1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SMP support for ppc. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 6 * deal of code from the sparc and intel versions. 7 * 8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 9 * 10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 12 */ 13 14 #undef DEBUG 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/sched/topology.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/init.h> 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/err.h> 28 #include <linux/device.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/profile.h> 33 #include <linux/processor.h> 34 #include <linux/random.h> 35 #include <linux/stackprotector.h> 36 #include <linux/pgtable.h> 37 #include <linux/clockchips.h> 38 39 #include <asm/ptrace.h> 40 #include <linux/atomic.h> 41 #include <asm/irq.h> 42 #include <asm/hw_irq.h> 43 #include <asm/kvm_ppc.h> 44 #include <asm/dbell.h> 45 #include <asm/page.h> 46 #include <asm/prom.h> 47 #include <asm/smp.h> 48 #include <asm/time.h> 49 #include <asm/machdep.h> 50 #include <asm/cputhreads.h> 51 #include <asm/cputable.h> 52 #include <asm/mpic.h> 53 #include <asm/vdso_datapage.h> 54 #ifdef CONFIG_PPC64 55 #include <asm/paca.h> 56 #endif 57 #include <asm/vdso.h> 58 #include <asm/debug.h> 59 #include <asm/kexec.h> 60 #include <asm/asm-prototypes.h> 61 #include <asm/cpu_has_feature.h> 62 #include <asm/ftrace.h> 63 #include <asm/kup.h> 64 65 #ifdef DEBUG 66 #include <asm/udbg.h> 67 #define DBG(fmt...) udbg_printf(fmt) 68 #else 69 #define DBG(fmt...) 70 #endif 71 72 #ifdef CONFIG_HOTPLUG_CPU 73 /* State of each CPU during hotplug phases */ 74 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 75 #endif 76 77 struct task_struct *secondary_current; 78 bool has_big_cores; 79 bool coregroup_enabled; 80 bool thread_group_shares_l2; 81 82 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 83 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); 84 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 85 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 86 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map); 87 88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 89 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 90 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 91 EXPORT_SYMBOL_GPL(has_big_cores); 92 93 enum { 94 #ifdef CONFIG_SCHED_SMT 95 smt_idx, 96 #endif 97 cache_idx, 98 mc_idx, 99 die_idx, 100 }; 101 102 #define MAX_THREAD_LIST_SIZE 8 103 #define THREAD_GROUP_SHARE_L1 1 104 #define THREAD_GROUP_SHARE_L2 2 105 struct thread_groups { 106 unsigned int property; 107 unsigned int nr_groups; 108 unsigned int threads_per_group; 109 unsigned int thread_list[MAX_THREAD_LIST_SIZE]; 110 }; 111 112 /* Maximum number of properties that groups of threads within a core can share */ 113 #define MAX_THREAD_GROUP_PROPERTIES 2 114 115 struct thread_groups_list { 116 unsigned int nr_properties; 117 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES]; 118 }; 119 120 static struct thread_groups_list tgl[NR_CPUS] __initdata; 121 /* 122 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to 123 * the set its siblings that share the L1-cache. 124 */ 125 static DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map); 126 127 /* 128 * On some big-cores system, thread_group_l2_cache_map for each CPU 129 * corresponds to the set its siblings within the core that share the 130 * L2-cache. 131 */ 132 static DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map); 133 134 /* SMP operations for this machine */ 135 struct smp_ops_t *smp_ops; 136 137 /* Can't be static due to PowerMac hackery */ 138 volatile unsigned int cpu_callin_map[NR_CPUS]; 139 140 int smt_enabled_at_boot = 1; 141 142 /* 143 * Returns 1 if the specified cpu should be brought up during boot. 144 * Used to inhibit booting threads if they've been disabled or 145 * limited on the command line 146 */ 147 int smp_generic_cpu_bootable(unsigned int nr) 148 { 149 /* Special case - we inhibit secondary thread startup 150 * during boot if the user requests it. 151 */ 152 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 153 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 154 return 0; 155 if (smt_enabled_at_boot 156 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 157 return 0; 158 } 159 160 return 1; 161 } 162 163 164 #ifdef CONFIG_PPC64 165 int smp_generic_kick_cpu(int nr) 166 { 167 if (nr < 0 || nr >= nr_cpu_ids) 168 return -EINVAL; 169 170 /* 171 * The processor is currently spinning, waiting for the 172 * cpu_start field to become non-zero After we set cpu_start, 173 * the processor will continue on to secondary_start 174 */ 175 if (!paca_ptrs[nr]->cpu_start) { 176 paca_ptrs[nr]->cpu_start = 1; 177 smp_mb(); 178 return 0; 179 } 180 181 #ifdef CONFIG_HOTPLUG_CPU 182 /* 183 * Ok it's not there, so it might be soft-unplugged, let's 184 * try to bring it back 185 */ 186 generic_set_cpu_up(nr); 187 smp_wmb(); 188 smp_send_reschedule(nr); 189 #endif /* CONFIG_HOTPLUG_CPU */ 190 191 return 0; 192 } 193 #endif /* CONFIG_PPC64 */ 194 195 static irqreturn_t call_function_action(int irq, void *data) 196 { 197 generic_smp_call_function_interrupt(); 198 return IRQ_HANDLED; 199 } 200 201 static irqreturn_t reschedule_action(int irq, void *data) 202 { 203 scheduler_ipi(); 204 return IRQ_HANDLED; 205 } 206 207 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 208 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 209 { 210 timer_broadcast_interrupt(); 211 return IRQ_HANDLED; 212 } 213 #endif 214 215 #ifdef CONFIG_NMI_IPI 216 static irqreturn_t nmi_ipi_action(int irq, void *data) 217 { 218 smp_handle_nmi_ipi(get_irq_regs()); 219 return IRQ_HANDLED; 220 } 221 #endif 222 223 static irq_handler_t smp_ipi_action[] = { 224 [PPC_MSG_CALL_FUNCTION] = call_function_action, 225 [PPC_MSG_RESCHEDULE] = reschedule_action, 226 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 227 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 228 #endif 229 #ifdef CONFIG_NMI_IPI 230 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 231 #endif 232 }; 233 234 /* 235 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 236 * than going through the call function infrastructure, and strongly 237 * serialized, so it is more appropriate for debugging. 