xref: /openbmc/linux/arch/powerpc/kernel/smp.c (revision 0c6dfa75)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SMP support for ppc.
4  *
5  * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6  * deal of code from the sparc and intel versions.
7  *
8  * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9  *
10  * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11  * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12  */
13 
14 #undef DEBUG
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38 #include <linux/kexec.h>
39 
40 #include <asm/ptrace.h>
41 #include <linux/atomic.h>
42 #include <asm/irq.h>
43 #include <asm/hw_irq.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/dbell.h>
46 #include <asm/page.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cputhreads.h>
52 #include <asm/cputable.h>
53 #include <asm/mpic.h>
54 #include <asm/vdso_datapage.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/paca.h>
57 #endif
58 #include <asm/vdso.h>
59 #include <asm/debug.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/ftrace.h>
62 #include <asm/kup.h>
63 #include <asm/fadump.h>
64 
65 #include <trace/events/ipi.h>
66 
67 #ifdef DEBUG
68 #include <asm/udbg.h>
69 #define DBG(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG(fmt...)
72 #endif
73 
74 #ifdef CONFIG_HOTPLUG_CPU
75 /* State of each CPU during hotplug phases */
76 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
77 #endif
78 
79 struct task_struct *secondary_current;
80 bool has_big_cores;
81 bool coregroup_enabled;
82 bool thread_group_shares_l2;
83 bool thread_group_shares_l3;
84 
85 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
86 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
87 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
88 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
89 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
90 
91 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
94 EXPORT_SYMBOL_GPL(has_big_cores);
95 
96 enum {
97 #ifdef CONFIG_SCHED_SMT
98 	smt_idx,
99 #endif
100 	cache_idx,
101 	mc_idx,
102 	die_idx,
103 };
104 
105 #define MAX_THREAD_LIST_SIZE	8
106 #define THREAD_GROUP_SHARE_L1   1
107 #define THREAD_GROUP_SHARE_L2_L3 2
108 struct thread_groups {
109 	unsigned int property;
110 	unsigned int nr_groups;
111 	unsigned int threads_per_group;
112 	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
113 };
114 
115 /* Maximum number of properties that groups of threads within a core can share */
116 #define MAX_THREAD_GROUP_PROPERTIES 2
117 
118 struct thread_groups_list {
119 	unsigned int nr_properties;
120 	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
121 };
122 
123 static struct thread_groups_list tgl[NR_CPUS] __initdata;
124 /*
125  * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
126  * the set its siblings that share the L1-cache.
127  */
128 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
129 
130 /*
131  * On some big-cores system, thread_group_l2_cache_map for each CPU
132  * corresponds to the set its siblings within the core that share the
133  * L2-cache.
134  */
135 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
136 
137 /*
138  * On P10, thread_group_l3_cache_map for each CPU is equal to the
139  * thread_group_l2_cache_map
140  */
141 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
142 
143 /* SMP operations for this machine */
144 struct smp_ops_t *smp_ops;
145 
146 /* Can't be static due to PowerMac hackery */
147 volatile unsigned int cpu_callin_map[NR_CPUS];
148 
149 int smt_enabled_at_boot = 1;
150 
151 /*
152  * Returns 1 if the specified cpu should be brought up during boot.
153  * Used to inhibit booting threads if they've been disabled or
154  * limited on the command line
155  */
156 int smp_generic_cpu_bootable(unsigned int nr)
157 {
158 	/* Special case - we inhibit secondary thread startup
159 	 * during boot if the user requests it.
160 	 */
161 	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
162 		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
163 			return 0;
164 		if (smt_enabled_at_boot
165 		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
166 			return 0;
167 	}
168 
169 	return 1;
170 }
171 
172 
173 #ifdef CONFIG_PPC64
174 int smp_generic_kick_cpu(int nr)
175 {
176 	if (nr < 0 || nr >= nr_cpu_ids)
177 		return -EINVAL;
178 
179 	/*
180 	 * The processor is currently spinning, waiting for the
181 	 * cpu_start field to become non-zero After we set cpu_start,
182 	 * the processor will continue on to secondary_start
183 	 */
184 	if (!paca_ptrs[nr]->cpu_start) {
185 		paca_ptrs[nr]->cpu_start = 1;
186 		smp_mb();
187 		return 0;
188 	}
189 
190 #ifdef CONFIG_HOTPLUG_CPU
191 	/*
192 	 * Ok it's not there, so it might be soft-unplugged, let's
193 	 * try to bring it back
194 	 */
195 	generic_set_cpu_up(nr);
196 	smp_wmb();
197 	smp_send_reschedule(nr);
198 #endif /* CONFIG_HOTPLUG_CPU */
199 
200 	return 0;
201 }
202 #endif /* CONFIG_PPC64 */
203 
204 static irqreturn_t call_function_action(int irq, void *data)
205 {
206 	generic_smp_call_function_interrupt();
207 	return IRQ_HANDLED;
208 }
209 
210 static irqreturn_t reschedule_action(int irq, void *data)
211 {
212 	scheduler_ipi();
213 	return IRQ_HANDLED;
214 }
215 
216 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
217 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
218 {
219 	timer_broadcast_interrupt();
220 	return IRQ_HANDLED;
221 }
222 #endif
223 
224 #ifdef CONFIG_NMI_IPI
225 static irqreturn_t nmi_ipi_action(int irq, void *data)
226 {
227 	smp_handle_nmi_ipi(get_irq_regs());
228 	return IRQ_HANDLED;
229 }
230 #endif
231 
232 static irq_handler_t smp_ipi_action[] = {
233 	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
234 	[PPC_MSG_RESCHEDULE] = reschedule_action,
235 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
236 	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
237 #endif
238 #ifdef CONFIG_NMI_IPI
239 	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
240 #endif
241 };
242 
243 /*
244  * The NMI IPI is a fallback and not truly non-maskable. It is simpler
245  * than going through the call function infrastructure, and strongly
246  * serialized, so it is more appropriate for debugging.
