 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1519 	int coregroup_id = cpu_to_coregroup_id(cpu);
1520 	int i;
1521 
1522 	if (shared_caches)
1523 		submask_fn = cpu_l2_cache_mask;
1524 
1525 	if (!*mask) {
1526 		/* Assume only siblings are part of this CPU's coregroup */
1527 		for_each_cpu(i, submask_fn(cpu))
1528 			set_cpus_related(cpu, i, cpu_coregroup_mask);
1529 
1530 		return;
1531 	}
1532 
1533 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1534 
1535 	/* Update coregroup mask with all the CPUs that are part of submask */
1536 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1537 
1538 	/* Skip all CPUs already part of coregroup mask */
1539 	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1540 
1541 	for_each_cpu(i, *mask) {
1542 		/* Skip all CPUs not part of this coregroup */
1543 		if (coregroup_id == cpu_to_coregroup_id(i)) {
1544 			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1545 			cpumask_andnot(*mask, *mask, submask_fn(i));
1546 		} else {
1547 			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1548 		}
1549 	}
1550 }
1551 
1552 static void add_cpu_to_masks(int cpu)
1553 {
1554 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1555 	int first_thread = cpu_first_thread_sibling(cpu);
1556 	cpumask_var_t mask;
1557 	int chip_id = -1;
1558 	bool ret;
1559 	int i;
1560 
1561 	/*
1562 	 * This CPU will not be in the online mask yet so we need to manually
1563 	 * add it to it's own thread sibling mask.
1564 	 */
1565 	map_cpu_to_node(cpu, cpu_to_node(cpu));
1566 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1567 	cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1568 
1569 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1570 		if (cpu_online(i))
1571 			set_cpus_related(i, cpu, cpu_sibling_mask);
1572 
1573 	add_cpu_to_smallcore_masks(cpu);
1574 
1575 	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1576 	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1577 	update_mask_by_l2(cpu, &mask);
1578 
1579 	if (has_coregroup_support())
1580 		update_coregroup_mask(cpu, &mask);
1581 
1582 	if (chip_id_lookup_table && ret)
1583 		chip_id = cpu_to_chip_id(cpu);
1584 
1585 	if (shared_caches)
1586 		submask_fn = cpu_l2_cache_mask;
1587 
1588 	/* Update core_mask with all the CPUs that are part of submask */
1589 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1590 
1591 	/* Skip all CPUs already part of current CPU core mask */
1592 	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1593 
1594 	/* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1595 	if (chip_id == -1)
1596 		cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1597 
1598 	for_each_cpu(i, mask) {
1599 		if (chip_id == cpu_to_chip_id(i)) {
1600 			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1601 			cpumask_andnot(mask, mask, submask_fn(i));
1602 		} else {
1603 			cpumask_andnot(mask, mask, cpu_core_mask(i));
1604 		}
1605 	}
1606 
1607 	free_cpumask_var(mask);
1608 }
1609 
1610 /* Activate a secondary processor. */
1611 void start_secondary(void *unused)
1612 {
1613 	unsigned int cpu = raw_smp_processor_id();
1614 
1615 	/* PPC64 calls setup_kup() in early_setup_secondary() */
1616 	if (IS_ENABLED(CONFIG_PPC32))
1617 		setup_kup();
1618 
1619 	mmgrab(&init_mm);
1620 	current->active_mm = &init_mm;
1621 
1622 	smp_store_cpu_info(cpu);
1623 	set_dec(tb_ticks_per_jiffy);
1624 	rcu_cpu_starting(cpu);
1625 	cpu_callin_map[cpu] = 1;
1626 
1627 	if (smp_ops->setup_cpu)
1628 		smp_ops->setup_cpu(cpu);
1629 	if (smp_ops->take_timebase)
1630 		smp_ops->take_timebase();
1631 
1632 	secondary_cpu_time_init();
1633 
1634 #ifdef CONFIG_PPC64
1635 	if (system_state == SYSTEM_RUNNING)
1636 		vdso_data->processorCount++;
1637 
1638 	vdso_getcpu_init();
1639 #endif
1640 	set_numa_node(numa_cpu_lookup_table[cpu]);
1641 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1642 
1643 	/* Update topology CPU masks */
1644 	add_cpu_to_masks(cpu);
1645 
1646 	/*
1647 	 * Check for any shared caches. Note that this must be done on a
1648 	 * per-core basis because one core in the pair might be disabled.
