1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SMP support for ppc. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 6 * deal of code from the sparc and intel versions. 7 * 8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 9 * 10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 12 */ 13 14 #undef DEBUG 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/sched/topology.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/init.h> 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/err.h> 28 #include <linux/device.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/profile.h> 33 #include <linux/processor.h> 34 #include <linux/random.h> 35 #include <linux/stackprotector.h> 36 #include <linux/pgtable.h> 37 #include <linux/clockchips.h> 38 39 #include <asm/ptrace.h> 40 #include <linux/atomic.h> 41 #include <asm/irq.h> 42 #include <asm/hw_irq.h> 43 #include <asm/kvm_ppc.h> 44 #include <asm/dbell.h> 45 #include <asm/page.h> 46 #include <asm/prom.h> 47 #include <asm/smp.h> 48 #include <asm/time.h> 49 #include <asm/machdep.h> 50 #include <asm/cputhreads.h> 51 #include <asm/cputable.h> 52 #include <asm/mpic.h> 53 #include <asm/vdso_datapage.h> 54 #ifdef CONFIG_PPC64 55 #include <asm/paca.h> 56 #endif 57 #include <asm/vdso.h> 58 #include <asm/debug.h> 59 #include <asm/kexec.h> 60 #include <asm/cpu_has_feature.h> 61 #include <asm/ftrace.h> 62 #include <asm/kup.h> 63 #include <asm/fadump.h> 64 65 #ifdef DEBUG 66 #include <asm/udbg.h> 67 #define DBG(fmt...) udbg_printf(fmt) 68 #else 69 #define DBG(fmt...) 70 #endif 71 72 #ifdef CONFIG_HOTPLUG_CPU 73 /* State of each CPU during hotplug phases */ 74 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 75 #endif 76 77 struct task_struct *secondary_current; 78 bool has_big_cores; 79 bool coregroup_enabled; 80 bool thread_group_shares_l2; 81 bool thread_group_shares_l3; 82 83 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 84 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); 85 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 86 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 87 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map); 88 89 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 90 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 91 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 92 EXPORT_SYMBOL_GPL(has_big_cores); 93 94 enum { 95 #ifdef CONFIG_SCHED_SMT 96 smt_idx, 97 #endif 98 cache_idx, 99 mc_idx, 100 die_idx, 101 }; 102 103 #define MAX_THREAD_LIST_SIZE 8 104 #define THREAD_GROUP_SHARE_L1 1 105 #define THREAD_GROUP_SHARE_L2_L3 2 106 struct thread_groups { 107 unsigned int property; 108 unsigned int nr_groups; 109 unsigned int threads_per_group; 110 unsigned int thread_list[MAX_THREAD_LIST_SIZE]; 111 }; 112 113 /* Maximum number of properties that groups of threads within a core can share */ 114 #define MAX_THREAD_GROUP_PROPERTIES 2 115 116 struct thread_groups_list { 117 unsigned int nr_properties; 118 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES]; 119 }; 120 121 static struct thread_groups_list tgl[NR_CPUS] __initdata; 122 /* 123 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to 124 * the set its siblings that share the L1-cache. 125 */ 126 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map); 127 128 /* 129 * On some big-cores system, thread_group_l2_cache_map for each CPU 130 * corresponds to the set its siblings within the core that share the 131 * L2-cache. 132 */ 133 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map); 134 135 /* 136 * On P10, thread_group_l3_cache_map for each CPU is equal to the 137 * thread_group_l2_cache_map 138 */ 139 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map); 140 141 /* SMP operations for this machine */ 142 struct smp_ops_t *smp_ops; 143 144 /* Can't be static due to PowerMac hackery */ 145 volatile unsigned int cpu_callin_map[NR_CPUS]; 146 147 int smt_enabled_at_boot = 1; 148 149 /* 150 * Returns 1 if the specified cpu should be brought up during boot. 151 * Used to inhibit booting threads if they've been disabled or 152 * limited on the command line 153 */ 154 int smp_generic_cpu_bootable(unsigned int nr) 155 { 156 /* Special case - we inhibit secondary thread startup 157 * during boot if the user requests it. 158 */ 159 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 160 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 161 return 0; 162 if (smt_enabled_at_boot 163 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 164 return 0; 165 } 166 167 return 1; 168 } 169 170 171 #ifdef CONFIG_PPC64 172 int smp_generic_kick_cpu(int nr) 173 { 174 if (nr < 0 || nr >= nr_cpu_ids) 175 return -EINVAL; 176 177 /* 178 * The processor is currently spinning, waiting for the 179 * cpu_start field to become non-zero After we set cpu_start, 180 * the processor will continue on to secondary_start 181 */ 182 if (!paca_ptrs[nr]->cpu_start) { 183 paca_ptrs[nr]->cpu_start = 1; 184 smp_mb(); 185 return 0; 186 } 187 188 #ifdef CONFIG_HOTPLUG_CPU 189 /* 190 * Ok it's not there, so it might be soft-unplugged, let's 191 * try to bring it back 192 */ 193 generic_set_cpu_up(nr); 194 smp_wmb(); 195 smp_send_reschedule(nr); 196 #endif /* CONFIG_HOTPLUG_CPU */ 197 198 return 0; 199 } 200 #endif /* CONFIG_PPC64 */ 201 202 static irqreturn_t call_function_action(int irq, void *data) 203 { 204 generic_smp_call_function_interrupt(); 205 return IRQ_HANDLED; 206 } 207 208 static irqreturn_t reschedule_action(int irq, void *data) 209 { 210 scheduler_ipi(); 211 return IRQ_HANDLED; 212 } 213 214 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 215 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 216 { 217 timer_broadcast_interrupt(); 218 return IRQ_HANDLED; 219 } 220 #endif 221 222 #ifdef CONFIG_NMI_IPI 223 static irqreturn_t nmi_ipi_action(int irq, void *data) 224 { 225 smp_handle_nmi_ipi(get_irq_regs()); 226 return IRQ_HANDLED; 227 } 228 #endif 229 230 static irq_handler_t smp_ipi_action[] = { 231 [PPC_MSG_CALL_FUNCTION] = call_function_action, 232 [PPC_MSG_RESCHEDULE] = reschedule_action, 233 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 234 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 235 #endif 236 #ifdef CONFIG_NMI_IPI 237 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 238 #endif 239 }; 240 241 /* 242 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 243 * than going through the call function infrastructure, and strongly 244 * serialized, so it is more appropriate for debugging. 