247  */
248 const char *smp_ipi_name[] = {
249 	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
250 	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
251 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
252 	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
253 #endif
254 #ifdef CONFIG_NMI_IPI
255 	[PPC_MSG_NMI_IPI] = "nmi ipi",
256 #endif
257 };
258 
259 /* optional function to request ipi, for controllers with >= 4 ipis */
260 int smp_request_message_ipi(int virq, int msg)
261 {
262 	int err;
263 
264 	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
265 		return -EINVAL;
266 #ifndef CONFIG_NMI_IPI
267 	if (msg == PPC_MSG_NMI_IPI)
268 		return 1;
269 #endif
270 
271 	err = request_irq(virq, smp_ipi_action[msg],
272 			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
273 			  smp_ipi_name[msg], NULL);
274 	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
275 		virq, smp_ipi_name[msg], err);
276 
277 	return err;
278 }
279 
280 #ifdef CONFIG_PPC_SMP_MUXED_IPI
281 struct cpu_messages {
282 	long messages;			/* current messages */
283 };
284 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
285 
286 void smp_muxed_ipi_set_message(int cpu, int msg)
287 {
288 	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
289 	char *message = (char *)&info->messages;
290 
291 	/*
292 	 * Order previous accesses before accesses in the IPI handler.
293 	 */
294 	smp_mb();
295 	WRITE_ONCE(message[msg], 1);
296 }
297 
298 void smp_muxed_ipi_message_pass(int cpu, int msg)
299 {
300 	smp_muxed_ipi_set_message(cpu, msg);
301 
302 	/*
303 	 * cause_ipi functions are required to include a full barrier
304 	 * before doing whatever causes the IPI.
305 	 */
306 	smp_ops->cause_ipi(cpu);
307 }
308 
309 #ifdef __BIG_ENDIAN__
310 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
311 #else
312 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
313 #endif
314 
315 irqreturn_t smp_ipi_demux(void)
316 {
317 	mb();	/* order any irq clear */
318 
319 	return smp_ipi_demux_relaxed();
320 }
321 
322 /* sync-free variant. Callers should ensure synchronization */
323 irqreturn_t smp_ipi_demux_relaxed(void)
324 {
325 	struct cpu_messages *info;
326 	unsigned long all;
327 
328 	info = this_cpu_ptr(&ipi_message);
329 	do {
330 		all = xchg(&info->messages, 0);
331 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
332 		/*
333 		 * Must check for PPC_MSG_RM_HOST_ACTION messages
334 		 * before PPC_MSG_CALL_FUNCTION messages because when
335 		 * a VM is destroyed, we call kick_all_cpus_sync()
336 		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
337 		 * messages have completed before we free any VCPUs.
338 		 */
339 		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
340 			kvmppc_xics_ipi_action();
341 #endif
342 		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
343 			generic_smp_call_function_interrupt();
344 		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
345 			scheduler_ipi();
346 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
347 		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
348 			timer_broadcast_interrupt();
349 #endif
350 #ifdef CONFIG_NMI_IPI
351 		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
352 			nmi_ipi_action(0, NULL);
353 #endif
354 	} while (READ_ONCE(info->messages));
355 
356 	return IRQ_HANDLED;
357 }
358 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
359 
360 static inline void do_message_pass(int cpu, int msg)
361 {
362 	if (smp_ops->message_pass)
363 		smp_ops->message_pass(cpu, msg);
364 #ifdef CONFIG_PPC_SMP_MUXED_IPI
365 	else
366 		smp_muxed_ipi_message_pass(cpu, msg);
367 #endif
368 }
369 
370 void arch_smp_send_reschedule(int cpu)
371 {
372 	if (likely(smp_ops))
373 		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
374 }
375 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
376 
377 void arch_send_call_function_single_ipi(int cpu)
378 {
379 	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
380 }
381 
382 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
383 {
384 	unsigned int cpu;
385 
386 	for_each_cpu(cpu, mask)
387 		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
388 }
389 
390 #ifdef CONFIG_NMI_IPI
391 
392 /*
393  * "NMI IPI" system.
