1 /* 2 * SMP support for ppc. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 5 * deal of code from the sparc and intel versions. 6 * 7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 8 * 9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 */ 17 18 #undef DEBUG 19 20 #include <linux/kernel.h> 21 #include <linux/export.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/topology.h> 24 #include <linux/smp.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <linux/init.h> 28 #include <linux/spinlock.h> 29 #include <linux/cache.h> 30 #include <linux/err.h> 31 #include <linux/device.h> 32 #include <linux/cpu.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/profile.h> 36 #include <linux/processor.h> 37 38 #include <asm/ptrace.h> 39 #include <linux/atomic.h> 40 #include <asm/irq.h> 41 #include <asm/hw_irq.h> 42 #include <asm/kvm_ppc.h> 43 #include <asm/dbell.h> 44 #include <asm/page.h> 45 #include <asm/pgtable.h> 46 #include <asm/prom.h> 47 #include <asm/smp.h> 48 #include <asm/time.h> 49 #include <asm/machdep.h> 50 #include <asm/cputhreads.h> 51 #include <asm/cputable.h> 52 #include <asm/mpic.h> 53 #include <asm/vdso_datapage.h> 54 #ifdef CONFIG_PPC64 55 #include <asm/paca.h> 56 #endif 57 #include <asm/vdso.h> 58 #include <asm/debug.h> 59 #include <asm/kexec.h> 60 #include <asm/asm-prototypes.h> 61 #include <asm/cpu_has_feature.h> 62 63 #ifdef DEBUG 64 #include <asm/udbg.h> 65 #define DBG(fmt...) udbg_printf(fmt) 66 #else 67 #define DBG(fmt...) 68 #endif 69 70 #ifdef CONFIG_HOTPLUG_CPU 71 /* State of each CPU during hotplug phases */ 72 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 73 #endif 74 75 struct thread_info *secondary_ti; 76 77 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 78 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 79 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 80 81 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 82 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 83 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 84 85 /* SMP operations for this machine */ 86 struct smp_ops_t *smp_ops; 87 88 /* Can't be static due to PowerMac hackery */ 89 volatile unsigned int cpu_callin_map[NR_CPUS]; 90 91 int smt_enabled_at_boot = 1; 92 93 /* 94 * Returns 1 if the specified cpu should be brought up during boot. 95 * Used to inhibit booting threads if they've been disabled or 96 * limited on the command line 97 */ 98 int smp_generic_cpu_bootable(unsigned int nr) 99 { 100 /* Special case - we inhibit secondary thread startup 101 * during boot if the user requests it. 102 */ 103 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 104 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 105 return 0; 106 if (smt_enabled_at_boot 107 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 108 return 0; 109 } 110 111 return 1; 112 } 113 114 115 #ifdef CONFIG_PPC64 116 int smp_generic_kick_cpu(int nr) 117 { 118 if (nr < 0 || nr >= nr_cpu_ids) 119 return -EINVAL; 120 121 /* 122 * The processor is currently spinning, waiting for the 123 * cpu_start field to become non-zero After we set cpu_start, 124 * the processor will continue on to secondary_start 125 */ 126 if (!paca_ptrs[nr]->cpu_start) { 127 paca_ptrs[nr]->cpu_start = 1; 128 smp_mb(); 129 return 0; 130 } 131 132 #ifdef CONFIG_HOTPLUG_CPU 133 /* 134 * Ok it's not there, so it might be soft-unplugged, let's 135 * try to bring it back 136 */ 137 generic_set_cpu_up(nr); 138 smp_wmb(); 139 smp_send_reschedule(nr); 140 #endif /* CONFIG_HOTPLUG_CPU */ 141 142 return 0; 143 } 144 #endif /* CONFIG_PPC64 */ 145 146 static irqreturn_t call_function_action(int irq, void *data) 147 { 148 generic_smp_call_function_interrupt(); 149 return IRQ_HANDLED; 