238 */ 239 const char *smp_ipi_name[] = { 240 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 241 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 243 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 244 #endif 245 #ifdef CONFIG_NMI_IPI 246 [PPC_MSG_NMI_IPI] = "nmi ipi", 247 #endif 248 }; 249 250 /* optional function to request ipi, for controllers with >= 4 ipis */ 251 int smp_request_message_ipi(int virq, int msg) 252 { 253 int err; 254 255 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 256 return -EINVAL; 257 #ifndef CONFIG_NMI_IPI 258 if (msg == PPC_MSG_NMI_IPI) 259 return 1; 260 #endif 261 262 err = request_irq(virq, smp_ipi_action[msg], 263 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 264 smp_ipi_name[msg], NULL); 265 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 266 virq, smp_ipi_name[msg], err); 267 268 return err; 269 } 270 271 #ifdef CONFIG_PPC_SMP_MUXED_IPI 272 struct cpu_messages { 273 long messages; /* current messages */ 274 }; 275 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 276 277 void smp_muxed_ipi_set_message(int cpu, int msg) 278 { 279 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 280 char *message = (char *)&info->messages; 281 282 /* 283 * Order previous accesses before accesses in the IPI handler. 284 */ 285 smp_mb(); 286 message[msg] = 1; 287 } 288 289 void smp_muxed_ipi_message_pass(int cpu, int msg) 290 { 291 smp_muxed_ipi_set_message(cpu, msg); 292 293 /* 294 * cause_ipi functions are required to include a full barrier 295 * before doing whatever causes the IPI. 296 */ 297 smp_ops->cause_ipi(cpu); 298 } 299 300 #ifdef __BIG_ENDIAN__ 301 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 302 #else 303 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 304 #endif 305 306 irqreturn_t smp_ipi_demux(void) 307 { 308 mb(); /* order any irq clear */ 309 310 return smp_ipi_demux_relaxed(); 311 } 312 313 /* sync-free variant. Callers should ensure synchronization */ 314 irqreturn_t smp_ipi_demux_relaxed(void) 315 { 316 struct cpu_messages *info; 317 unsigned long all; 318 319 info = this_cpu_ptr(&ipi_message); 320 do { 321 all = xchg(&info->messages, 0); 322 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 323 /* 324 * Must check for PPC_MSG_RM_HOST_ACTION messages 325 * before PPC_MSG_CALL_FUNCTION messages because when 326 * a VM is destroyed, we call kick_all_cpus_sync() 327 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 328 * messages have completed before we free any VCPUs. 329 */ 330 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 331 kvmppc_xics_ipi_action(); 332 #endif 333 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 334 generic_smp_call_function_interrupt(); 335 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 336 scheduler_ipi(); 337 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 338 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 339 timer_broadcast_interrupt(); 340 #endif 341 #ifdef CONFIG_NMI_IPI 342 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 343 nmi_ipi_action(0, NULL); 344 #endif 345 } while (info->messages); 346 347 return IRQ_HANDLED; 348 } 349 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 350 351 static inline void do_message_pass(int cpu, int msg) 352 { 353 if (smp_ops->message_pass) 354 smp_ops->message_pass(cpu, msg); 355 #ifdef CONFIG_PPC_SMP_MUXED_IPI 356 else 357 smp_muxed_ipi_message_pass(cpu, msg); 358 #endif 359 } 360 361 void smp_send_reschedule(int cpu) 362 { 363 if (likely(smp_ops)) 364 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 365 } 366 EXPORT_SYMBOL_GPL(smp_send_reschedule); 367 368 void arch_send_call_function_single_ipi(int cpu) 369 { 370 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 371 } 372 373 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 374 { 375 unsigned int cpu; 376 377 for_each_cpu(cpu, mask) 378 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 379 } 380 381 #ifdef CONFIG_NMI_IPI 382 383 /* 384 * "NMI IPI" system. 385 * 386 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 387 * a running system. They can be used for crash, debug, halt/reboot, etc. 388 * 389 * The IPI call waits with interrupts disabled until all targets enter the 390 * NMI handler, then returns. Subsequent IPIs can be issued before targets 391 * have returned from their handlers, so there is no guarantee about 392 * concurrency or re-entrancy. 393 * 394 * A new NMI can be issued before all targets exit the handler. 395 * 396 * The IPI call may time out without all targets entering the NMI handler. 397 * In that case, there is some logic to recover (and ignore subsequent 398 * NMI interrupts that may eventually be raised), but the platform interrupt 399 * handler may not be able to distinguish this from other exception causes, 400 * which may cause a crash. 