394  *
395  * NMI IPIs may not be recoverable, so should not be used as ongoing part of
396  * a running system. They can be used for crash, debug, halt/reboot, etc.
397  *
398  * The IPI call waits with interrupts disabled until all targets enter the
399  * NMI handler, then returns. Subsequent IPIs can be issued before targets
400  * have returned from their handlers, so there is no guarantee about
401  * concurrency or re-entrancy.
402  *
403  * A new NMI can be issued before all targets exit the handler.
404  *
405  * The IPI call may time out without all targets entering the NMI handler.
406  * In that case, there is some logic to recover (and ignore subsequent
407  * NMI interrupts that may eventually be raised), but the platform interrupt
408  * handler may not be able to distinguish this from other exception causes,
409  * which may cause a crash.
410  */
411 
412 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
413 static struct cpumask nmi_ipi_pending_mask;
414 static bool nmi_ipi_busy = false;
415 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
416 
417 noinstr static void nmi_ipi_lock_start(unsigned long *flags)
418 {
419 	raw_local_irq_save(*flags);
420 	hard_irq_disable();
421 	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
422 		raw_local_irq_restore(*flags);
423 		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
424 		raw_local_irq_save(*flags);
425 		hard_irq_disable();
426 	}
427 }
428 
429 noinstr static void nmi_ipi_lock(void)
430 {
431 	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
432 		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
433 }
434 
435 noinstr static void nmi_ipi_unlock(void)
436 {
437 	smp_mb();
438 	WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1);
439 	raw_atomic_set(&__nmi_ipi_lock, 0);
440 }
441 
442 noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
443 {
444 	nmi_ipi_unlock();
445 	raw_local_irq_restore(*flags);
446 }
447 
448 /*
449  * Platform NMI handler calls this to ack
450  */
451 noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
452 {
453 	void (*fn)(struct pt_regs *) = NULL;
454 	unsigned long flags;
455 	int me = raw_smp_processor_id();
456 	int ret = 0;
457 
458 	/*
459 	 * Unexpected NMIs are possible here because the interrupt may not
460 	 * be able to distinguish NMI IPIs from other types of NMIs, or
461 	 * because the caller may have timed out.
462 	 */
463 	nmi_ipi_lock_start(&flags);
464 	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
465 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
466 		fn = READ_ONCE(nmi_ipi_function);
467 		WARN_ON_ONCE(!fn);
468 		ret = 1;
469 	}
470 	nmi_ipi_unlock_end(&flags);
471 
472 	if (fn)
473 		fn(regs);
474 
475 	return ret;
476 }
477 
478 static void do_smp_send_nmi_ipi(int cpu, bool safe)
479 {
480 	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
481 		return;
482 
483 	if (cpu >= 0) {
484 		do_message_pass(cpu, PPC_MSG_NMI_IPI);
485 	} else {
486 		int c;
487 
488 		for_each_online_cpu(c) {
489 			if (c == raw_smp_processor_id())
490 				continue;
491 			do_message_pass(c, PPC_MSG_NMI_IPI);
492 		}
493 	}
494 }
495 
496 /*
497  * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
498  * - fn is the target callback function.
499  * - delay_us > 0 is the delay before giving up waiting for targets to
500  *   begin executing the handler, == 0 specifies indefinite delay.