150 } 151 152 static irqreturn_t reschedule_action(int irq, void *data) 153 { 154 scheduler_ipi(); 155 return IRQ_HANDLED; 156 } 157 158 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 159 { 160 tick_broadcast_ipi_handler(); 161 return IRQ_HANDLED; 162 } 163 164 #ifdef CONFIG_NMI_IPI 165 static irqreturn_t nmi_ipi_action(int irq, void *data) 166 { 167 smp_handle_nmi_ipi(get_irq_regs()); 168 return IRQ_HANDLED; 169 } 170 #endif 171 172 static irq_handler_t smp_ipi_action[] = { 173 [PPC_MSG_CALL_FUNCTION] = call_function_action, 174 [PPC_MSG_RESCHEDULE] = reschedule_action, 175 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 176 #ifdef CONFIG_NMI_IPI 177 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 178 #endif 179 }; 180 181 /* 182 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 183 * than going through the call function infrastructure, and strongly 184 * serialized, so it is more appropriate for debugging. 185 */ 186 const char *smp_ipi_name[] = { 187 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 188 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 189 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 190 [PPC_MSG_NMI_IPI] = "nmi ipi", 191 }; 192 193 /* optional function to request ipi, for controllers with >= 4 ipis */ 194 int smp_request_message_ipi(int virq, int msg) 195 { 196 int err; 197 198 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 199 return -EINVAL; 200 #ifndef CONFIG_NMI_IPI 201 if (msg == PPC_MSG_NMI_IPI) 202 return 1; 203 #endif 204 205 err = request_irq(virq, smp_ipi_action[msg], 206 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 207 smp_ipi_name[msg], NULL); 208 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 209 virq, smp_ipi_name[msg], err); 210 211 return err; 212 } 213 214 #ifdef CONFIG_PPC_SMP_MUXED_IPI 215 struct cpu_messages { 216 long messages; /* current messages */ 217 }; 218 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 219 220 void smp_muxed_ipi_set_message(int cpu, int msg) 221 { 222 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 223 char *message = (char *)&info->messages; 224 225 /* 226 * Order previous accesses before accesses in the IPI handler. 227 */ 228 smp_mb(); 229 message[msg] = 1; 230 } 231 232 void smp_muxed_ipi_message_pass(int cpu, int msg) 233 { 234 smp_muxed_ipi_set_message(cpu, msg); 235 236 /* 237 * cause_ipi functions are required to include a full barrier 238 * before doing whatever causes the IPI. 239 */ 240 smp_ops->cause_ipi(cpu); 241 } 242 243 #ifdef __BIG_ENDIAN__ 244 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 245 #else 246 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 247 #endif 248 249 irqreturn_t smp_ipi_demux(void) 250 { 251 mb(); /* order any irq clear */ 252 253 return smp_ipi_demux_relaxed(); 254 } 255 256 /* sync-free variant. Callers should ensure synchronization */ 257 irqreturn_t smp_ipi_demux_relaxed(void) 258 { 259 struct cpu_messages *info; 260 unsigned long all; 261 262 info = this_cpu_ptr(&ipi_message); 263 do { 264 all = xchg(&info->messages, 0); 265 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 266 /* 267 * Must check for PPC_MSG_RM_HOST_ACTION messages 268 * before PPC_MSG_CALL_FUNCTION messages because when 269 * a VM is destroyed, we call kick_all_cpus_sync() 270 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 271 * messages have completed before we free any VCPUs. 