401 */ 402 403 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 404 static struct cpumask nmi_ipi_pending_mask; 405 static bool nmi_ipi_busy = false; 406 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 407 408 static void nmi_ipi_lock_start(unsigned long *flags) 409 { 410 raw_local_irq_save(*flags); 411 hard_irq_disable(); 412 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 413 raw_local_irq_restore(*flags); 414 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 415 raw_local_irq_save(*flags); 416 hard_irq_disable(); 417 } 418 } 419 420 static void nmi_ipi_lock(void) 421 { 422 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 423 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 424 } 425 426 static void nmi_ipi_unlock(void) 427 { 428 smp_mb(); 429 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1); 430 atomic_set(&__nmi_ipi_lock, 0); 431 } 432 433 static void nmi_ipi_unlock_end(unsigned long *flags) 434 { 435 nmi_ipi_unlock(); 436 raw_local_irq_restore(*flags); 437 } 438 439 /* 440 * Platform NMI handler calls this to ack 441 */ 442 int smp_handle_nmi_ipi(struct pt_regs *regs) 443 { 444 void (*fn)(struct pt_regs *) = NULL; 445 unsigned long flags; 446 int me = raw_smp_processor_id(); 447 int ret = 0; 448 449 /* 450 * Unexpected NMIs are possible here because the interrupt may not 451 * be able to distinguish NMI IPIs from other types of NMIs, or 452 * because the caller may have timed out. 453 */ 454 nmi_ipi_lock_start(&flags); 455 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { 456 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 457 fn = READ_ONCE(nmi_ipi_function); 458 WARN_ON_ONCE(!fn); 459 ret = 1; 460 } 461 nmi_ipi_unlock_end(&flags); 462 463 if (fn) 464 fn(regs); 465 466 return ret; 467 } 468 469 static void do_smp_send_nmi_ipi(int cpu, bool safe) 470 { 471 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 472 return; 473 474 if (cpu >= 0) { 475 do_message_pass(cpu, PPC_MSG_NMI_IPI); 476 } else { 477 int c; 478 479 for_each_online_cpu(c) { 480 if (c == raw_smp_processor_id()) 481 continue; 482 do_message_pass(c, PPC_MSG_NMI_IPI); 483 } 484 } 485 } 486 487 /* 488 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 489 * - fn is the target callback function. 490 * - delay_us > 0 is the delay before giving up waiting for targets to 491 * begin executing the handler, == 0 specifies indefinite delay. 492 */ 493 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), 494 u64 delay_us, bool safe) 495 { 496 unsigned long flags; 497 int me = raw_smp_processor_id(); 498 int ret = 1; 499 500 BUG_ON(cpu == me); 501 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 502 503 if (unlikely(!smp_ops)) 504 return 0; 505 506 nmi_ipi_lock_start(&flags); 507 while (nmi_ipi_busy) { 508 nmi_ipi_unlock_end(&flags); 509 spin_until_cond(!nmi_ipi_busy); 510 nmi_ipi_lock_start(&flags); 511 } 512 nmi_ipi_busy = true; 513 nmi_ipi_function = fn; 514 515 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); 516 517 if (cpu < 0) { 518 /* ALL_OTHERS */ 519 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 520 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 521 } else { 522 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 523 } 524 525 nmi_ipi_unlock(); 526 527 /* Interrupts remain hard disabled */ 528 529 do_smp_send_nmi_ipi(cpu, safe); 530 531 nmi_ipi_lock(); 532 /* nmi_ipi_busy is set here, so unlock/lock is okay */ 533 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 534 nmi_ipi_unlock(); 535 udelay(1); 536 nmi_ipi_lock(); 537 if (delay_us) { 538 delay_us--; 539 if (!delay_us) 540 break; 541 } 542 } 543 544 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 545 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ 546 ret = 0; 547 cpumask_clear(&nmi_ipi_pending_mask); 548 } 549 550 nmi_ipi_function = NULL; 551 nmi_ipi_busy = false; 552 553 nmi_ipi_unlock_end(&flags); 554 555 return ret; 556 } 557 558 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 559 { 560 return __smp_send_nmi_ipi(cpu, fn, delay_us, false); 561 } 562 563 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 564 { 565 return __smp_send_nmi_ipi(cpu, fn, delay_us, true); 566 } 567 #endif /* CONFIG_NMI_IPI */ 568 569 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 570 void tick_broadcast(const struct cpumask *mask) 571 { 572 unsigned int cpu; 573 574 for_each_cpu(cpu, mask) 575 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 576 } 577 #endif 578 579 #ifdef CONFIG_DEBUGGER 580 static void debugger_ipi_callback(struct pt_regs *regs) 581 { 582 debugger_ipi(regs); 583 } 584 585 void smp_send_debugger_break(void) 586 { 587 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 588 } 589 #endif 590 591 #ifdef CONFIG_KEXEC_CORE 592 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 593 { 594 int cpu; 595 596 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 597 if (kdump_in_progress() && crash_wake_offline) { 598 for_each_present_cpu(cpu) { 599 if (cpu_online(cpu)) 600 continue; 601 /* 602 * crash_ipi_callback will wait for 603 * all cpus, including offline CPUs. 604 * We don't care about nmi_ipi_function. 605 * Offline cpus will jump straight into 606 * crash_ipi_callback, we can skip the 607 * entire NMI dance and waiting for 608 * cpus to clear pending mask, etc. 609 */ 610 do_smp_send_nmi_ipi(cpu, false); 611 } 612 } 613 } 614 #endif 615 616 #ifdef CONFIG_NMI_IPI 617 static void nmi_stop_this_cpu(struct pt_regs *regs) 618 { 619 /* 620 * IRQs are already hard disabled by the smp_handle_nmi_ipi. 621 */ 622 set_cpu_online(smp_processor_id(), false); 623 624 spin_begin(); 625 while (1) 626 spin_cpu_relax(); 627 } 628 629 void smp_send_stop(void) 630 { 631 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); 632 } 633 634 #else /* CONFIG_NMI_IPI */ 635 636 static void stop_this_cpu(void *dummy) 637 { 638 hard_irq_disable(); 639 640 /* 641 * Offlining CPUs in stop_this_cpu can result in scheduler warnings, 642 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants 643 * to know other CPUs are offline before it breaks locks to flush 644 * printk buffers, in case we panic()ed while holding the lock. 645 */ 646 set_cpu_online(smp_processor_id(), false); 647 648 spin_begin(); 649 while (1) 650 spin_cpu_relax(); 651 } 652 653 void smp_send_stop(void) 654 { 655 static bool stopped = false; 656 657 /* 658 * Prevent waiting on csd lock from a previous smp_send_stop. 659 * This is racy, but in general callers try to do the right 660 * thing and only fire off one smp_send_stop (e.g., see 661 * kernel/panic.c) 662 */ 663 if (stopped) 664 return; 665 666 stopped = true; 667 668 smp_call_function(stop_this_cpu, NULL, 0); 669 } 670 #endif /* CONFIG_NMI_IPI */ 671 672 struct task_struct *current_set[NR_CPUS]; 673 674 static void smp_store_cpu_info(int id) 675 { 676 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 677 #ifdef CONFIG_PPC_FSL_BOOK3E 678 per_cpu(next_tlbcam_idx, id) 679 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 680 #endif 681 } 682 683 /* 684 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 685 * rather than just passing around the cpumask we pass around a function that 686 * returns the that cpumask for the given CPU. 687 */ 688 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 689 { 690 cpumask_set_cpu(i, get_cpumask(j)); 691 cpumask_set_cpu(j, get_cpumask(i)); 692 } 693 694 #ifdef CONFIG_HOTPLUG_CPU 695 static void set_cpus_unrelated(int i, int j, 696 struct cpumask *(*get_cpumask)(int)) 697 { 698 cpumask_clear_cpu(i, get_cpumask(j)); 699 cpumask_clear_cpu(j, get_cpumask(i)); 700 } 701 #endif 702 703 /* 704 * Extends set_cpus_related. Instead of setting one CPU at a time in 705 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask. 706 */ 707 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int), 708 struct cpumask *(*dstmask)(int)) 709 { 710 struct cpumask *mask; 711 int k; 712 713 mask = srcmask(j); 714 for_each_cpu(k, srcmask(i)) 715 cpumask_or(dstmask(k), dstmask(k), mask); 716 717 if (i == j) 718 return; 719 720 mask = srcmask(i); 721 for_each_cpu(k, srcmask(j)) 722 cpumask_or(dstmask(k), dstmask(k), mask); 723 } 724 725 /* 726 * parse_thread_groups: Parses the "ibm,thread-groups" device tree 727 * property for the CPU device node @dn and stores 728 * the parsed output in the thread_groups_list 729 * structure @tglp. 730 * 731 * @dn: The device node of the CPU device. 732 * @tglp: Pointer to a thread group list structure into which the parsed 733 * output of "ibm,thread-groups" is stored. 734 * 735 * ibm,thread-groups[0..N-1] array defines which group of threads in 736 * the CPU-device node can be grouped together based on the property. 737 * 738 * This array can represent thread groupings for multiple properties. 739 * 740 * ibm,thread-groups[i + 0] tells us the property based on which the 741 * threads are being grouped together. If this value is 1, it implies 742 * that the threads in the same group share L1, translation cache. If 743 * the value is 2, it implies that the threads in the same group share 744 * the same L2 cache. 745 * 746 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the 747 * property ibm,thread-groups[i] 748 * 749 * ibm,thread-groups[i+2] tells us the number of threads in each such 750 * group. 751 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then, 752 * 753 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by 754 * "ibm,ppc-interrupt-server#s" arranged as per their membership in 755 * the grouping. 756 * 757 * Example: 758 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15] 759 * This can be decomposed up into two consecutive arrays: 760 * a) [1,2,4,8,10,12,14,9,11,13,15] 761 * b) [2,2,4,8,10,12,14,9,11,13,15] 762 * 763 * where in, 764 * 765 * a) provides information of Property "1" being shared by "2" groups, 766 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of 767 * the first group is {8,10,12,14} and the 768 * "ibm,ppc-interrupt-server#s" of the second group is 769 * {9,11,13,15}. Property "1" is indicative of the thread in the 770 * group sharing L1 cache, translation cache and Instruction Data 771 * flow. 772 * 773 * b) provides information of Property "2" being shared by "2" groups, 774 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of 775 * the first group is {8,10,12,14} and the 776 * "ibm,ppc-interrupt-server#s" of the second group is 777 * {9,11,13,15}. Property "2" indicates that the threads in each 778 * group share the L2-cache. 779 * 780 * Returns 0 on success, -EINVAL if the property does not exist, 781 * -ENODATA if property does not have a value, and -EOVERFLOW if the 782 * property data isn't large enough. 783 */ 784 static int parse_thread_groups(struct device_node *dn, 785 struct thread_groups_list *tglp) 786 { 787 unsigned int property_idx = 0; 788 u32 *thread_group_array; 789 size_t total_threads; 790 int ret = 0, count; 791 u32 *thread_list; 792 int i = 0; 793 794 count = of_property_count_u32_elems(dn, "ibm,thread-groups"); 795 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL); 796 ret = of_property_read_u32_array(dn, "ibm,thread-groups", 797 thread_group_array, count); 798 if (ret) 799 goto out_free; 800 801 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) { 802 int j; 803 struct thread_groups *tg = &tglp->property_tgs[property_idx++]; 804 805 tg->property = thread_group_array[i]; 806 tg->nr_groups = thread_group_array[i + 1]; 807 tg->threads_per_group = thread_group_array[i + 2]; 808 total_threads = tg->nr_groups * tg->threads_per_group; 809 810 thread_list = &thread_group_array[i + 3]; 811 812 for (j = 0; j < total_threads; j++) 813 tg->thread_list[j] = thread_list[j]; 814 i = i + 3 + total_threads; 815 } 816 817 tglp->nr_properties = property_idx; 818 819 out_free: 820 kfree(thread_group_array); 821 return ret; 822 } 823 824 /* 825 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list 826 * that @cpu belongs to. 827 * 828 * @cpu : The logical CPU whose thread group is being searched. 