501  */
502 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
503 				u64 delay_us, bool safe)
504 {
505 	unsigned long flags;
506 	int me = raw_smp_processor_id();
507 	int ret = 1;
508 
509 	BUG_ON(cpu == me);
510 	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
511 
512 	if (unlikely(!smp_ops))
513 		return 0;
514 
515 	nmi_ipi_lock_start(&flags);
516 	while (nmi_ipi_busy) {
517 		nmi_ipi_unlock_end(&flags);
518 		spin_until_cond(!nmi_ipi_busy);
519 		nmi_ipi_lock_start(&flags);
520 	}
521 	nmi_ipi_busy = true;
522 	nmi_ipi_function = fn;
523 
524 	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
525 
526 	if (cpu < 0) {
527 		/* ALL_OTHERS */
528 		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
529 		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
530 	} else {
531 		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
532 	}
533 
534 	nmi_ipi_unlock();
535 
536 	/* Interrupts remain hard disabled */
537 
538 	do_smp_send_nmi_ipi(cpu, safe);
539 
540 	nmi_ipi_lock();
541 	/* nmi_ipi_busy is set here, so unlock/lock is okay */
542 	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
543 		nmi_ipi_unlock();
544 		udelay(1);
545 		nmi_ipi_lock();
546 		if (delay_us) {
547 			delay_us--;
548 			if (!delay_us)
549 				break;
550 		}
551 	}
552 
553 	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
554 		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
555 		ret = 0;
556 		cpumask_clear(&nmi_ipi_pending_mask);
557 	}
558 
559 	nmi_ipi_function = NULL;
560 	nmi_ipi_busy = false;
561 
562 	nmi_ipi_unlock_end(&flags);
563 
564 	return ret;
565 }
566 
567 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
568 {
569 	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
570 }
571 
572 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
573 {
574 	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
575 }
576 #endif /* CONFIG_NMI_IPI */
577 
578 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
579 void tick_broadcast(const struct cpumask *mask)
580 {
581 	unsigned int cpu;
582 
583 	for_each_cpu(cpu, mask)
584 		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
585 }
586 #endif
587 
588 #ifdef CONFIG_DEBUGGER
589 static void debugger_ipi_callback(struct pt_regs *regs)
590 {
591 	debugger_ipi(regs);
592 }
593 
594 void smp_send_debugger_break(void)
595 {
596 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
597 }
598 #endif
599 
600 #ifdef CONFIG_KEXEC_CORE
601 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
602 {
603 	int cpu;
604 
605 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
606 	if (kdump_in_progress() && crash_wake_offline) {
607 		for_each_present_cpu(cpu) {
608 			if (cpu_online(cpu))
609 				continue;
610 			/*
611 			 * crash_ipi_callback will wait for
612 			 * all cpus, including offline CPUs.
613 			 * We don't care about nmi_ipi_function.
614 			 * Offline cpus will jump straight into
615 			 * crash_ipi_callback, we can skip the
616 			 * entire NMI dance and waiting for
617 			 * cpus to clear pending mask, etc.
618 			 */
619 			do_smp_send_nmi_ipi(cpu, false);
620 		}
621 	}
622 }
623 #endif
624 
625 void crash_smp_send_stop(void)
626 {
627 	static bool stopped = false;
628 
629 	/*
630 	 * In case of fadump, register data for all CPUs is captured by f/w
631 	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
632 	 * this rtas call to avoid tricky post processing of those CPUs'
633 	 * backtraces.
634 	 */
635 	if (should_fadump_crash())
636 		return;
637 
638 	if (stopped)
639 		return;
640 
641 	stopped = true;
642 
643 #ifdef CONFIG_KEXEC_CORE
644 	if (kexec_crash_image) {
645 		crash_kexec_prepare();
646 		return;
647 	}
648 #endif
649 
650 	smp_send_stop();
651 }
652 
653 #ifdef CONFIG_NMI_IPI
654 static void nmi_stop_this_cpu(struct pt_regs *regs)
655 {
656 	/*
657 	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
658 	 */
659 	set_cpu_online(smp_processor_id(), false);
660 
661 	spin_begin();
662 	while (1)
663 		spin_cpu_relax();
664 }
665 
666 void smp_send_stop(void)
667 {
668 	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
669 }
670 
671 #else /* CONFIG_NMI_IPI */
672 
673 static void stop_this_cpu(void *dummy)
674 {
675 	hard_irq_disable();
676 
677 	/*
678 	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
679 	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
680 	 * to know other CPUs are offline before it breaks locks to flush
681 	 * printk buffers, in case we panic()ed while holding the lock.
682 	 */
683 	set_cpu_online(smp_processor_id(), false);
684 
685 	spin_begin();
686 	while (1)
687 		spin_cpu_relax();
688 }
689 
690 void smp_send_stop(void)
691 {
692 	static bool stopped = false;
693 
694 	/*
695 	 * Prevent waiting on csd lock from a previous smp_send_stop.
696 	 * This is racy, but in general callers try to do the right
697 	 * thing and only fire off one smp_send_stop (e.g., see
698 	 * kernel/panic.c)
699 	 */
700 	if (stopped)
701 		return;
702 
703 	stopped = true;
704 
705 	smp_call_function(stop_this_cpu, NULL, 0);
706 }
707 #endif /* CONFIG_NMI_IPI */
708 
709 static struct task_struct *current_set[NR_CPUS];
710 
711 static void smp_store_cpu_info(int id)
712 {
713 	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
714 #ifdef CONFIG_PPC_E500
715 	per_cpu(next_tlbcam_idx, id)
716 		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
717 #endif
718 }
719 
720 /*
721  * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
722  * rather than just passing around the cpumask we pass around a function that
723  * returns the that cpumask for the given CPU.