272 */ 273 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 274 kvmppc_xics_ipi_action(); 275 #endif 276 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 277 generic_smp_call_function_interrupt(); 278 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 279 scheduler_ipi(); 280 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 281 tick_broadcast_ipi_handler(); 282 #ifdef CONFIG_NMI_IPI 283 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 284 nmi_ipi_action(0, NULL); 285 #endif 286 } while (info->messages); 287 288 return IRQ_HANDLED; 289 } 290 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 291 292 static inline void do_message_pass(int cpu, int msg) 293 { 294 if (smp_ops->message_pass) 295 smp_ops->message_pass(cpu, msg); 296 #ifdef CONFIG_PPC_SMP_MUXED_IPI 297 else 298 smp_muxed_ipi_message_pass(cpu, msg); 299 #endif 300 } 301 302 void smp_send_reschedule(int cpu) 303 { 304 if (likely(smp_ops)) 305 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 306 } 307 EXPORT_SYMBOL_GPL(smp_send_reschedule); 308 309 void arch_send_call_function_single_ipi(int cpu) 310 { 311 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 312 } 313 314 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 315 { 316 unsigned int cpu; 317 318 for_each_cpu(cpu, mask) 319 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 320 } 321 322 #ifdef CONFIG_NMI_IPI 323 324 /* 325 * "NMI IPI" system. 326 * 327 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 328 * a running system. They can be used for crash, debug, halt/reboot, etc. 329 * 330 * NMI IPIs are globally single threaded. No more than one in progress at 331 * any time. 332 * 333 * The IPI call waits with interrupts disabled until all targets enter the 334 * NMI handler, then the call returns. 335 * 336 * No new NMI can be initiated until targets exit the handler. 337 * 338 * The IPI call may time out without all targets entering the NMI handler. 339 * In that case, there is some logic to recover (and ignore subsequent 340 * NMI interrupts that may eventually be raised), but the platform interrupt 341 * handler may not be able to distinguish this from other exception causes, 342 * which may cause a crash. 343 */ 344 345 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 346 static struct cpumask nmi_ipi_pending_mask; 347 static int nmi_ipi_busy_count = 0; 348 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 349 350 static void nmi_ipi_lock_start(unsigned long *flags) 351 { 352 raw_local_irq_save(*flags); 353 hard_irq_disable(); 354 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 355 raw_local_irq_restore(*flags); 356 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 357 raw_local_irq_save(*flags); 358 hard_irq_disable(); 359 } 360 } 361 362 static void nmi_ipi_lock(void) 363 { 364 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 365 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 366 } 367 368 static void nmi_ipi_unlock(void) 369 { 370 smp_mb(); 371 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1); 372 atomic_set(&__nmi_ipi_lock, 0); 373 } 374 375 static void nmi_ipi_unlock_end(unsigned long *flags) 376 { 377 nmi_ipi_unlock(); 378 raw_local_irq_restore(*flags); 379 } 380 381 /* 382 * Platform NMI handler calls this to ack 383 */ 384 int smp_handle_nmi_ipi(struct pt_regs *regs) 385 { 386 void (*fn)(struct pt_regs *); 387 unsigned long flags; 388 int me = raw_smp_processor_id(); 389 int ret = 0; 390 391 /* 392 * Unexpected NMIs are possible here because the interrupt may not 393 * be able to distinguish NMI IPIs from other types of NMIs, or 394 * because the caller may have timed out. 395 */ 396 nmi_ipi_lock_start(&flags); 397 if (!nmi_ipi_busy_count) 398 goto out; 399 if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask)) 400 goto out; 401 402 fn = nmi_ipi_function; 403 if (!fn) 404 goto out; 405 406 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 407 nmi_ipi_busy_count++; 408 nmi_ipi_unlock(); 409 410 ret = 1; 411 412 fn(regs); 413 414 