245 */ 246 const char *smp_ipi_name[] = { 247 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 248 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 249 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 250 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 251 #endif 252 #ifdef CONFIG_NMI_IPI 253 [PPC_MSG_NMI_IPI] = "nmi ipi", 254 #endif 255 }; 256 257 /* optional function to request ipi, for controllers with >= 4 ipis */ 258 int smp_request_message_ipi(int virq, int msg) 259 { 260 int err; 261 262 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 263 return -EINVAL; 264 #ifndef CONFIG_NMI_IPI 265 if (msg == PPC_MSG_NMI_IPI) 266 return 1; 267 #endif 268 269 err = request_irq(virq, smp_ipi_action[msg], 270 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 271 smp_ipi_name[msg], NULL); 272 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 273 virq, smp_ipi_name[msg], err); 274 275 return err; 276 } 277 278 #ifdef CONFIG_PPC_SMP_MUXED_IPI 279 struct cpu_messages { 280 long messages; /* current messages */ 281 }; 282 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 283 284 void smp_muxed_ipi_set_message(int cpu, int msg) 285 { 286 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 287 char *message = (char *)&info->messages; 288 289 /* 290 * Order previous accesses before accesses in the IPI handler. 291 */ 292 smp_mb(); 293 message[msg] = 1; 294 } 295 296 void smp_muxed_ipi_message_pass(int cpu, int msg) 297 { 298 smp_muxed_ipi_set_message(cpu, msg); 299 300 /* 301 * cause_ipi functions are required to include a full barrier 302 * before doing whatever causes the IPI. 303 */ 304 smp_ops->cause_ipi(cpu); 305 } 306 307 #ifdef __BIG_ENDIAN__ 308 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 309 #else 310 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 311 #endif 312 313 irqreturn_t smp_ipi_demux(void) 314 { 315 mb(); /* order any irq clear */ 316 317 return smp_ipi_demux_relaxed(); 318 } 319 320 /* sync-free variant. Callers should ensure synchronization */ 321 irqreturn_t smp_ipi_demux_relaxed(void) 322 { 323 struct cpu_messages *info; 324 unsigned long all; 325 326 info = this_cpu_ptr(&ipi_message); 327 do { 328 all = xchg(&info->messages, 0); 329 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 330 /* 331 * Must check for PPC_MSG_RM_HOST_ACTION messages 332 * before PPC_MSG_CALL_FUNCTION messages because when 333 * a VM is destroyed, we call kick_all_cpus_sync() 334 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 335 * messages have completed before we free any VCPUs. 336 */ 337 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 338 kvmppc_xics_ipi_action(); 339 #endif 340 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 341 generic_smp_call_function_interrupt(); 342 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 343 scheduler_ipi(); 344 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 345 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 346 timer_broadcast_interrupt(); 347 #endif 348 #ifdef CONFIG_NMI_IPI 349 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 350 nmi_ipi_action(0, NULL); 351 #endif 352 } while (info->messages); 353 354 return IRQ_HANDLED; 355 } 356 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 357 358 static inline void do_message_pass(int cpu, int msg) 359 { 360 if (smp_ops->message_pass) 361 smp_ops->message_pass(cpu, msg); 362 #ifdef CONFIG_PPC_SMP_MUXED_IPI 363 else 364 smp_muxed_ipi_message_pass(cpu, msg); 365 #endif 366 } 367 368 void smp_send_reschedule(int cpu) 369 { 370 if (likely(smp_ops)) 371 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 372 } 373 EXPORT_SYMBOL_GPL(smp_send_reschedule); 374 375 void arch_send_call_function_single_ipi(int cpu) 376 { 377 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 378 } 379 380 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 381 { 382 unsigned int cpu; 383 384 for_each_cpu(cpu, mask) 385 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 386 } 387 388 #ifdef CONFIG_NMI_IPI 389 390 /* 391 * "NMI IPI" system. 392 * 393 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 394 * a running system. They can be used for crash, debug, halt/reboot, etc. 395 * 396 * The IPI call waits with interrupts disabled until all targets enter the 397 * NMI handler, then returns. Subsequent IPIs can be issued before targets 398 * have returned from their handlers, so there is no guarantee about 399 * concurrency or re-entrancy. 400 * 401 * A new NMI can be issued before all targets exit the handler. 402 * 403 * The IPI call may time out without all targets entering the NMI handler. 404 * In that case, there is some logic to recover (and ignore subsequent 405 * NMI interrupts that may eventually be raised), but the platform interrupt 406 * handler may not be able to distinguish this from other exception causes, 407 * which may cause a crash. 