724  */
725 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
726 {
727 	cpumask_set_cpu(i, get_cpumask(j));
728 	cpumask_set_cpu(j, get_cpumask(i));
729 }
730 
731 #ifdef CONFIG_HOTPLUG_CPU
732 static void set_cpus_unrelated(int i, int j,
733 		struct cpumask *(*get_cpumask)(int))
734 {
735 	cpumask_clear_cpu(i, get_cpumask(j));
736 	cpumask_clear_cpu(j, get_cpumask(i));
737 }
738 #endif
739 
740 /*
741  * Extends set_cpus_related. Instead of setting one CPU at a time in
742  * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
743  */
744 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
745 				struct cpumask *(*dstmask)(int))
746 {
747 	struct cpumask *mask;
748 	int k;
749 
750 	mask = srcmask(j);
751 	for_each_cpu(k, srcmask(i))
752 		cpumask_or(dstmask(k), dstmask(k), mask);
753 
754 	if (i == j)
755 		return;
756 
757 	mask = srcmask(i);
758 	for_each_cpu(k, srcmask(j))
759 		cpumask_or(dstmask(k), dstmask(k), mask);
760 }
761 
762 /*
763  * parse_thread_groups: Parses the "ibm,thread-groups" device tree
764  *                      property for the CPU device node @dn and stores
765  *                      the parsed output in the thread_groups_list
766  *                      structure @tglp.
767  *
768  * @dn: The device node of the CPU device.
769  * @tglp: Pointer to a thread group list structure into which the parsed
770  *      output of "ibm,thread-groups" is stored.
771  *
772  * ibm,thread-groups[0..N-1] array defines which group of threads in
773  * the CPU-device node can be grouped together based on the property.
774  *
775  * This array can represent thread groupings for multiple properties.
776  *
777  * ibm,thread-groups[i + 0] tells us the property based on which the
778  * threads are being grouped together. If this value is 1, it implies
779  * that the threads in the same group share L1, translation cache. If
780  * the value is 2, it implies that the threads in the same group share
781  * the same L2 cache.
782  *
783  * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
784  * property ibm,thread-groups[i]
785  *
786  * ibm,thread-groups[i+2] tells us the number of threads in each such
787  * group.
788  * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
789  *
790  * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
791  * "ibm,ppc-interrupt-server#s" arranged as per their membership in
792  * the grouping.
793  *
794  * Example:
795  * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
796  * This can be decomposed up into two consecutive arrays:
797  * a) [1,2,4,8,10,12,14,9,11,13,15]
798  * b) [2,2,4,8,10,12,14,9,11,13,15]
799  *
800  * where in,
801  *
802  * a) provides information of Property "1" being shared by "2" groups,
803  *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
804  *  the first group is {8,10,12,14} and the
805  *  "ibm,ppc-interrupt-server#s" of the second group is
806  *  {9,11,13,15}. Property "1" is indicative of the thread in the
807  *  group sharing L1 cache, translation cache and Instruction Data
808  *  flow.
809  *
810  * b) provides information of Property "2" being shared by "2" groups,
811  *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
812  *  the first group is {8,10,12,14} and the
813  *  "ibm,ppc-interrupt-server#s" of the second group is
814  *  {9,11,13,15}. Property "2" indicates that the threads in each
815  *  group share the L2-cache.
816  *
817  * Returns 0 on success, -EINVAL if the property does not exist,
818  * -ENODATA if property does not have a value, and -EOVERFLOW if the
819  * property data isn't large enough.
820  */
821 static int parse_thread_groups(struct device_node *dn,
822 			       struct thread_groups_list *tglp)
823 {
824 	unsigned int property_idx = 0;
825 	u32 *thread_group_array;
826 	size_t total_threads;
827 	int ret = 0, count;
828 	u32 *thread_list;
829 	int i = 0;
830 
831 	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
832 	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
833 	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
834 					 thread_group_array, count);
835 	if (ret)
836 		goto out_free;
837 
838 	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
839 		int j;
840 		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
841 
842 		tg->property = thread_group_array[i];
843 		tg->nr_groups = thread_group_array[i + 1];
844 		tg->threads_per_group = thread_group_array[i + 2];
845 		total_threads = tg->nr_groups * tg->threads_per_group;
846 
847 		thread_list = &thread_group_array[i + 3];
848 
849 		for (j = 0; j < total_threads; j++)
850 			tg->thread_list[j] = thread_list[j];
851 		i = i + 3 + total_threads;
852 	}
853 
854 	tglp->nr_properties = property_idx;
855 
856 out_free:
857 	kfree(thread_group_array);
858 	return ret;
859 }
860 
861 /*
862  * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
863  *                              that @cpu belongs to.
864  *
865  * @cpu : The logical CPU whose thread group is being searched.
866  * @tg : The thread-group structure of the CPU node which @cpu belongs
867  *       to.
868  *
869  * Returns the index to tg->thread_list that points to the start
870  * of the thread_group that @cpu belongs to.