nmi_ipi_lock(); 415 nmi_ipi_busy_count--; 416 out: 417 nmi_ipi_unlock_end(&flags); 418 419 return ret; 420 } 421 422 static void do_smp_send_nmi_ipi(int cpu) 423 { 424 if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 425 return; 426 427 if (cpu >= 0) { 428 do_message_pass(cpu, PPC_MSG_NMI_IPI); 429 } else { 430 int c; 431 432 for_each_online_cpu(c) { 433 if (c == raw_smp_processor_id()) 434 continue; 435 do_message_pass(c, PPC_MSG_NMI_IPI); 436 } 437 } 438 } 439 440 void smp_flush_nmi_ipi(u64 delay_us) 441 { 442 unsigned long flags; 443 444 nmi_ipi_lock_start(&flags); 445 while (nmi_ipi_busy_count) { 446 nmi_ipi_unlock_end(&flags); 447 udelay(1); 448 if (delay_us) { 449 delay_us--; 450 if (!delay_us) 451 return; 452 } 453 nmi_ipi_lock_start(&flags); 454 } 455 nmi_ipi_unlock_end(&flags); 456 } 457 458 /* 459 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 460 * - fn is the target callback function. 461 * - delay_us > 0 is the delay before giving up waiting for targets to 462 * enter the handler, == 0 specifies indefinite delay. 463 */ 464 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 465 { 466 unsigned long flags; 467 int me = raw_smp_processor_id(); 468 int ret = 1; 469 470 BUG_ON(cpu == me); 471 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 472 473 if (unlikely(!smp_ops)) 474 return 0; 475 476 /* Take the nmi_ipi_busy count/lock with interrupts hard disabled */ 477 nmi_ipi_lock_start(&flags); 478 while (nmi_ipi_busy_count) { 479 nmi_ipi_unlock_end(&flags); 480 spin_until_cond(nmi_ipi_busy_count == 0); 481 nmi_ipi_lock_start(&flags); 482 } 483 484 nmi_ipi_function = fn; 485 486 if (cpu < 0) { 487 /* ALL_OTHERS */ 488 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 489 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 490 } else { 491 /* cpumask starts clear */ 492 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 493 } 494 nmi_ipi_busy_count++; 495 nmi_ipi_unlock(); 496 497 do_smp_send_nmi_ipi(cpu); 498 499 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 500 udelay(1); 501 if (delay_us) { 502 delay_us--; 503 if (!delay_us) 504 break; 505 } 506 } 507 508 nmi_ipi_lock(); 509 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 510 /* Could not gather all CPUs */ 511 ret = 0; 512 cpumask_clear(&nmi_ipi_pending_mask); 513 } 514 nmi_ipi_busy_count--; 515 nmi_ipi_unlock_end(&flags); 516 517 return ret; 518 } 519 #endif /* CONFIG_NMI_IPI */ 520 521 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 522 void tick_broadcast(const struct cpumask *mask) 523 { 524 unsigned int cpu; 525 526 for_each_cpu(cpu, mask) 527 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 528 } 529 #endif 530 531 #ifdef CONFIG_DEBUGGER 532 void debugger_ipi_callback(struct pt_regs *regs) 533 { 534 debugger_ipi(regs); 535 } 536 537 void smp_send_debugger_break(void) 538 { 539 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 540 } 541 #endif 542 543 #ifdef CONFIG_KEXEC_CORE 544 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 545 { 546 int cpu; 547 548 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 549 if (kdump_in_progress() && crash_wake_offline) { 550 for_each_present_cpu(cpu) { 551 if (cpu_online(cpu)) 552 continue; 553 /* 554 * crash_ipi_callback will wait for 555 * all cpus, including offline CPUs. 556 * We don't care about nmi_ipi_function. 