829 * @tg : The thread-group structure of the CPU node which @cpu belongs 830 * to. 831 * 832 * Returns the index to tg->thread_list that points to the the start 833 * of the thread_group that @cpu belongs to. 834 * 835 * Returns -1 if cpu doesn't belong to any of the groups pointed to by 836 * tg->thread_list. 837 */ 838 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) 839 { 840 int hw_cpu_id = get_hard_smp_processor_id(cpu); 841 int i, j; 842 843 for (i = 0; i < tg->nr_groups; i++) { 844 int group_start = i * tg->threads_per_group; 845 846 for (j = 0; j < tg->threads_per_group; j++) { 847 int idx = group_start + j; 848 849 if (tg->thread_list[idx] == hw_cpu_id) 850 return group_start; 851 } 852 } 853 854 return -1; 855 } 856 857 static struct thread_groups *__init get_thread_groups(int cpu, 858 int group_property, 859 int *err) 860 { 861 struct device_node *dn = of_get_cpu_node(cpu, NULL); 862 struct thread_groups_list *cpu_tgl = &tgl[cpu]; 863 struct thread_groups *tg = NULL; 864 int i; 865 *err = 0; 866 867 if (!dn) { 868 *err = -ENODATA; 869 return NULL; 870 } 871 872 if (!cpu_tgl->nr_properties) { 873 *err = parse_thread_groups(dn, cpu_tgl); 874 if (*err) 875 goto out; 876 } 877 878 for (i = 0; i < cpu_tgl->nr_properties; i++) { 879 if (cpu_tgl->property_tgs[i].property == group_property) { 880 tg = &cpu_tgl->property_tgs[i]; 881 break; 882 } 883 } 884 885 if (!tg) 886 *err = -EINVAL; 887 out: 888 of_node_put(dn); 889 return tg; 890 } 891 892 static int __init init_thread_group_cache_map(int cpu, int cache_property) 893 894 { 895 int first_thread = cpu_first_thread_sibling(cpu); 896 int i, cpu_group_start = -1, err = 0; 897 struct thread_groups *tg = NULL; 898 cpumask_var_t *mask = NULL; 899 900 if (cache_property != THREAD_GROUP_SHARE_L1 && 901 cache_property != THREAD_GROUP_SHARE_L2) 902 return -EINVAL; 903 904 tg = get_thread_groups(cpu, cache_property, &err); 905 if (!tg) 906 return err; 907 908 cpu_group_start = get_cpu_thread_group_start(cpu, tg); 909 910 if (unlikely(cpu_group_start == -1)) { 911 WARN_ON_ONCE(1); 912 return -ENODATA; 913 } 914 915 if (cache_property == THREAD_GROUP_SHARE_L1) 916 mask = &per_cpu(thread_group_l1_cache_map, cpu); 917 else if (cache_property == THREAD_GROUP_SHARE_L2) 918 mask = &per_cpu(thread_group_l2_cache_map, cpu); 919 920 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu)); 921 922 for (i = first_thread; i < first_thread + threads_per_core; i++) { 923 int i_group_start = get_cpu_thread_group_start(i, tg); 924 925 if (unlikely(i_group_start == -1)) { 926 WARN_ON_ONCE(1); 927 return -ENODATA; 928 } 929 930 if (i_group_start == cpu_group_start) 931 cpumask_set_cpu(i, *mask); 932 } 933 934 return 0; 935 } 936 937 static bool shared_caches; 938 939 #ifdef CONFIG_SCHED_SMT 940 /* cpumask of CPUs with asymmetric SMT dependency */ 941 static int powerpc_smt_flags(void) 942 { 943 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 944 945 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 946 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 947 flags |= SD_ASYM_PACKING; 948 } 949 return flags; 950 } 951 #endif 952 953 /* 954 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 955 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 956 * since the migrated task remains cache hot. We want to take advantage of this 957 * at the scheduler level so an extra topology level is required. 958 */ 959 static int powerpc_shared_cache_flags(void) 960 { 961 return SD_SHARE_PKG_RESOURCES; 962 } 963 964 /* 965 * We can't just pass cpu_l2_cache_mask() directly because 966 * returns a non-const pointer and the compiler barfs on that. 967 */ 968 static const struct cpumask *shared_cache_mask(int cpu) 969 { 970 return per_cpu(cpu_l2_cache_map, cpu); 971 } 972 973 #ifdef CONFIG_SCHED_SMT 974 static const struct cpumask *smallcore_smt_mask(int cpu) 975 { 976 return cpu_smallcore_mask(cpu); 977 } 978 #endif 979 980 static struct cpumask *cpu_coregroup_mask(int cpu) 981 { 982 return per_cpu(cpu_coregroup_map, cpu); 983 } 984 985 static bool has_coregroup_support(void) 986 { 987 return coregroup_enabled; 988 } 989 990 static const struct cpumask *cpu_mc_mask(int cpu) 991 { 992 return cpu_coregroup_mask(cpu); 993 } 994 995 static struct sched_domain_topology_level powerpc_topology[] = { 996 #ifdef CONFIG_SCHED_SMT 997 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 998 #endif 999 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, 1000 { cpu_mc_mask, SD_INIT_NAME(MC) }, 1001 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1002 { NULL, }, 1003 }; 1004 1005 static int __init init_big_cores(void) 1006 { 1007 int cpu; 1008 1009 for_each_possible_cpu(cpu) { 1010 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1); 1011 1012 if (err) 1013 return err; 1014 1015 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), 1016 GFP_KERNEL, 1017 cpu_to_node(cpu)); 1018 } 1019 1020 has_big_cores = true; 1021 1022 for_each_possible_cpu(cpu) { 1023 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2); 1024 1025 if (err) 1026 return err; 1027 } 1028 1029 thread_group_shares_l2 = true; 1030 pr_debug("L2 cache only shared by the threads in the small core\n"); 1031 return 0; 1032 } 1033 1034 void __init smp_prepare_cpus(unsigned int max_cpus) 1035 { 1036 unsigned int cpu; 1037 1038 DBG("smp_prepare_cpus\n"); 1039 1040 /* 1041 * setup_cpu may need to be called on the boot cpu. We havent 1042 * spun any cpus up but lets be paranoid. 