408 */ 409 410 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 411 static struct cpumask nmi_ipi_pending_mask; 412 static bool nmi_ipi_busy = false; 413 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 414 415 static void nmi_ipi_lock_start(unsigned long *flags) 416 { 417 raw_local_irq_save(*flags); 418 hard_irq_disable(); 419 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 420 raw_local_irq_restore(*flags); 421 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 422 raw_local_irq_save(*flags); 423 hard_irq_disable(); 424 } 425 } 426 427 static void nmi_ipi_lock(void) 428 { 429 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 430 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 431 } 432 433 static void nmi_ipi_unlock(void) 434 { 435 smp_mb(); 436 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1); 437 atomic_set(&__nmi_ipi_lock, 0); 438 } 439 440 static void nmi_ipi_unlock_end(unsigned long *flags) 441 { 442 nmi_ipi_unlock(); 443 raw_local_irq_restore(*flags); 444 } 445 446 /* 447 * Platform NMI handler calls this to ack 448 */ 449 int smp_handle_nmi_ipi(struct pt_regs *regs) 450 { 451 void (*fn)(struct pt_regs *) = NULL; 452 unsigned long flags; 453 int me = raw_smp_processor_id(); 454 int ret = 0; 455 456 /* 457 * Unexpected NMIs are possible here because the interrupt may not 458 * be able to distinguish NMI IPIs from other types of NMIs, or 459 * because the caller may have timed out. 460 */ 461 nmi_ipi_lock_start(&flags); 462 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { 463 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 464 fn = READ_ONCE(nmi_ipi_function); 465 WARN_ON_ONCE(!fn); 466 ret = 1; 467 } 468 nmi_ipi_unlock_end(&flags); 469 470 if (fn) 471 fn(regs); 472 473 return ret; 474 } 475 476 static void do_smp_send_nmi_ipi(int cpu, bool safe) 477 { 478 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 479 return; 480 481 if (cpu >= 0) { 482 do_message_pass(cpu, PPC_MSG_NMI_IPI); 483 } else { 484 int c; 485 486 for_each_online_cpu(c) { 487 if (c == raw_smp_processor_id()) 488 continue; 489 do_message_pass(c, PPC_MSG_NMI_IPI); 490 } 491 } 492 } 493 494 /* 495 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 496 * - fn is the target callback function. 497 * - delay_us > 0 is the delay before giving up waiting for targets to 498 * begin executing the handler, == 0 specifies indefinite delay. 499 */ 500 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), 501 u64 delay_us, bool safe) 502 { 503 unsigned long flags; 504 int me = raw_smp_processor_id(); 505 int ret = 1; 506 507 BUG_ON(cpu == me); 508 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 509 510 if (unlikely(!smp_ops)) 511 return 0; 512 513 nmi_ipi_lock_start(&flags); 514 while (nmi_ipi_busy) { 515 nmi_ipi_unlock_end(&flags); 516 spin_until_cond(!nmi_ipi_busy); 517 nmi_ipi_lock_start(&flags); 518 } 519 nmi_ipi_busy = true; 520 nmi_ipi_function = fn; 521 522 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); 523 524 if (cpu < 0) { 525 /* ALL_OTHERS */ 526 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 527 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 528 } else { 529 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 530 } 531 532 nmi_ipi_unlock(); 533 534 /* Interrupts remain hard disabled */ 535 536 do_smp_send_nmi_ipi(cpu, safe); 537 538 nmi_ipi_lock(); 539 /* nmi_ipi_busy is set here, so unlock/lock is okay */ 540 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 541 nmi_ipi_unlock(); 542 udelay(1); 543 nmi_ipi_lock(); 544 if (delay_us) { 545 delay_us--; 546 if (!delay_us) 547 break; 548 } 549 } 550 551 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 552 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ 553 ret = 0; 554 cpumask_clear(&nmi_ipi_pending_mask); 555 } 556 557 nmi_ipi_function = NULL; 558 nmi_ipi_busy = false; 559 560 nmi_ipi_unlock_end(&flags); 561 562 return ret; 563 } 564 565 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 566 { 567 return __smp_send_nmi_ipi(cpu, fn, delay_us, false); 568 } 569 570 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 571 { 572 return __smp_send_nmi_ipi(cpu, fn, delay_us, true); 573 } 574 #endif /* CONFIG_NMI_IPI */ 575 576 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 577 void tick_broadcast(const struct cpumask *mask) 578 { 579 unsigned int cpu; 580 581 for_each_cpu(cpu, mask) 582 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 583 } 584 #endif 585 586 #ifdef CONFIG_DEBUGGER 587 static void debugger_ipi_callback(struct pt_regs *regs) 588 { 589 debugger_ipi(regs); 590 } 591 592 void smp_send_debugger_break(void) 593 { 594 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 595 } 596 #endif 597 598 #ifdef CONFIG_KEXEC_CORE 599 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 600 { 601 int cpu; 602 603 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 604 if (kdump_in_progress() && crash_wake_offline) { 605 for_each_present_cpu(cpu) { 606 if (cpu_online(cpu)) 607 continue; 608 /* 609 * crash_ipi_callback will wait for 610 * all cpus, including offline CPUs. 611 * We don't care about nmi_ipi_function. 612 * Offline cpus will jump straight into 613 * crash_ipi_callback, we can skip the 614 * entire NMI dance and waiting for 615 * cpus to clear pending mask, etc. 616 */ 617 do_smp_send_nmi_ipi(cpu, false); 618 } 619 } 620 } 621 #endif 622 623 #ifdef CONFIG_NMI_IPI 624 static void crash_stop_this_cpu(struct pt_regs *regs) 625 #else 626 static void crash_stop_this_cpu(void *dummy) 627 #endif 628 { 629 /* 630 * Just busy wait here and avoid marking CPU as offline to ensure 631 * register data is captured appropriately. 632 */ 633 while (1) 634 cpu_relax(); 635 } 636 637 void crash_smp_send_stop(void) 638 { 639 static bool stopped = false; 640 641 /* 642 * In case of fadump, register data for all CPUs is captured by f/w 643 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before 644 * this rtas call to avoid tricky post processing of those CPUs' 645 * backtraces. 646 */ 647 if (should_fadump_crash()) 648 return; 649 650 if (stopped) 651 return; 652 653 stopped = true; 654 655 #ifdef CONFIG_NMI_IPI 656 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000); 657 #else 658 smp_call_function(crash_stop_this_cpu, NULL, 0); 659 #endif /* CONFIG_NMI_IPI */ 660 } 661 662 #ifdef CONFIG_NMI_IPI 663 static void nmi_stop_this_cpu(struct pt_regs *regs) 664 { 665 /* 666 * IRQs are already hard disabled by the smp_handle_nmi_ipi. 667 */ 668 set_cpu_online(smp_processor_id(), false); 669 670 spin_begin(); 671 while (1) 672 spin_cpu_relax(); 673 } 674 675 void smp_send_stop(void) 676 { 677 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); 678 } 679 680 #else /* CONFIG_NMI_IPI */ 681 682 static void stop_this_cpu(void *dummy) 683 { 684 hard_irq_disable(); 685 686 /* 687 * Offlining CPUs in stop_this_cpu can result in scheduler warnings, 688 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants 689 * to know other CPUs are offline before it breaks locks to flush 690 * printk buffers, in case we panic()ed while holding the lock. 691 */ 692 set_cpu_online(smp_processor_id(), false); 693 694 spin_begin(); 695 while (1) 696 spin_cpu_relax(); 697 } 698 699 void smp_send_stop(void) 700 { 701 static bool stopped = false; 702 703 /* 704 * Prevent waiting on csd lock from a previous smp_send_stop. 705 * This is racy, but in general callers try to do the right 706 * thing and only fire off one smp_send_stop (e.g., see 707 * kernel/panic.c) 708 */ 709 if (stopped) 710 return; 711 712 stopped = true; 713 714 smp_call_function(stop_this_cpu, NULL, 0); 715 } 716 #endif /* CONFIG_NMI_IPI */ 717 718 static struct task_struct *current_set[NR_CPUS]; 719 720 static void smp_store_cpu_info(int id) 721 { 722 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 723 #ifdef CONFIG_PPC_FSL_BOOK3E 724 per_cpu(next_tlbcam_idx, id) 725 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 726 #endif 727 } 728 729 /* 730 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 731 * rather than just passing around the cpumask we pass around a function that 732 * returns the that cpumask for the given CPU. 733 */ 734 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 735 { 736 cpumask_set_cpu(i, get_cpumask(j)); 737 cpumask_set_cpu(j, get_cpumask(i)); 738 } 739 740 #ifdef CONFIG_HOTPLUG_CPU 741 static void set_cpus_unrelated(int i, int j, 742 struct cpumask *(*get_cpumask)(int)) 743 { 744 cpumask_clear_cpu(i, get_cpumask(j)); 745 cpumask_clear_cpu(j, get_cpumask(i)); 746 } 747 #endif 748 749 /* 750 * Extends set_cpus_related. Instead of setting one CPU at a time in 751 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask. 752 */ 753 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int), 754 struct cpumask *(*dstmask)(int)) 755 { 756 struct cpumask *mask; 757 int k; 758 759 mask = srcmask(j); 760 for_each_cpu(k, srcmask(i)) 761 cpumask_or(dstmask(k), dstmask(k), mask); 762 763 if (i == j) 764 return; 765 766 mask = srcmask(i); 767 for_each_cpu(k, srcmask(j)) 768 cpumask_or(dstmask(k), dstmask(k), mask); 769 } 770 771 /* 772 * parse_thread_groups: Parses the "ibm,thread-groups" device tree 773 * property for the CPU device node @dn and stores 774 * the parsed output in the thread_groups_list 775 * structure @tglp. 776 * 777 * @dn: The device node of the CPU device. 778 * @tglp: Pointer to a thread group list structure into which the parsed 779 * output of "ibm,thread-groups" is stored. 780 * 781 * ibm,thread-groups[0..N-1] array defines which group of threads in 782 * the CPU-device node can be grouped together based on the property. 783 * 784 * This array can represent thread groupings for multiple properties. 785 * 786 * ibm,thread-groups[i + 0] tells us the property based on which the 787 * threads are being grouped together. If this value is 1, it implies 788 * that the threads in the same group share L1, translation cache. If 789 * the value is 2, it implies that the threads in the same group share 790 * the same L2 cache. 791 * 792 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the 793 * property ibm,thread-groups[i] 794 * 795 * ibm,thread-groups[i+2] tells us the number of threads in each such 796 * group. 797 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then, 798 * 799 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by 800 * "ibm,ppc-interrupt-server#s" arranged as per their membership in 801 * the grouping. 802 * 803 * Example: 804 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15] 805 * This can be decomposed up into two consecutive arrays: 806 * a) [1,2,4,8,10,12,14,9,11,13,15] 807 * b) [2,2,4,8,10,12,14,9,11,13,15] 808 * 809 * where in, 810 * 811 * a) provides information of Property "1" being shared by "2" groups, 812 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of 813 * the first group is {8,10,12,14} and the 814 * "ibm,ppc-interrupt-server#s" of the second group is 815 * {9,11,13,15}. Property "1" is indicative of the thread in the 816 * group sharing L1 cache, translation cache and Instruction Data 817 * flow. 818 * 819 * b) provides information of Property "2" being shared by "2" groups, 820 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of 821 * the first group is {8,10,12,14} and the 822 * "ibm,ppc-interrupt-server#s" of the second group is 823 * {9,11,13,15}. Property "2" indicates that the threads in each 824 * group share the L2-cache. 825 * 826 * Returns 0 on success, -EINVAL if the property does not exist, 827 * -ENODATA if property does not have a value, and -EOVERFLOW if the 828 * property data isn't large enough. 829 */ 830 static int parse_thread_groups(struct device_node *dn, 831 struct thread_groups_list *tglp) 832 { 833 unsigned int property_idx = 0; 834 u32 *thread_group_array; 835 size_t total_threads; 836 int ret = 0, count; 837 u32 *thread_list; 838 int i = 0; 839 840 count = of_property_count_u32_elems(dn, "ibm,thread-groups"); 841 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL); 842 ret = of_property_read_u32_array(dn, "ibm,thread-groups", 843 thread_group_array, count); 844 if (ret) 845 goto out_free; 846 847 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) { 848 int j; 849 struct thread_groups *tg = &tglp->property_tgs[property_idx++]; 850 851 tg->property = thread_group_array[i]; 852 tg->nr_groups = thread_group_array[i + 1]; 853 tg->threads_per_group = thread_group_array[i + 2]; 854 total_threads = tg->nr_groups * tg->threads_per_group; 855 856 thread_list = &thread_group_array[i + 3]; 857 858 for (j = 0; j < total_threads; j++) 859 tg->thread_list[j] = thread_list[j]; 860 i = i + 3 + total_threads; 861 } 862 863 tglp->nr_properties = property_idx; 864 865 out_free: 866 kfree(thread_group_array); 867 return ret; 868 } 869 870 /* 871 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list 872 * that @cpu belongs to. 873 * 874 * @cpu : The logical CPU whose thread group is being searched. 