557 * Offline cpus will jump straight into 558 * crash_ipi_callback, we can skip the 559 * entire NMI dance and waiting for 560 * cpus to clear pending mask, etc. 561 */ 562 do_smp_send_nmi_ipi(cpu); 563 } 564 } 565 } 566 #endif 567 568 #ifdef CONFIG_NMI_IPI 569 static void stop_this_cpu(struct pt_regs *regs) 570 #else 571 static void stop_this_cpu(void *dummy) 572 #endif 573 { 574 /* Remove this CPU */ 575 set_cpu_online(smp_processor_id(), false); 576 577 hard_irq_disable(); 578 spin_begin(); 579 while (1) 580 spin_cpu_relax(); 581 } 582 583 void smp_send_stop(void) 584 { 585 #ifdef CONFIG_NMI_IPI 586 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, stop_this_cpu, 1000000); 587 #else 588 smp_call_function(stop_this_cpu, NULL, 0); 589 #endif 590 } 591 592 struct thread_info *current_set[NR_CPUS]; 593 594 static void smp_store_cpu_info(int id) 595 { 596 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 597 #ifdef CONFIG_PPC_FSL_BOOK3E 598 per_cpu(next_tlbcam_idx, id) 599 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 600 #endif 601 } 602 603 /* 604 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 605 * rather than just passing around the cpumask we pass around a function that 606 * returns the that cpumask for the given CPU. 607 */ 608 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 609 { 610 cpumask_set_cpu(i, get_cpumask(j)); 611 cpumask_set_cpu(j, get_cpumask(i)); 612 } 613 614 #ifdef CONFIG_HOTPLUG_CPU 615 static void set_cpus_unrelated(int i, int j, 616 struct cpumask *(*get_cpumask)(int)) 617 { 618 cpumask_clear_cpu(i, get_cpumask(j)); 619 cpumask_clear_cpu(j, get_cpumask(i)); 620 } 621 #endif 622 623 void __init smp_prepare_cpus(unsigned int max_cpus) 624 { 625 unsigned int cpu; 626 627 DBG("smp_prepare_cpus\n"); 628 629 /* 630 * setup_cpu may need to be called on the boot cpu. We havent 631 * spun any cpus up but lets be paranoid. 632 */ 633 BUG_ON(boot_cpuid != smp_processor_id()); 634 635 /* Fixup boot cpu */ 636 smp_store_cpu_info(boot_cpuid); 637 cpu_callin_map[boot_cpuid] = 1; 638 639 for_each_possible_cpu(cpu) { 640 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 641 GFP_KERNEL, cpu_to_node(cpu)); 642 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 643 GFP_KERNEL, cpu_to_node(cpu)); 644 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 645 GFP_KERNEL, cpu_to_node(cpu)); 646 /* 647 * numa_node_id() works after this. 648 */ 649 if (cpu_present(cpu)) { 650 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 651 set_cpu_numa_mem(cpu, 652 local_memory_node(numa_cpu_lookup_table[cpu])); 653 } 654 } 655 656 /* Init the cpumasks so the boot CPU is related to itself */ 657 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 658 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 659 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 660 661 if (smp_ops && smp_ops->probe) 662 smp_ops->probe(); 663 } 664 665 void smp_prepare_boot_cpu(void) 666 { 667 BUG_ON(smp_processor_id() != boot_cpuid); 668 #ifdef CONFIG_PPC64 669 paca_ptrs[boot_cpuid]->__current = current; 670 #endif 671 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 672 current_set[boot_cpuid] = task_thread_info(current); 673 } 674 675 #ifdef CONFIG_HOTPLUG_CPU 676 677 int generic_cpu_disable(void) 678 { 679 unsigned int cpu = smp_processor_id(); 680 681 if (cpu == boot_cpuid) 682 return -EBUSY; 683 684 set_cpu_online(cpu, false); 685 #ifdef CONFIG_PPC64 686 vdso_data->processorCount--; 687 #endif 688 /* Update affinity of all IRQs previously aimed at this CPU */ 689 irq_migrate_all_off_this_cpu(); 690 691 /* 692 * Depending on the details of the interrupt controller, it's possible 693 * that one of the interrupts we just migrated away from this CPU is 694 * actually already pending on this CPU. If we leave it in that state 695 * the interrupt will never be EOI'ed, and will never fire again. So 696 * temporarily enable interrupts here, to allow any pending interrupt to 697 * be received (and EOI'ed), before we take this CPU offline. 