871  *
872  * Returns -1 if cpu doesn't belong to any of the groups pointed to by
873  * tg->thread_list.
874  */
875 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
876 {
877 	int hw_cpu_id = get_hard_smp_processor_id(cpu);
878 	int i, j;
879 
880 	for (i = 0; i < tg->nr_groups; i++) {
881 		int group_start = i * tg->threads_per_group;
882 
883 		for (j = 0; j < tg->threads_per_group; j++) {
884 			int idx = group_start + j;
885 
886 			if (tg->thread_list[idx] == hw_cpu_id)
887 				return group_start;
888 		}
889 	}
890 
891 	return -1;
892 }
893 
894 static struct thread_groups *__init get_thread_groups(int cpu,
895 						      int group_property,
896 						      int *err)
897 {
898 	struct device_node *dn = of_get_cpu_node(cpu, NULL);
899 	struct thread_groups_list *cpu_tgl = &tgl[cpu];
900 	struct thread_groups *tg = NULL;
901 	int i;
902 	*err = 0;
903 
904 	if (!dn) {
905 		*err = -ENODATA;
906 		return NULL;
907 	}
908 
909 	if (!cpu_tgl->nr_properties) {
910 		*err = parse_thread_groups(dn, cpu_tgl);
911 		if (*err)
912 			goto out;
913 	}
914 
915 	for (i = 0; i < cpu_tgl->nr_properties; i++) {
916 		if (cpu_tgl->property_tgs[i].property == group_property) {
917 			tg = &cpu_tgl->property_tgs[i];
918 			break;
919 		}
920 	}
921 
922 	if (!tg)
923 		*err = -EINVAL;
924 out:
925 	of_node_put(dn);
926 	return tg;
927 }
928 
929 static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
930 					       int cpu, int cpu_group_start)
931 {
932 	int first_thread = cpu_first_thread_sibling(cpu);
933 	int i;
934 
935 	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
936 
937 	for (i = first_thread; i < first_thread + threads_per_core; i++) {
938 		int i_group_start = get_cpu_thread_group_start(i, tg);
939 
940 		if (unlikely(i_group_start == -1)) {
941 			WARN_ON_ONCE(1);
942 			return -ENODATA;
943 		}
944 
945 		if (i_group_start == cpu_group_start)
946 			cpumask_set_cpu(i, *mask);
947 	}
948 
949 	return 0;
950 }
951 
952 static int __init init_thread_group_cache_map(int cpu, int cache_property)
953 
954 {
955 	int cpu_group_start = -1, err = 0;
956 	struct thread_groups *tg = NULL;
957 	cpumask_var_t *mask = NULL;
958 
959 	if (cache_property != THREAD_GROUP_SHARE_L1 &&
960 	    cache_property != THREAD_GROUP_SHARE_L2_L3)
961 		return -EINVAL;
962 
963 	tg = get_thread_groups(cpu, cache_property, &err);
964 
965 	if (!tg)
966 		return err;
967 
968 	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
969 
970 	if (unlikely(cpu_group_start == -1)) {
971 		WARN_ON_ONCE(1);
972 		return -ENODATA;
973 	}
974 
975 	if (cache_property == THREAD_GROUP_SHARE_L1) {
976 		mask = &per_cpu(thread_group_l1_cache_map, cpu);
977 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
978 	}
979 	else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
980 		mask = &per_cpu(thread_group_l2_cache_map, cpu);
981 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
982 		mask = &per_cpu(thread_group_l3_cache_map, cpu);
983 		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
984 	}
985 
986 
987 	return 0;
988 }
989 
990 static bool shared_caches;
991 
992 #ifdef CONFIG_SCHED_SMT
993 /* cpumask of CPUs with asymmetric SMT dependency */
994 static int powerpc_smt_flags(void)
995 {
996 	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
997 
998 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
999 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1000 		flags |= SD_ASYM_PACKING;
1001 	}
1002 	return flags;
1003 }
1004 #endif
1005 
1006 /*
1007  * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1008  * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1009  * since the migrated task remains cache hot. We want to take advantage of this
1010  * at the scheduler level so an extra topology level is required.
1011  */
1012 static int powerpc_shared_cache_flags(void)
1013 {
1014 	return SD_SHARE_PKG_RESOURCES;
1015 }
1016 
1017 /*
1018  * We can't just pass cpu_l2_cache_mask() directly because
1019  * returns a non-const pointer and the compiler barfs on that.