1043 */ 1044 BUG_ON(boot_cpuid != smp_processor_id()); 1045 1046 /* Fixup boot cpu */ 1047 smp_store_cpu_info(boot_cpuid); 1048 cpu_callin_map[boot_cpuid] = 1; 1049 1050 for_each_possible_cpu(cpu) { 1051 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 1052 GFP_KERNEL, cpu_to_node(cpu)); 1053 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 1054 GFP_KERNEL, cpu_to_node(cpu)); 1055 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 1056 GFP_KERNEL, cpu_to_node(cpu)); 1057 if (has_coregroup_support()) 1058 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu), 1059 GFP_KERNEL, cpu_to_node(cpu)); 1060 1061 #ifdef CONFIG_NUMA 1062 /* 1063 * numa_node_id() works after this. 1064 */ 1065 if (cpu_present(cpu)) { 1066 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 1067 set_cpu_numa_mem(cpu, 1068 local_memory_node(numa_cpu_lookup_table[cpu])); 1069 } 1070 #endif 1071 } 1072 1073 /* Init the cpumasks so the boot CPU is related to itself */ 1074 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 1075 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 1076 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 1077 1078 if (has_coregroup_support()) 1079 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid)); 1080 1081 init_big_cores(); 1082 if (has_big_cores) { 1083 cpumask_set_cpu(boot_cpuid, 1084 cpu_smallcore_mask(boot_cpuid)); 1085 } 1086 1087 if (cpu_to_chip_id(boot_cpuid) != -1) { 1088 int idx = num_possible_cpus() / threads_per_core; 1089 1090 /* 1091 * All threads of a core will all belong to the same core, 1092 * chip_id_lookup_table will have one entry per core. 1093 * Assumption: if boot_cpuid doesn't have a chip-id, then no 1094 * other CPUs, will also not have chip-id. 1095 */ 1096 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL); 1097 if (chip_id_lookup_table) 1098 memset(chip_id_lookup_table, -1, sizeof(int) * idx); 1099 } 1100 1101 if (smp_ops && smp_ops->probe) 1102 smp_ops->probe(); 1103 } 1104 1105 void smp_prepare_boot_cpu(void) 1106 { 1107 BUG_ON(smp_processor_id() != boot_cpuid); 1108 #ifdef CONFIG_PPC64 1109 paca_ptrs[boot_cpuid]->__current = current; 1110 #endif 1111 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 1112 current_set[boot_cpuid] = current; 1113 } 1114 1115 #ifdef CONFIG_HOTPLUG_CPU 1116 1117 int generic_cpu_disable(void) 1118 { 1119 unsigned int cpu = smp_processor_id(); 1120 1121 if (cpu == boot_cpuid) 1122 return -EBUSY; 1123 1124 set_cpu_online(cpu, false); 1125 #ifdef CONFIG_PPC64 1126 vdso_data->processorCount--; 1127 #endif 1128 /* Update affinity of all IRQs previously aimed at this CPU */ 1129 irq_migrate_all_off_this_cpu(); 1130 1131 /* 1132 * Depending on the details of the interrupt controller, it's possible 1133 * that one of the interrupts we just migrated away from this CPU is 1134 * actually already pending on this CPU. If we leave it in that state 1135 * the interrupt will never be EOI'ed, and will never fire again. So 1136 * temporarily enable interrupts here, to allow any pending interrupt to 1137 * be received (and EOI'ed), before we take this CPU offline. 1138 */ 1139 local_irq_enable(); 1140 mdelay(1); 1141 local_irq_disable(); 1142 1143 return 0; 1144 } 1145 1146 void generic_cpu_die(unsigned int cpu) 1147 { 1148 int i; 1149 1150 for (i = 0; i < 100; i++) { 1151 smp_rmb(); 1152 if (is_cpu_dead(cpu)) 1153 return; 1154 msleep(100); 1155 } 1156 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 1157 } 1158 1159 void generic_set_cpu_dead(unsigned int cpu) 1160 { 1161 per_cpu(cpu_state, cpu) = CPU_DEAD; 1162 } 1163 1164 /* 1165 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 1166 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 1167 * which makes the delay in generic_cpu_die() not happen. 1168 */ 1169 void generic_set_cpu_up(unsigned int cpu) 1170 { 1171 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 1172 } 1173 1174 int generic_check_cpu_restart(unsigned int cpu) 1175 { 1176 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 1177 } 1178 1179 int is_cpu_dead(unsigned int cpu) 1180 { 1181 return per_cpu(cpu_state, cpu) == CPU_DEAD; 1182 } 1183 1184 static bool secondaries_inhibited(void) 1185 { 1186 return kvm_hv_mode_active(); 1187 } 1188 1189 #else /* HOTPLUG_CPU */ 1190 1191 #define secondaries_inhibited() 0 1192 1193 #endif 1194 1195 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 1196 { 1197 #ifdef CONFIG_PPC64 1198 paca_ptrs[cpu]->__current = idle; 1199 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + 1200 THREAD_SIZE - STACK_FRAME_OVERHEAD; 1201 #endif 1202 idle->cpu = cpu; 1203 secondary_current = current_set[cpu] = idle; 1204 } 1205 1206 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1207 { 1208 int rc, c; 1209 1210 /* 1211 * Don't allow secondary threads to come online if inhibited 1212 */ 1213 if (threads_per_core > 1 && secondaries_inhibited() && 1214 cpu_thread_in_subcore(cpu)) 1215 return -EBUSY; 1216 1217 if (smp_ops == NULL || 1218 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 1219 return -EINVAL; 1220 1221 cpu_idle_thread_init(cpu, tidle); 1222 1223 /* 1224 * The platform might need to allocate resources prior to bringing 1225 * up the CPU 1226 */ 1227 if (smp_ops->prepare_cpu) { 1228 rc = smp_ops->prepare_cpu(cpu); 1229 if (rc) 1230 return rc; 1231 } 1232 1233 /* Make sure callin-map entry is 0 (can be leftover a CPU 1234 * hotplug 1235 */ 1236 cpu_callin_map[cpu] = 0; 1237 1238 /* The information for processor bringup must 1239 * be written out to main store before we release 1240 * the processor. 1241 */ 1242 smp_mb(); 1243 1244 /* wake up cpus */ 1245 DBG("smp: kicking cpu %d\n", cpu); 1246 rc = smp_ops->kick_cpu(cpu); 1247 if (rc) { 1248 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 1249 return rc; 1250 } 1251 1252 /* 1253 * wait to see if the cpu made a callin (is actually up). 1254 * use this value that I found through experimentation. 1255 * -- Cort 1256 */ 1257 if (system_state < SYSTEM_RUNNING) 1258 for (c = 50000; c && !cpu_callin_map[cpu]; c--) 1259 udelay(100); 1260 #ifdef CONFIG_HOTPLUG_CPU 1261 else 1262 /* 1263 * CPUs can take much longer to come up in the 1264 * hotplug case. Wait five seconds. 1265 */ 1266 for (c = 5000; c && !cpu_callin_map[cpu]; c--) 1267 msleep(1); 1268 #endif 1269 1270 if (!cpu_callin_map[cpu]) { 1271 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 1272 return -ENOENT; 1273 } 1274 1275 DBG("Processor %u found.