698 */ 699 local_irq_enable(); 700 mdelay(1); 701 local_irq_disable(); 702 703 return 0; 704 } 705 706 void generic_cpu_die(unsigned int cpu) 707 { 708 int i; 709 710 for (i = 0; i < 100; i++) { 711 smp_rmb(); 712 if (is_cpu_dead(cpu)) 713 return; 714 msleep(100); 715 } 716 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 717 } 718 719 void generic_set_cpu_dead(unsigned int cpu) 720 { 721 per_cpu(cpu_state, cpu) = CPU_DEAD; 722 } 723 724 /* 725 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 726 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 727 * which makes the delay in generic_cpu_die() not happen. 728 */ 729 void generic_set_cpu_up(unsigned int cpu) 730 { 731 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 732 } 733 734 int generic_check_cpu_restart(unsigned int cpu) 735 { 736 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 737 } 738 739 int is_cpu_dead(unsigned int cpu) 740 { 741 return per_cpu(cpu_state, cpu) == CPU_DEAD; 742 } 743 744 static bool secondaries_inhibited(void) 745 { 746 return kvm_hv_mode_active(); 747 } 748 749 #else /* HOTPLUG_CPU */ 750 751 #define secondaries_inhibited() 0 752 753 #endif 754 755 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 756 { 757 struct thread_info *ti = task_thread_info(idle); 758 759 #ifdef CONFIG_PPC64 760 paca_ptrs[cpu]->__current = idle; 761 paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD; 762 #endif 763 ti->cpu = cpu; 764 secondary_ti = current_set[cpu] = ti; 765 } 766 767 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 768 { 769 int rc, c; 770 771 /* 772 * Don't allow secondary threads to come online if inhibited 773 */ 774 if (threads_per_core > 1 && secondaries_inhibited() && 775 cpu_thread_in_subcore(cpu)) 776 return -EBUSY; 777 778 if (smp_ops == NULL || 779 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 780 return -EINVAL; 781 782 cpu_idle_thread_init(cpu, tidle); 783 784 /* 785 * The platform might need to allocate resources prior to bringing 786 * up the CPU 787 */ 788 if (smp_ops->prepare_cpu) { 789 rc = smp_ops->prepare_cpu(cpu); 790 if (rc) 791 return rc; 792 } 793 794 /* Make sure callin-map entry is 0 (can be leftover a CPU 795 * hotplug 796 */ 797 cpu_callin_map[cpu] = 0; 798 799 /* The information for processor bringup must 800 * be written out to main store before we release 801 * the processor. 802 */ 803 smp_mb(); 804 805 /* wake up cpus */ 806 DBG("smp: kicking cpu %d\n", cpu); 807 rc = smp_ops->kick_cpu(cpu); 808 if (rc) { 809 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 810 return rc; 811 } 812 813 /* 814 * wait to see if the cpu made a callin (is actually up). 815 * use this value that I found through experimentation. 816 * -- Cort 817 */ 818 if (system_state < SYSTEM_RUNNING) 819 for (c = 50000; c && !cpu_callin_map[cpu]; c--) 820 udelay(100); 821 #ifdef CONFIG_HOTPLUG_CPU 822 else 823 /* 824 * CPUs can take much longer to come up in the 825 * hotplug case. Wait five seconds. 826 */ 827 for (c = 5000; c && !cpu_callin_map[cpu]; c--) 828 msleep(1); 829 #endif 830 831 if (!cpu_callin_map[cpu]) { 832 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 833 return -ENOENT; 834 } 835 836 DBG("Processor %u found.\n", cpu); 837 838 if (smp_ops->give_timebase) 839 smp_ops->give_timebase(); 840 841 /* Wait until cpu puts itself in the online & active maps */ 842 spin_until_cond(cpu_online(cpu)); 843 844 return 0; 845 } 846 847 /* Return the value of the reg property corresponding to the given 848 * logical cpu. 849 */ 850 int cpu_to_core_id(int cpu) 851 { 852 struct device_node *np; 853 const __be32 *reg; 854 int id = -1; 855 856 np = of_get_cpu_node(cpu, NULL); 857 if (!np) 858 goto out; 859 860 reg = of_get_property(np, "reg", NULL); 861 if (!reg) 862 goto out; 863 864 id = be32_to_cpup(reg); 865 out: 866 of_node_put(np); 867 return id; 868 } 869 EXPORT_SYMBOL_GPL(cpu_to_core_id); 870 871 /* Helper routines for cpu to core mapping */ 872 int cpu_core_index_of_thread(int cpu) 873 { 874 return cpu >> threads_shift; 875 } 876 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 877 878 int cpu_first_thread_of_core(int core) 879 { 880 return core << threads_shift; 881 } 882 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 883 884 /* Must be called when no change can occur to cpu_present_mask, 885 * i.e. during cpu online or offline. 