1649 	 */
1650 	if (!shared_caches) {
1651 		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1652 		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1653 
1654 		if (has_big_cores)
1655 			sibling_mask = cpu_smallcore_mask;
1656 
1657 		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1658 			shared_caches = true;
1659 	}
1660 
1661 	smp_wmb();
1662 	notify_cpu_starting(cpu);
1663 	set_cpu_online(cpu, true);
1664 
1665 	boot_init_stack_canary();
1666 
1667 	local_irq_enable();
1668 
1669 	/* We can enable ftrace for secondary cpus now */
1670 	this_cpu_enable_ftrace();
1671 
1672 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1673 
1674 	BUG();
1675 }
1676 
1677 #ifdef CONFIG_PROFILING
1678 int setup_profiling_timer(unsigned int multiplier)
1679 {
1680 	return 0;
1681 }
1682 #endif
1683 
1684 static void __init fixup_topology(void)
1685 {
1686 	int i;
1687 
1688 #ifdef CONFIG_SCHED_SMT
1689 	if (has_big_cores) {
1690 		pr_info("Big cores detected but using small core scheduling\n");
1691 		powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1692 	}
1693 #endif
1694 
1695 	if (!has_coregroup_support())
1696 		powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1697 
1698 	/*
1699 	 * Try to consolidate topology levels here instead of
1700 	 * allowing scheduler to degenerate.
1701 	 * - Dont consolidate if masks are different.
1702 	 * - Dont consolidate if sd_flags exists and are different.
1703 	 */
1704 	for (i = 1; i <= die_idx; i++) {
1705 		if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1706 			continue;
1707 
1708 		if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1709 				powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1710 			continue;
1711 
1712 		if (!powerpc_topology[i - 1].sd_flags)
1713 			powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1714 
1715 		powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1716 		powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1717 #ifdef CONFIG_SCHED_DEBUG
1718 		powerpc_topology[i].name = powerpc_topology[i + 1].name;
1719 #endif
1720 	}
1721 }
1722 
1723 void __init smp_cpus_done(unsigned int max_cpus)
1724 {
1725 	/*
1726 	 * We are running pinned to the boot CPU, see rest_init().
1727 	 */
1728 	if (smp_ops && smp_ops->setup_cpu)
1729 		smp_ops->setup_cpu(boot_cpuid);
1730 
1731 	if (smp_ops && smp_ops->bringup_done)
1732 		smp_ops->bringup_done();
1733 
1734 	dump_numa_cpu_topology();
1735 
1736 	fixup_topology();
1737 	set_sched_topology(powerpc_topology);
1738 }
1739 
1740 #ifdef CONFIG_HOTPLUG_CPU
1741 int __cpu_disable(void)
1742 {
1743 	int cpu = smp_processor_id();
1744 	int err;
1745 
1746 	if (!smp_ops->cpu_disable)
1747 		return -ENOSYS;
1748 
1749 	this_cpu_disable_ftrace();
1750 
1751 	err = smp_ops->cpu_disable();
1752 	if (err)
1753 		return err;
1754 
1755 	/* Update sibling maps */
1756 	remove_cpu_from_masks(cpu);
1757 
1758 	return 0;
1759 }
1760 
1761 void __cpu_die(unsigned int cpu)
1762 {
1763 	if (smp_ops->cpu_die)
1764 		smp_ops->cpu_die(cpu);
1765 }
1766 
1767 void arch_cpu_idle_dead(void)
1768 {
1769 	/*
1770 	 * Disable on the down path. This will be re-enabled by
1771 	 * start_secondary() via start_secondary_resume() below
1772 	 */
1773 	this_cpu_disable_ftrace();
1774 
1775 	if (smp_ops->cpu_offline_self)
1776 		smp_ops->cpu_offline_self();
1777 
1778 	/* If we return, we re-enter start_secondary */
1779 	start_secondary_resume();
1780 }
1781 
1782 #endif
1783