\n", cpu); 1276 1277 if (smp_ops->give_timebase) 1278 smp_ops->give_timebase(); 1279 1280 /* Wait until cpu puts itself in the online & active maps */ 1281 spin_until_cond(cpu_online(cpu)); 1282 1283 return 0; 1284 } 1285 1286 /* Return the value of the reg property corresponding to the given 1287 * logical cpu. 1288 */ 1289 int cpu_to_core_id(int cpu) 1290 { 1291 struct device_node *np; 1292 const __be32 *reg; 1293 int id = -1; 1294 1295 np = of_get_cpu_node(cpu, NULL); 1296 if (!np) 1297 goto out; 1298 1299 reg = of_get_property(np, "reg", NULL); 1300 if (!reg) 1301 goto out; 1302 1303 id = be32_to_cpup(reg); 1304 out: 1305 of_node_put(np); 1306 return id; 1307 } 1308 EXPORT_SYMBOL_GPL(cpu_to_core_id); 1309 1310 /* Helper routines for cpu to core mapping */ 1311 int cpu_core_index_of_thread(int cpu) 1312 { 1313 return cpu >> threads_shift; 1314 } 1315 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 1316 1317 int cpu_first_thread_of_core(int core) 1318 { 1319 return core << threads_shift; 1320 } 1321 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 1322 1323 /* Must be called when no change can occur to cpu_present_mask, 1324 * i.e. during cpu online or offline. 1325 */ 1326 static struct device_node *cpu_to_l2cache(int cpu) 1327 { 1328 struct device_node *np; 1329 struct device_node *cache; 1330 1331 if (!cpu_present(cpu)) 1332 return NULL; 1333 1334 np = of_get_cpu_node(cpu, NULL); 1335 if (np == NULL) 1336 return NULL; 1337 1338 cache = of_find_next_cache_node(np); 1339 1340 of_node_put(np); 1341 1342 return cache; 1343 } 1344 1345 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask) 1346 { 1347 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1348 struct device_node *l2_cache, *np; 1349 int i; 1350 1351 if (has_big_cores) 1352 submask_fn = cpu_smallcore_mask; 1353 1354 /* 1355 * If the threads in a thread-group share L2 cache, then the 1356 * L2-mask can be obtained from thread_group_l2_cache_map. 1357 */ 1358 if (thread_group_shares_l2) { 1359 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu)); 1360 1361 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) { 1362 if (cpu_online(i)) 1363 set_cpus_related(i, cpu, cpu_l2_cache_mask); 1364 } 1365 1366 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */ 1367 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) && 1368 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) { 1369 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n", 1370 cpu); 1371 } 1372 1373 return true; 1374 } 1375 1376 l2_cache = cpu_to_l2cache(cpu); 1377 if (!l2_cache || !*mask) { 1378 /* Assume only core siblings share cache with this CPU */ 1379 for_each_cpu(i, submask_fn(cpu)) 1380 set_cpus_related(cpu, i, cpu_l2_cache_mask); 1381 1382 return false; 1383 } 1384 1385 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1386 1387 /* Update l2-cache mask with all the CPUs that are part of submask */ 1388 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask); 1389 1390 /* Skip all CPUs already part of current CPU l2-cache mask */ 1391 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu)); 1392 1393 for_each_cpu(i, *mask) { 1394 /* 1395 * when updating the marks the current CPU has not been marked 1396 * online, but we need to update the cache masks 1397 */ 1398 np = cpu_to_l2cache(i); 1399 1400 /* Skip all CPUs already part of current CPU l2-cache */ 1401 if (np == l2_cache) { 1402 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask); 1403 cpumask_andnot(*mask, *mask, submask_fn(i)); 1404 } else { 1405 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i)); 1406 } 1407 1408 of_node_put(np); 1409 } 1410 of_node_put(l2_cache); 1411 1412 return true; 1413 } 1414 1415 #ifdef CONFIG_HOTPLUG_CPU 1416 static void remove_cpu_from_masks(int cpu) 1417 { 1418 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask; 1419 int i; 1420 1421 if (shared_caches) 1422 mask_fn = cpu_l2_cache_mask; 1423 1424 for_each_cpu(i, mask_fn(cpu)) { 1425 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 1426 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 1427 if (has_big_cores) 1428 set_cpus_unrelated(cpu, i, cpu_smallcore_mask); 1429 } 1430 1431 for_each_cpu(i, cpu_core_mask(cpu)) 1432 set_cpus_unrelated(cpu, i, cpu_core_mask); 1433 1434 if (has_coregroup_support()) { 1435 for_each_cpu(i, cpu_coregroup_mask(cpu)) 1436 set_cpus_unrelated(cpu, i, cpu_coregroup_mask); 1437 } 1438 } 1439 #endif 1440 1441 static inline void add_cpu_to_smallcore_masks(int cpu) 1442 { 1443 int i; 1444 1445 if (!has_big_cores) 1446 return; 1447 1448 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); 1449 1450 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) { 1451 if (cpu_online(i)) 1452 set_cpus_related(i, cpu, cpu_smallcore_mask); 1453 } 1454 } 1455 1456 static void update_coregroup_mask(int cpu, cpumask_var_t *mask) 1457 { 1458 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1459 int coregroup_id = cpu_to_coregroup_id(cpu); 1460 int i; 1461 1462 if (shared_caches) 1463 submask_fn = cpu_l2_cache_mask; 1464 1465 if (!*mask) { 1466 /* Assume only siblings are part of this CPU's coregroup */ 1467 for_each_cpu(i, submask_fn(cpu)) 1468 set_cpus_related(cpu, i, cpu_coregroup_mask); 1469 1470 return; 1471 } 1472 1473 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1474 1475 /* Update coregroup mask with all the CPUs that are part of submask */ 1476 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask); 1477 1478 /* Skip all CPUs already part of coregroup mask */ 1479 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu)); 1480 1481 for_each_cpu(i, *mask) { 1482 /* Skip all CPUs not part of this coregroup */ 1483 if (coregroup_id == cpu_to_coregroup_id(i)) { 1484 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask); 1485 cpumask_andnot(*mask, *mask, submask_fn(i)); 1486 } else { 1487 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i)); 1488 } 1489 } 1490 } 1491 1492 static void add_cpu_to_masks(int cpu) 1493 { 1494 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1495 int first_thread = cpu_first_thread_sibling(cpu); 1496 cpumask_var_t mask; 1497 int chip_id = -1; 1498 bool ret; 1499 int i; 1500 1501 /* 