1020  */
1021 static const struct cpumask *shared_cache_mask(int cpu)
1022 {
1023 	return per_cpu(cpu_l2_cache_map, cpu);
1024 }
1025 
1026 #ifdef CONFIG_SCHED_SMT
1027 static const struct cpumask *smallcore_smt_mask(int cpu)
1028 {
1029 	return cpu_smallcore_mask(cpu);
1030 }
1031 #endif
1032 
1033 static struct cpumask *cpu_coregroup_mask(int cpu)
1034 {
1035 	return per_cpu(cpu_coregroup_map, cpu);
1036 }
1037 
1038 static bool has_coregroup_support(void)
1039 {
1040 	return coregroup_enabled;
1041 }
1042 
1043 static const struct cpumask *cpu_mc_mask(int cpu)
1044 {
1045 	return cpu_coregroup_mask(cpu);
1046 }
1047 
1048 static struct sched_domain_topology_level powerpc_topology[] = {
1049 #ifdef CONFIG_SCHED_SMT
1050 	{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1051 #endif
1052 	{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1053 	{ cpu_mc_mask, SD_INIT_NAME(MC) },
1054 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1055 	{ NULL, },
1056 };
1057 
1058 static int __init init_big_cores(void)
1059 {
1060 	int cpu;
1061 
1062 	for_each_possible_cpu(cpu) {
1063 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1064 
1065 		if (err)
1066 			return err;
1067 
1068 		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1069 					GFP_KERNEL,
1070 					cpu_to_node(cpu));
1071 	}
1072 
1073 	has_big_cores = true;
1074 
1075 	for_each_possible_cpu(cpu) {
1076 		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1077 
1078 		if (err)
1079 			return err;
1080 	}
1081 
1082 	thread_group_shares_l2 = true;
1083 	thread_group_shares_l3 = true;
1084 	pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1085 
1086 	return 0;
1087 }
1088 
1089 void __init smp_prepare_cpus(unsigned int max_cpus)
1090 {
1091 	unsigned int cpu, num_threads;
1092 
1093 	DBG("smp_prepare_cpus\n");
1094 
1095 	/*
1096 	 * setup_cpu may need to be called on the boot cpu. We haven't
1097 	 * spun any cpus up but lets be paranoid.
1098 	 */
1099 	BUG_ON(boot_cpuid != smp_processor_id());
1100 
1101 	/* Fixup boot cpu */
1102 	smp_store_cpu_info(boot_cpuid);
1103 	cpu_callin_map[boot_cpuid] = 1;
1104 
1105 	for_each_possible_cpu(cpu) {
1106 		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1107 					GFP_KERNEL, cpu_to_node(cpu));
1108 		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1109 					GFP_KERNEL, cpu_to_node(cpu));
1110 		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1111 					GFP_KERNEL, cpu_to_node(cpu));
1112 		if (has_coregroup_support())
1113 			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1114 						GFP_KERNEL, cpu_to_node(cpu));
1115 
1116 #ifdef CONFIG_NUMA
1117 		/*
1118 		 * numa_node_id() works after this.
1119 		 */
1120 		if (cpu_present(cpu)) {
1121 			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1122 			set_cpu_numa_mem(cpu,
1123 				local_memory_node(numa_cpu_lookup_table[cpu]));
1124 		}
1125 #endif
1126 	}
1127 
1128 	/* Init the cpumasks so the boot CPU is related to itself */
1129 	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1130 	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1131 	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1132 
1133 	if (has_coregroup_support())
1134 		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1135 
1136 	init_big_cores();
1137 	if (has_big_cores) {
1138 		cpumask_set_cpu(boot_cpuid,
1139 				cpu_smallcore_mask(boot_cpuid));
1140 	}
1141 
1142 	if (cpu_to_chip_id(boot_cpuid) != -1) {
1143 		int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1144 
1145 		/*
1146 		 * All threads of a core will all belong to the same core,
1147 		 * chip_id_lookup_table will have one entry per core.
1148 		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1149 		 * other CPUs, will also not have chip-id.
1150 		 */
1151 		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1152 		if (chip_id_lookup_table)
1153 			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1154 	}
1155 
1156 	if (smp_ops && smp_ops->probe)
1157 		smp_ops->probe();
1158 
1159 	// Initalise the generic SMT topology support
1160 	num_threads = 1;
1161 	if (smt_enabled_at_boot)
1162 		num_threads = smt_enabled_at_boot;
1163 	cpu_smt_set_num_threads(num_threads, threads_per_core);
1164 }
1165 
1166 void smp_prepare_boot_cpu(void)
1167 {
1168 	BUG_ON(smp_processor_id() != boot_cpuid);
1169 #ifdef CONFIG_PPC64
1170 	paca_ptrs[boot_cpuid]->__current = current;
1171 #endif
1172 	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1173 	current_set[boot_cpuid] = current;
1174 }
1175 
1176 #ifdef CONFIG_HOTPLUG_CPU
1177 
1178 int generic_cpu_disable(void)
1179 {
1180 	unsigned int cpu = smp_processor_id();
1181 
1182 	if (cpu == boot_cpuid)
1183 		return -EBUSY;
1184 
1185 	set_cpu_online(cpu, false);
1186 #ifdef CONFIG_PPC64
1187 	vdso_data->processorCount--;
1188 #endif
1189 	/* Update affinity of all IRQs previously aimed at this CPU */
1190 	irq_migrate_all_off_this_cpu();
1191 
1192 	/*
1193 	 * Depending on the details of the interrupt controller, it's possible
1194 	 * that one of the interrupts we just migrated away from this CPU is
1195 	 * actually already pending on this CPU. If we leave it in that state
1196 	 * the interrupt will never be EOI'ed, and will never fire again. So
1197 	 * temporarily enable interrupts here, to allow any pending interrupt to
1198 	 * be received (and EOI'ed), before we take this CPU offline.