875 * @tg : The thread-group structure of the CPU node which @cpu belongs 876 * to. 877 * 878 * Returns the index to tg->thread_list that points to the the start 879 * of the thread_group that @cpu belongs to. 880 * 881 * Returns -1 if cpu doesn't belong to any of the groups pointed to by 882 * tg->thread_list. 883 */ 884 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) 885 { 886 int hw_cpu_id = get_hard_smp_processor_id(cpu); 887 int i, j; 888 889 for (i = 0; i < tg->nr_groups; i++) { 890 int group_start = i * tg->threads_per_group; 891 892 for (j = 0; j < tg->threads_per_group; j++) { 893 int idx = group_start + j; 894 895 if (tg->thread_list[idx] == hw_cpu_id) 896 return group_start; 897 } 898 } 899 900 return -1; 901 } 902 903 static struct thread_groups *__init get_thread_groups(int cpu, 904 int group_property, 905 int *err) 906 { 907 struct device_node *dn = of_get_cpu_node(cpu, NULL); 908 struct thread_groups_list *cpu_tgl = &tgl[cpu]; 909 struct thread_groups *tg = NULL; 910 int i; 911 *err = 0; 912 913 if (!dn) { 914 *err = -ENODATA; 915 return NULL; 916 } 917 918 if (!cpu_tgl->nr_properties) { 919 *err = parse_thread_groups(dn, cpu_tgl); 920 if (*err) 921 goto out; 922 } 923 924 for (i = 0; i < cpu_tgl->nr_properties; i++) { 925 if (cpu_tgl->property_tgs[i].property == group_property) { 926 tg = &cpu_tgl->property_tgs[i]; 927 break; 928 } 929 } 930 931 if (!tg) 932 *err = -EINVAL; 933 out: 934 of_node_put(dn); 935 return tg; 936 } 937 938 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, 939 int cpu, int cpu_group_start) 940 { 941 int first_thread = cpu_first_thread_sibling(cpu); 942 int i; 943 944 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu)); 945 946 for (i = first_thread; i < first_thread + threads_per_core; i++) { 947 int i_group_start = get_cpu_thread_group_start(i, tg); 948 949 if (unlikely(i_group_start == -1)) { 950 WARN_ON_ONCE(1); 951 return -ENODATA; 952 } 953 954 if (i_group_start == cpu_group_start) 955 cpumask_set_cpu(i, *mask); 956 } 957 958 return 0; 959 } 960 961 static int __init init_thread_group_cache_map(int cpu, int cache_property) 962 963 { 964 int cpu_group_start = -1, err = 0; 965 struct thread_groups *tg = NULL; 966 cpumask_var_t *mask = NULL; 967 968 if (cache_property != THREAD_GROUP_SHARE_L1 && 969 cache_property != THREAD_GROUP_SHARE_L2_L3) 970 return -EINVAL; 971 972 tg = get_thread_groups(cpu, cache_property, &err); 973 974 if (!tg) 975 return err; 976 977 cpu_group_start = get_cpu_thread_group_start(cpu, tg); 978 979 if (unlikely(cpu_group_start == -1)) { 980 WARN_ON_ONCE(1); 981 return -ENODATA; 982 } 983 984 if (cache_property == THREAD_GROUP_SHARE_L1) { 985 mask = &per_cpu(thread_group_l1_cache_map, cpu); 986 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 987 } 988 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) { 989 mask = &per_cpu(thread_group_l2_cache_map, cpu); 990 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 991 mask = &per_cpu(thread_group_l3_cache_map, cpu); 992 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 993 } 994 995 996 return 0; 997 } 998 999 static bool shared_caches; 1000 1001 #ifdef CONFIG_SCHED_SMT 1002 /* cpumask of CPUs with asymmetric SMT dependency */ 1003 static int powerpc_smt_flags(void) 1004 { 1005 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1006 1007 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 1008 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 1009 flags |= SD_ASYM_PACKING; 1010 } 1011 return flags; 1012 } 1013 #endif 1014 1015 /* 1016 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 1017 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 1018 * since the migrated task remains cache hot. We want to take advantage of this 1019 * at the scheduler level so an extra topology level is required. 1020 */ 1021 static int powerpc_shared_cache_flags(void) 1022 { 1023 return SD_SHARE_PKG_RESOURCES; 1024 } 1025 1026 /* 1027 * We can't just pass cpu_l2_cache_mask() directly because 1028 * returns a non-const pointer and the compiler barfs on that. 1029 */ 1030 static const struct cpumask *shared_cache_mask(int cpu) 1031 { 1032 return per_cpu(cpu_l2_cache_map, cpu); 1033 } 1034 1035 #ifdef CONFIG_SCHED_SMT 1036 static const struct cpumask *smallcore_smt_mask(int cpu) 1037 { 1038 return cpu_smallcore_mask(cpu); 1039 } 1040 #endif 1041 1042 static struct cpumask *cpu_coregroup_mask(int cpu) 1043 { 1044 return per_cpu(cpu_coregroup_map, cpu); 1045 } 1046 1047 static bool has_coregroup_support(void) 1048 { 1049 return coregroup_enabled; 1050 } 1051 1052 static const struct cpumask *cpu_mc_mask(int cpu) 1053 { 1054 return cpu_coregroup_mask(cpu); 1055 } 1056 1057 static struct sched_domain_topology_level powerpc_topology[] = { 1058 #ifdef CONFIG_SCHED_SMT 1059 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1060 #endif 1061 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, 1062 { cpu_mc_mask, SD_INIT_NAME(MC) }, 1063 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1064 { NULL, }, 1065 }; 1066 1067 static int __init init_big_cores(void) 1068 { 1069 int cpu; 1070 1071 for_each_possible_cpu(cpu) { 1072 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1); 1073 1074 if (err) 1075 return err; 1076 1077 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), 1078 GFP_KERNEL, 1079 cpu_to_node(cpu)); 1080 } 1081 1082 has_big_cores = true; 1083 1084 for_each_possible_cpu(cpu) { 1085 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3); 1086 1087 if (err) 1088 return err; 1089 } 1090 1091 thread_group_shares_l2 = true; 1092 thread_group_shares_l3 = true; 1093 pr_debug("L2/L3 cache only shared by the threads in the small core\n"); 1094 1095 return 0; 1096 } 1097 1098 void __init smp_prepare_cpus(unsigned int max_cpus) 1099 { 1100 unsigned int cpu; 1101 1102 DBG("smp_prepare_cpus\n"); 1103 1104 /* 1105 * setup_cpu may need to be called on the boot cpu. We haven't 1106 * spun any cpus up but lets be paranoid. 