1502 * This CPU will not be in the online mask yet so we need to manually 1503 * add it to it's own thread sibling mask. 1504 */ 1505 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 1506 1507 for (i = first_thread; i < first_thread + threads_per_core; i++) 1508 if (cpu_online(i)) 1509 set_cpus_related(i, cpu, cpu_sibling_mask); 1510 1511 add_cpu_to_smallcore_masks(cpu); 1512 1513 /* In CPU-hotplug path, hence use GFP_ATOMIC */ 1514 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu)); 1515 update_mask_by_l2(cpu, &mask); 1516 1517 if (has_coregroup_support()) 1518 update_coregroup_mask(cpu, &mask); 1519 1520 if (chip_id_lookup_table && ret) 1521 chip_id = cpu_to_chip_id(cpu); 1522 1523 if (chip_id == -1) { 1524 cpumask_copy(per_cpu(cpu_core_map, cpu), cpu_cpu_mask(cpu)); 1525 goto out; 1526 } 1527 1528 if (shared_caches) 1529 submask_fn = cpu_l2_cache_mask; 1530 1531 /* Update core_mask with all the CPUs that are part of submask */ 1532 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask); 1533 1534 /* Skip all CPUs already part of current CPU core mask */ 1535 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu)); 1536 1537 for_each_cpu(i, mask) { 1538 if (chip_id == cpu_to_chip_id(i)) { 1539 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask); 1540 cpumask_andnot(mask, mask, submask_fn(i)); 1541 } else { 1542 cpumask_andnot(mask, mask, cpu_core_mask(i)); 1543 } 1544 } 1545 1546 out: 1547 free_cpumask_var(mask); 1548 } 1549 1550 /* Activate a secondary processor. */ 1551 void start_secondary(void *unused) 1552 { 1553 unsigned int cpu = raw_smp_processor_id(); 1554 1555 /* PPC64 calls setup_kup() in early_setup_secondary() */ 1556 if (IS_ENABLED(CONFIG_PPC32)) 1557 setup_kup(); 1558 1559 mmgrab(&init_mm); 1560 current->active_mm = &init_mm; 1561 1562 smp_store_cpu_info(cpu); 1563 set_dec(tb_ticks_per_jiffy); 1564 rcu_cpu_starting(cpu); 1565 cpu_callin_map[cpu] = 1; 1566 1567 if (smp_ops->setup_cpu) 1568 smp_ops->setup_cpu(cpu); 1569 if (smp_ops->take_timebase) 1570 smp_ops->take_timebase(); 1571 1572 secondary_cpu_time_init(); 1573 1574 #ifdef CONFIG_PPC64 1575 if (system_state == SYSTEM_RUNNING) 1576 vdso_data->processorCount++; 1577 1578 vdso_getcpu_init(); 1579 #endif 1580 set_numa_node(numa_cpu_lookup_table[cpu]); 1581 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1582 1583 /* Update topology CPU masks */ 1584 add_cpu_to_masks(cpu); 1585 1586 /* 1587 * Check for any shared caches. Note that this must be done on a 1588 * per-core basis because one core in the pair might be disabled. 1589 */ 1590 if (!shared_caches) { 1591 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; 1592 struct cpumask *mask = cpu_l2_cache_mask(cpu); 1593 1594 if (has_big_cores) 1595 sibling_mask = cpu_smallcore_mask; 1596 1597 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu))) 1598 shared_caches = true; 1599 } 1600 1601 smp_wmb(); 1602 notify_cpu_starting(cpu); 1603 set_cpu_online(cpu, true); 1604 1605 boot_init_stack_canary(); 1606 1607 local_irq_enable(); 1608 1609 /* We can enable ftrace for secondary cpus now */ 1610 this_cpu_enable_ftrace(); 1611 1612 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1613 1614 BUG(); 1615 } 1616 1617 int setup_profiling_timer(unsigned int multiplier) 1618 { 1619 return 0; 1620 } 1621 1622 static void fixup_topology(void) 1623 { 1624 int i; 1625 1626 #ifdef CONFIG_SCHED_SMT 1627 if (has_big_cores) { 1628 pr_info("Big cores detected but using small core scheduling\n"); 1629 powerpc_topology[smt_idx].mask = smallcore_smt_mask; 1630 } 1631 #endif 1632 1633 if (!has_coregroup_support()) 1634 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask; 1635 1636 /* 1637 * Try to consolidate topology levels here instead of 1638 * allowing scheduler to degenerate. 1639 * - Dont consolidate if masks are different. 1640 * - Dont consolidate if sd_flags exists and are different. 1641 */ 1642 for (i = 1; i <= die_idx; i++) { 1643 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask) 1644 continue; 1645 1646 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags && 1647 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags) 1648 continue; 1649 1650 if (!powerpc_topology[i - 1].sd_flags) 1651 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags; 1652 1653 powerpc_topology[i].mask = powerpc_topology[i + 1].mask; 1654 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags; 1655 #ifdef CONFIG_SCHED_DEBUG 1656 powerpc_topology[i].name = powerpc_topology[i + 1].name; 1657 #endif 1658 } 1659 } 1660 1661 void __init smp_cpus_done(unsigned int max_cpus) 1662 { 1663 /* 1664 * We are running pinned to the boot CPU, see rest_init(). 1665 */ 1666 if (smp_ops && smp_ops->setup_cpu) 1667 smp_ops->setup_cpu(boot_cpuid); 1668 1669 if (smp_ops && smp_ops->bringup_done) 1670 smp_ops->bringup_done(); 1671 1672 dump_numa_cpu_topology(); 1673 1674 fixup_topology(); 1675 set_sched_topology(powerpc_topology); 1676 } 1677 1678 #ifdef CONFIG_HOTPLUG_CPU 1679 int __cpu_disable(void) 1680 { 1681 int cpu = smp_processor_id(); 1682 int err; 1683 1684 if (!smp_ops->cpu_disable) 1685 return -ENOSYS; 1686 1687 this_cpu_disable_ftrace(); 1688 1689 err = smp_ops->cpu_disable(); 1690 if (err) 1691 return err; 1692 1693 /* Update sibling maps */ 1694 remove_cpu_from_masks(cpu); 1695 1696 return 0; 1697 } 1698 1699 void __cpu_die(unsigned int cpu) 1700 { 1701 if (smp_ops->cpu_die) 1702 smp_ops->cpu_die(cpu); 1703 } 1704 1705 void arch_cpu_idle_dead(void) 1706 { 1707 sched_preempt_enable_no_resched(); 1708 1709 /* 1710 * Disable on the down path. This will be re-enabled by 1711 * start_secondary() via start_secondary_resume() below 1712 */ 1713 this_cpu_disable_ftrace(); 1714 1715 if (smp_ops->cpu_offline_self) 1716 smp_ops->cpu_offline_self(); 1717 1718 /* If we return, we re-enter start_secondary */ 1719 start_secondary_resume(); 1720 } 1721 1722 #endif 1723