886 */ 887 static struct device_node *cpu_to_l2cache(int cpu) 888 { 889 struct device_node *np; 890 struct device_node *cache; 891 892 if (!cpu_present(cpu)) 893 return NULL; 894 895 np = of_get_cpu_node(cpu, NULL); 896 if (np == NULL) 897 return NULL; 898 899 cache = of_find_next_cache_node(np); 900 901 of_node_put(np); 902 903 return cache; 904 } 905 906 static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int)) 907 { 908 struct device_node *l2_cache, *np; 909 int i; 910 911 l2_cache = cpu_to_l2cache(cpu); 912 if (!l2_cache) 913 return false; 914 915 for_each_cpu(i, cpu_online_mask) { 916 /* 917 * when updating the marks the current CPU has not been marked 918 * online, but we need to update the cache masks 919 */ 920 np = cpu_to_l2cache(i); 921 if (!np) 922 continue; 923 924 if (np == l2_cache) 925 set_cpus_related(cpu, i, mask_fn); 926 927 of_node_put(np); 928 } 929 of_node_put(l2_cache); 930 931 return true; 932 } 933 934 #ifdef CONFIG_HOTPLUG_CPU 935 static void remove_cpu_from_masks(int cpu) 936 { 937 int i; 938 939 /* NB: cpu_core_mask is a superset of the others */ 940 for_each_cpu(i, cpu_core_mask(cpu)) { 941 set_cpus_unrelated(cpu, i, cpu_core_mask); 942 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 943 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 944 } 945 } 946 #endif 947 948 static void add_cpu_to_masks(int cpu) 949 { 950 int first_thread = cpu_first_thread_sibling(cpu); 951 int chipid = cpu_to_chip_id(cpu); 952 int i; 953 954 /* 955 * This CPU will not be in the online mask yet so we need to manually 956 * add it to it's own thread sibling mask. 957 */ 958 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 959 960 for (i = first_thread; i < first_thread + threads_per_core; i++) 961 if (cpu_online(i)) 962 set_cpus_related(i, cpu, cpu_sibling_mask); 963 964 /* 965 * Copy the thread sibling mask into the cache sibling mask 966 * and mark any CPUs that share an L2 with this CPU. 967 */ 968 for_each_cpu(i, cpu_sibling_mask(cpu)) 969 set_cpus_related(cpu, i, cpu_l2_cache_mask); 970 update_mask_by_l2(cpu, cpu_l2_cache_mask); 971 972 /* 973 * Copy the cache sibling mask into core sibling mask and mark 974 * any CPUs on the same chip as this CPU. 975 */ 976 for_each_cpu(i, cpu_l2_cache_mask(cpu)) 977 set_cpus_related(cpu, i, cpu_core_mask); 978 979 if (chipid == -1) 980 return; 981 982 for_each_cpu(i, cpu_online_mask) 983 if (cpu_to_chip_id(i) == chipid) 984 set_cpus_related(cpu, i, cpu_core_mask); 985 } 986 987 static bool shared_caches; 988 989 /* Activate a secondary processor. */ 990 void start_secondary(void *unused) 991 { 992 unsigned int cpu = smp_processor_id(); 993 994 mmgrab(&init_mm); 995 current->active_mm = &init_mm; 996 997 smp_store_cpu_info(cpu); 998 set_dec(tb_ticks_per_jiffy); 999 preempt_disable(); 1000 cpu_callin_map[cpu] = 1; 1001 1002 if (smp_ops->setup_cpu) 1003 smp_ops->setup_cpu(cpu); 1004 if (smp_ops->take_timebase) 1005 smp_ops->take_timebase(); 1006 1007 secondary_cpu_time_init(); 1008 1009 #ifdef CONFIG_PPC64 1010 if (system_state == SYSTEM_RUNNING) 1011 vdso_data->processorCount++; 1012 1013 vdso_getcpu_init(); 1014 #endif 1015 /* Update topology CPU masks */ 1016 add_cpu_to_masks(cpu); 1017 1018 /* 1019 * Check for any shared caches. Note that this must be done on a 1020 * per-core basis because one core in the pair might be disabled. 