1107 */ 1108 BUG_ON(boot_cpuid != smp_processor_id()); 1109 1110 /* Fixup boot cpu */ 1111 smp_store_cpu_info(boot_cpuid); 1112 cpu_callin_map[boot_cpuid] = 1; 1113 1114 for_each_possible_cpu(cpu) { 1115 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 1116 GFP_KERNEL, cpu_to_node(cpu)); 1117 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 1118 GFP_KERNEL, cpu_to_node(cpu)); 1119 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 1120 GFP_KERNEL, cpu_to_node(cpu)); 1121 if (has_coregroup_support()) 1122 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu), 1123 GFP_KERNEL, cpu_to_node(cpu)); 1124 1125 #ifdef CONFIG_NUMA 1126 /* 1127 * numa_node_id() works after this. 1128 */ 1129 if (cpu_present(cpu)) { 1130 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 1131 set_cpu_numa_mem(cpu, 1132 local_memory_node(numa_cpu_lookup_table[cpu])); 1133 } 1134 #endif 1135 } 1136 1137 /* Init the cpumasks so the boot CPU is related to itself */ 1138 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 1139 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 1140 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 1141 1142 if (has_coregroup_support()) 1143 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid)); 1144 1145 init_big_cores(); 1146 if (has_big_cores) { 1147 cpumask_set_cpu(boot_cpuid, 1148 cpu_smallcore_mask(boot_cpuid)); 1149 } 1150 1151 if (cpu_to_chip_id(boot_cpuid) != -1) { 1152 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1153 1154 /* 1155 * All threads of a core will all belong to the same core, 1156 * chip_id_lookup_table will have one entry per core. 1157 * Assumption: if boot_cpuid doesn't have a chip-id, then no 1158 * other CPUs, will also not have chip-id. 1159 */ 1160 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL); 1161 if (chip_id_lookup_table) 1162 memset(chip_id_lookup_table, -1, sizeof(int) * idx); 1163 } 1164 1165 if (smp_ops && smp_ops->probe) 1166 smp_ops->probe(); 1167 } 1168 1169 void smp_prepare_boot_cpu(void) 1170 { 1171 BUG_ON(smp_processor_id() != boot_cpuid); 1172 #ifdef CONFIG_PPC64 1173 paca_ptrs[boot_cpuid]->__current = current; 1174 #endif 1175 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 1176 current_set[boot_cpuid] = current; 1177 } 1178 1179 #ifdef CONFIG_HOTPLUG_CPU 1180 1181 int generic_cpu_disable(void) 1182 { 1183 unsigned int cpu = smp_processor_id(); 1184 1185 if (cpu == boot_cpuid) 1186 return -EBUSY; 1187 1188 set_cpu_online(cpu, false); 1189 #ifdef CONFIG_PPC64 1190 vdso_data->processorCount--; 1191 #endif 1192 /* Update affinity of all IRQs previously aimed at this CPU */ 1193 irq_migrate_all_off_this_cpu(); 1194 1195 /* 1196 * Depending on the details of the interrupt controller, it's possible 1197 * that one of the interrupts we just migrated away from this CPU is 1198 * actually already pending on this CPU. If we leave it in that state 1199 * the interrupt will never be EOI'ed, and will never fire again. So 1200 * temporarily enable interrupts here, to allow any pending interrupt to 1201 * be received (and EOI'ed), before we take this CPU offline. 1202 */ 1203 local_irq_enable(); 1204 mdelay(1); 1205 local_irq_disable(); 1206 1207 return 0; 1208 } 1209 1210 void generic_cpu_die(unsigned int cpu) 1211 { 1212 int i; 1213 1214 for (i = 0; i < 100; i++) { 1215 smp_rmb(); 1216 if (is_cpu_dead(cpu)) 1217 return; 1218 msleep(100); 1219 } 1220 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 1221 } 1222 1223 void generic_set_cpu_dead(unsigned int cpu) 1224 { 1225 per_cpu(cpu_state, cpu) = CPU_DEAD; 1226 } 1227 1228 /* 1229 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 1230 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 1231 * which makes the delay in generic_cpu_die() not happen. 1232 */ 1233 void generic_set_cpu_up(unsigned int cpu) 1234 { 1235 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 1236 } 1237 1238 int generic_check_cpu_restart(unsigned int cpu) 1239 { 1240 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 1241 } 1242 1243 int is_cpu_dead(unsigned int cpu) 1244 { 1245 return per_cpu(cpu_state, cpu) == CPU_DEAD; 1246 } 1247 1248 static bool secondaries_inhibited(void) 1249 { 1250 return kvm_hv_mode_active(); 1251 } 1252 1253 #else /* HOTPLUG_CPU */ 1254 1255 #define secondaries_inhibited() 0 1256 1257 #endif 1258 1259 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 1260 { 1261 #ifdef CONFIG_PPC64 1262 paca_ptrs[cpu]->__current = idle; 1263 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + 1264 THREAD_SIZE - STACK_FRAME_OVERHEAD; 1265 #endif 1266 task_thread_info(idle)->cpu = cpu; 1267 secondary_current = current_set[cpu] = idle; 1268 } 1269 1270 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1271 { 1272 int rc, c; 1273 1274 /* 1275 * Don't allow secondary threads to come online if inhibited 1276 */ 1277 if (threads_per_core > 1 && secondaries_inhibited() && 1278 cpu_thread_in_subcore(cpu)) 1279 return -EBUSY; 1280 1281 if (smp_ops == NULL || 1282 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 1283 return -EINVAL; 1284 1285 cpu_idle_thread_init(cpu, tidle); 1286 1287 /* 1288 * The platform might need to allocate resources prior to bringing 1289 * up the CPU 1290 */ 1291 if (smp_ops->prepare_cpu) { 1292 rc = smp_ops->prepare_cpu(cpu); 1293 if (rc) 1294 return rc; 1295 } 1296 1297 /* Make sure callin-map entry is 0 (can be leftover a CPU 1298 * hotplug 1299 */ 1300 cpu_callin_map[cpu] = 0; 1301 1302 /* The information for processor bringup must 1303 * be written out to main store before we release 1304 * the processor. 1305 */ 1306 smp_mb(); 1307 1308 /* wake up cpus */ 1309 DBG("smp: kicking cpu %d\n", cpu); 1310 rc = smp_ops->kick_cpu(cpu); 1311 if (rc) { 1312 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 1313 return rc; 1314 } 1315 1316 /* 1317 * wait to see if the cpu made a callin (is actually up). 1318 * use this value that I found through experimentation. 1319 * -- Cort 1320 */ 1321 if (system_state < SYSTEM_RUNNING) 1322 for (c = 50000; c && !cpu_callin_map[cpu]; c--) 1323 udelay(100); 1324 #ifdef CONFIG_HOTPLUG_CPU 1325 else 1326 /* 1327 * CPUs can take much longer to come up in the 1328 * hotplug case. Wait five seconds. 1329 */ 1330 for (c = 5000; c && !cpu_callin_map[cpu]; c--) 1331 msleep(1); 1332 #endif 1333 1334 if (!cpu_callin_map[cpu]) { 1335 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 1336 return -ENOENT; 1337 } 1338 1339 DBG("Processor %u found.