1021 */ 1022 if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu))) 1023 shared_caches = true; 1024 1025 set_numa_node(numa_cpu_lookup_table[cpu]); 1026 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1027 1028 smp_wmb(); 1029 notify_cpu_starting(cpu); 1030 set_cpu_online(cpu, true); 1031 1032 local_irq_enable(); 1033 1034 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1035 1036 BUG(); 1037 } 1038 1039 int setup_profiling_timer(unsigned int multiplier) 1040 { 1041 return 0; 1042 } 1043 1044 #ifdef CONFIG_SCHED_SMT 1045 /* cpumask of CPUs with asymetric SMT dependancy */ 1046 static int powerpc_smt_flags(void) 1047 { 1048 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1049 1050 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 1051 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 1052 flags |= SD_ASYM_PACKING; 1053 } 1054 return flags; 1055 } 1056 #endif 1057 1058 static struct sched_domain_topology_level powerpc_topology[] = { 1059 #ifdef CONFIG_SCHED_SMT 1060 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1061 #endif 1062 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1063 { NULL, }, 1064 }; 1065 1066 /* 1067 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 1068 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 1069 * since the migrated task remains cache hot. We want to take advantage of this 1070 * at the scheduler level so an extra topology level is required. 1071 */ 1072 static int powerpc_shared_cache_flags(void) 1073 { 1074 return SD_SHARE_PKG_RESOURCES; 1075 } 1076 1077 /* 1078 * We can't just pass cpu_l2_cache_mask() directly because 1079 * returns a non-const pointer and the compiler barfs on that. 1080 */ 1081 static const struct cpumask *shared_cache_mask(int cpu) 1082 { 1083 return cpu_l2_cache_mask(cpu); 1084 } 1085 1086 static struct sched_domain_topology_level power9_topology[] = { 1087 #ifdef CONFIG_SCHED_SMT 1088 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1089 #endif 1090 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, 1091 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1092 { NULL, }, 1093 }; 1094 1095 void __init smp_cpus_done(unsigned int max_cpus) 1096 { 1097 /* 1098 * We are running pinned to the boot CPU, see rest_init(). 1099 */ 1100 if (smp_ops && smp_ops->setup_cpu) 1101 smp_ops->setup_cpu(boot_cpuid); 1102 1103 if (smp_ops && smp_ops->bringup_done) 1104 smp_ops->bringup_done(); 1105 1106 dump_numa_cpu_topology(); 1107 1108 /* 1109 * If any CPU detects that it's sharing a cache with another CPU then 1110 * use the deeper topology that is aware of this sharing. 1111 */ 1112 if (shared_caches) { 1113 pr_info("Using shared cache scheduler topology\n"); 1114 set_sched_topology(power9_topology); 1115 } else { 1116 pr_info("Using standard scheduler topology\n"); 1117 set_sched_topology(powerpc_topology); 1118 } 1119 } 1120 1121 #ifdef CONFIG_HOTPLUG_CPU 1122 int __cpu_disable(void) 1123 { 1124 int cpu = smp_processor_id(); 1125 int err; 1126 1127 if (!smp_ops->cpu_disable) 1128 return -ENOSYS; 1129 1130 err = smp_ops->cpu_disable(); 1131 if (err) 1132 return err; 1133 1134 /* Update sibling maps */ 1135 remove_cpu_from_masks(cpu); 1136 1137 return 0; 1138 } 1139 1140 void __cpu_die(unsigned int cpu) 1141 { 1142 if (smp_ops->cpu_die) 1143 smp_ops->cpu_die(cpu); 1144 } 1145 1146 void cpu_die(void) 1147 { 1148 if (ppc_md.cpu_die) 1149 ppc_md.cpu_die(); 1150 1151 /* If we return, we re-enter start_secondary */ 1152 start_secondary_resume(); 1153 } 1154 1155 #endif 1156