\n", cpu); 1340 1341 if (smp_ops->give_timebase) 1342 smp_ops->give_timebase(); 1343 1344 /* Wait until cpu puts itself in the online & active maps */ 1345 spin_until_cond(cpu_online(cpu)); 1346 1347 return 0; 1348 } 1349 1350 /* Return the value of the reg property corresponding to the given 1351 * logical cpu. 1352 */ 1353 int cpu_to_core_id(int cpu) 1354 { 1355 struct device_node *np; 1356 int id = -1; 1357 1358 np = of_get_cpu_node(cpu, NULL); 1359 if (!np) 1360 goto out; 1361 1362 id = of_get_cpu_hwid(np, 0); 1363 out: 1364 of_node_put(np); 1365 return id; 1366 } 1367 EXPORT_SYMBOL_GPL(cpu_to_core_id); 1368 1369 /* Helper routines for cpu to core mapping */ 1370 int cpu_core_index_of_thread(int cpu) 1371 { 1372 return cpu >> threads_shift; 1373 } 1374 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 1375 1376 int cpu_first_thread_of_core(int core) 1377 { 1378 return core << threads_shift; 1379 } 1380 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 1381 1382 /* Must be called when no change can occur to cpu_present_mask, 1383 * i.e. during cpu online or offline. 1384 */ 1385 static struct device_node *cpu_to_l2cache(int cpu) 1386 { 1387 struct device_node *np; 1388 struct device_node *cache; 1389 1390 if (!cpu_present(cpu)) 1391 return NULL; 1392 1393 np = of_get_cpu_node(cpu, NULL); 1394 if (np == NULL) 1395 return NULL; 1396 1397 cache = of_find_next_cache_node(np); 1398 1399 of_node_put(np); 1400 1401 return cache; 1402 } 1403 1404 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask) 1405 { 1406 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1407 struct device_node *l2_cache, *np; 1408 int i; 1409 1410 if (has_big_cores) 1411 submask_fn = cpu_smallcore_mask; 1412 1413 /* 1414 * If the threads in a thread-group share L2 cache, then the 1415 * L2-mask can be obtained from thread_group_l2_cache_map. 1416 */ 1417 if (thread_group_shares_l2) { 1418 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu)); 1419 1420 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) { 1421 if (cpu_online(i)) 1422 set_cpus_related(i, cpu, cpu_l2_cache_mask); 1423 } 1424 1425 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */ 1426 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) && 1427 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) { 1428 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n", 1429 cpu); 1430 } 1431 1432 return true; 1433 } 1434 1435 l2_cache = cpu_to_l2cache(cpu); 1436 if (!l2_cache || !*mask) { 1437 /* Assume only core siblings share cache with this CPU */ 1438 for_each_cpu(i, cpu_sibling_mask(cpu)) 1439 set_cpus_related(cpu, i, cpu_l2_cache_mask); 1440 1441 return false; 1442 } 1443 1444 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1445 1446 /* Update l2-cache mask with all the CPUs that are part of submask */ 1447 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask); 1448 1449 /* Skip all CPUs already part of current CPU l2-cache mask */ 1450 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu)); 1451 1452 for_each_cpu(i, *mask) { 1453 /* 1454 * when updating the marks the current CPU has not been marked 1455 * online, but we need to update the cache masks 1456 */ 1457 np = cpu_to_l2cache(i); 1458 1459 /* Skip all CPUs already part of current CPU l2-cache */ 1460 if (np == l2_cache) { 1461 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask); 1462 cpumask_andnot(*mask, *mask, submask_fn(i)); 1463 } else { 1464 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i)); 1465 } 1466 1467 of_node_put(np); 1468 } 1469 of_node_put(l2_cache); 1470 1471 return true; 1472 } 1473 1474 #ifdef CONFIG_HOTPLUG_CPU 1475 static void remove_cpu_from_masks(int cpu) 1476 { 1477 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask; 1478 int i; 1479 1480 unmap_cpu_from_node(cpu); 1481 1482 if (shared_caches) 1483 mask_fn = cpu_l2_cache_mask; 1484 1485 for_each_cpu(i, mask_fn(cpu)) { 1486 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 1487 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 1488 if (has_big_cores) 1489 set_cpus_unrelated(cpu, i, cpu_smallcore_mask); 1490 } 1491 1492 for_each_cpu(i, cpu_core_mask(cpu)) 1493 set_cpus_unrelated(cpu, i, cpu_core_mask); 1494 1495 if (has_coregroup_support()) { 1496 for_each_cpu(i, cpu_coregroup_mask(cpu)) 1497 set_cpus_unrelated(cpu, i, cpu_coregroup_mask); 1498 } 1499 } 1500 #endif 1501 1502 static inline void add_cpu_to_smallcore_masks(int cpu) 1503 { 1504 int i; 1505 1506 if (!has_big_cores) 1507 return; 1508 1509 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); 1510 1511 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) { 1512 if (cpu_online(i)) 1513 set_cpus_related(i, cpu, cpu_smallcore_mask); 1514 } 1515 } 1516 1517 static void update_coregroup_mask(int cpu, cpumask_var_t *mask) 1518 { 1519 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1520 int coregroup_id = cpu_to_coregroup_id(cpu); 1521 int i; 1522 1523 if (shared_caches) 1524 submask_fn = cpu_l2_cache_mask; 1525 1526 if (!*mask) { 1527 /* Assume only siblings are part of this CPU's coregroup */ 1528 for_each_cpu(i, submask_fn(cpu)) 1529 set_cpus_related(cpu, i, cpu_coregroup_mask); 1530 1531 return; 1532 } 1533 1534 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1535 1536 /* Update coregroup mask with all the CPUs that are part of submask */ 1537 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask); 1538 1539 /* Skip all CPUs already part of coregroup mask */ 1540 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu)); 1541 1542 for_each_cpu(i, *mask) { 1543 /* Skip all CPUs not part of this coregroup */ 1544 if (coregroup_id == cpu_to_coregroup_id(i)) { 1545 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask); 1546 cpumask_andnot(*mask, *mask, submask_fn(i)); 1547 } else { 1548 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i)); 1549 } 1550 } 1551 } 1552 1553 static void add_cpu_to_masks(int cpu) 1554 { 1555 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1556 int first_thread = cpu_first_thread_sibling(cpu); 1557 cpumask_var_t mask; 1558 int chip_id = -1; 1559 bool ret; 1560 int i; 1561 1562 /* 1563 * This CPU will not be in the online mask yet so we need to manually 1564 * add it to it's own thread sibling mask. 1565 */ 1566 map_cpu_to_node(cpu, cpu_to_node(cpu)); 1567 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 1568 cpumask_set_cpu(cpu, cpu_core_mask(cpu)); 1569 1570 for (i = first_thread; i < first_thread + threads_per_core; i++) 1571 if (cpu_online(i)) 1572 set_cpus_related(i, cpu, cpu_sibling_mask); 1573 1574 add_cpu_to_smallcore_masks(cpu); 1575 1576 /* In CPU-hotplug path, hence use GFP_ATOMIC */ 1577 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu)); 1578 update_mask_by_l2(cpu, &mask); 1579 1580 if (has_coregroup_support()) 1581 update_coregroup_mask(cpu, &mask); 1582 1583 if (chip_id_lookup_table && ret) 1584 chip_id = cpu_to_chip_id(cpu); 1585 1586 if (shared_caches) 1587 submask_fn = cpu_l2_cache_mask; 1588 1589 /* Update core_mask with all the CPUs that are part of submask */ 1590 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask); 1591 1592 /* Skip all CPUs already part of current CPU core mask */ 1593 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu)); 1594 1595 /* If chip_id is -1; limit the cpu_core_mask to within DIE*/ 1596 if (chip_id == -1) 1597 cpumask_and(mask, mask, cpu_cpu_mask(cpu)); 1598 1599 for_each_cpu(i, mask) { 1600 if (chip_id == cpu_to_chip_id(i)) { 1601 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask); 1602 cpumask_andnot(mask, mask, submask_fn(i)); 1603 } else { 1604 cpumask_andnot(mask, mask, cpu_core_mask(i)); 1605 } 1606 } 1607 1608 free_cpumask_var(mask); 1609 } 1610 1611 /* Activate a secondary processor. */ 1612 void start_secondary(void *unused) 1613 { 1614 unsigned int cpu = raw_smp_processor_id(); 1615 1616 /* PPC64 calls setup_kup() in early_setup_secondary() */ 1617 if (IS_ENABLED(CONFIG_PPC32)) 1618 setup_kup(); 1619 1620 mmgrab(&init_mm); 1621 current->active_mm = &init_mm; 1622 1623 smp_store_cpu_info(cpu); 1624 set_dec(tb_ticks_per_jiffy); 1625 rcu_cpu_starting(cpu); 1626 cpu_callin_map[cpu] = 1; 1627 1628 if (smp_ops->setup_cpu) 1629 smp_ops->setup_cpu(cpu); 1630 if (smp_ops->take_timebase) 1631 smp_ops->take_timebase(); 1632 1633 secondary_cpu_time_init(); 1634 1635 #ifdef CONFIG_PPC64 1636 if (system_state == SYSTEM_RUNNING) 1637 vdso_data->processorCount++; 1638 1639 vdso_getcpu_init(); 1640 #endif 1641 set_numa_node(numa_cpu_lookup_table[cpu]); 1642 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1643 1644 /* Update topology CPU masks */ 1645 add_cpu_to_masks(cpu); 1646 1647 /* 1648 * Check for any shared caches. Note that this must be done on a 1649 * per-core basis because one core in the pair might be disabled. 1650 */ 1651 if (!shared_caches) { 1652 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; 1653 struct cpumask *mask = cpu_l2_cache_mask(cpu); 1654 1655 if (has_big_cores) 1656 sibling_mask = cpu_smallcore_mask; 1657 1658 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu))) 1659 shared_caches = true; 1660 } 1661 1662 smp_wmb(); 1663 notify_cpu_starting(cpu); 1664 set_cpu_online(cpu, true); 1665 1666 boot_init_stack_canary(); 1667 1668 local_irq_enable(); 1669 1670 /* We can enable ftrace for secondary cpus now */ 1671 this_cpu_enable_ftrace(); 1672 1673 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1674 1675 BUG(); 1676 } 1677 1678 #ifdef CONFIG_PROFILING 1679 int setup_profiling_timer(unsigned int multiplier) 1680 { 1681 return 0; 1682 } 1683 #endif 1684 1685 static void __init fixup_topology(void) 1686 { 1687 int i; 1688 1689 #ifdef CONFIG_SCHED_SMT 1690 if (has_big_cores) { 1691 pr_info("Big cores detected but using small core scheduling\n"); 1692 powerpc_topology[smt_idx].mask = smallcore_smt_mask; 1693 } 1694 #endif 1695 1696 if (!has_coregroup_support()) 1697 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask; 1698 1699 /* 1700 * Try to consolidate topology levels here instead of 1701 * allowing scheduler to degenerate. 1702 * - Dont consolidate if masks are different. 1703 * - Dont consolidate if sd_flags exists and are different. 1704 */ 1705 for (i = 1; i <= die_idx; i++) { 1706 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask) 1707 continue; 1708 1709 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags && 1710 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags) 1711 continue; 1712 1713 if (!powerpc_topology[i - 1].sd_flags) 1714 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags; 1715 1716 powerpc_topology[i].mask = powerpc_topology[i + 1].mask; 1717 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags; 1718 #ifdef CONFIG_SCHED_DEBUG 1719 powerpc_topology[i].name = powerpc_topology[i + 1].name; 1720 #endif 1721 } 1722 } 1723 1724 void __init smp_cpus_done(unsigned int max_cpus) 1725 { 1726 /* 1727 * We are running pinned to the boot CPU, see rest_init(). 1728 */ 1729 if (smp_ops && smp_ops->setup_cpu) 1730 smp_ops->setup_cpu(boot_cpuid); 1731 1732 if (smp_ops && smp_ops->bringup_done) 1733 smp_ops->bringup_done(); 1734 1735 dump_numa_cpu_topology(); 1736 1737 fixup_topology(); 1738 set_sched_topology(powerpc_topology); 1739 } 1740 1741 #ifdef CONFIG_HOTPLUG_CPU 1742 int __cpu_disable(void) 1743 { 1744 int cpu = smp_processor_id(); 1745 int err; 1746 1747 if (!smp_ops->cpu_disable) 1748 return -ENOSYS; 1749 1750 this_cpu_disable_ftrace(); 1751 1752 err = smp_ops->cpu_disable(); 1753 if (err) 1754 return err; 1755 1756 /* Update sibling maps */ 1757 remove_cpu_from_masks(cpu); 1758 1759 return 0; 1760 } 1761 1762 void __cpu_die(unsigned int cpu) 1763 { 1764 if (smp_ops->cpu_die) 1765 smp_ops->cpu_die(cpu); 1766 } 1767 1768 void arch_cpu_idle_dead(void) 1769 { 1770 /* 1771 * Disable on the down path. This will be re-enabled by 1772 * start_secondary() via start_secondary_resume() below 1773 */ 1774 this_cpu_disable_ftrace(); 1775 1776 if (smp_ops->cpu_offline_self) 1777 smp_ops->cpu_offline_self(); 1778 1779 /* If we return, we re-enter start_secondary */ 1780 start_secondary_resume(); 1781 } 1782 1783 #endif 1784