1199 	 */
1200 	local_irq_enable();
1201 	mdelay(1);
1202 	local_irq_disable();
1203 
1204 	return 0;
1205 }
1206 
1207 void generic_cpu_die(unsigned int cpu)
1208 {
1209 	int i;
1210 
1211 	for (i = 0; i < 100; i++) {
1212 		smp_rmb();
1213 		if (is_cpu_dead(cpu))
1214 			return;
1215 		msleep(100);
1216 	}
1217 	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1218 }
1219 
1220 void generic_set_cpu_dead(unsigned int cpu)
1221 {
1222 	per_cpu(cpu_state, cpu) = CPU_DEAD;
1223 }
1224 
1225 /*
1226  * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1227  * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1228  * which makes the delay in generic_cpu_die() not happen.
1229  */
1230 void generic_set_cpu_up(unsigned int cpu)
1231 {
1232 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1233 }
1234 
1235 int generic_check_cpu_restart(unsigned int cpu)
1236 {
1237 	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1238 }
1239 
1240 int is_cpu_dead(unsigned int cpu)
1241 {
1242 	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1243 }
1244 
1245 static bool secondaries_inhibited(void)
1246 {
1247 	return kvm_hv_mode_active();
1248 }
1249 
1250 #else /* HOTPLUG_CPU */
1251 
1252 #define secondaries_inhibited()		0
1253 
1254 #endif
1255 
1256 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1257 {
1258 #ifdef CONFIG_PPC64
1259 	paca_ptrs[cpu]->__current = idle;
1260 	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1261 				 THREAD_SIZE - STACK_FRAME_MIN_SIZE;
1262 #endif
1263 	task_thread_info(idle)->cpu = cpu;
1264 	secondary_current = current_set[cpu] = idle;
1265 }
1266 
1267 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1268 {
1269 	const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
1270 	const bool booting = system_state < SYSTEM_RUNNING;
1271 	const unsigned long hp_spin_ms = 1;
1272 	unsigned long deadline;
1273 	int rc;
1274 	const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
1275 
1276 	/*
1277 	 * Don't allow secondary threads to come online if inhibited
1278 	 */
1279 	if (threads_per_core > 1 && secondaries_inhibited() &&
1280 	    cpu_thread_in_subcore(cpu))
1281 		return -EBUSY;
1282 
1283 	if (smp_ops == NULL ||
1284 	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1285 		return -EINVAL;
1286 
1287 	cpu_idle_thread_init(cpu, tidle);
1288 
1289 	/*
1290 	 * The platform might need to allocate resources prior to bringing
1291 	 * up the CPU
1292 	 */
1293 	if (smp_ops->prepare_cpu) {
1294 		rc = smp_ops->prepare_cpu(cpu);
1295 		if (rc)
1296 			return rc;
1297 	}
1298 
1299 	/* Make sure callin-map entry is 0 (can be leftover a CPU
1300 	 * hotplug
1301 	 */
1302 	cpu_callin_map[cpu] = 0;
1303 
1304 	/* The information for processor bringup must
1305 	 * be written out to main store before we release
1306 	 * the processor.
1307 	 */
1308 	smp_mb();
1309 
1310 	/* wake up cpus */
1311 	DBG("smp: kicking cpu %d\n", cpu);
1312 	rc = smp_ops->kick_cpu(cpu);
1313 	if (rc) {
1314 		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1315 		return rc;
1316 	}
1317 
1318 	/*
1319 	 * At boot time, simply spin on the callin word until the
1320 	 * deadline passes.
1321 	 *
1322 	 * At run time, spin for an optimistic amount of time to avoid
1323 	 * sleeping in the common case.
1324 	 */
1325 	deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
1326 	spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
1327 
1328 	if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
1329 		const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
1330 		const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
1331 
1332 		deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
1333 		while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
1334 			fsleep(sleep_interval_us);
1335 	}
1336 
1337 	if (!cpu_callin_map[cpu]) {
1338 		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1339 		return -ENOENT;
1340 	}
1341 
1342 	DBG("Processor %u found.\n", cpu);
1343 
1344 	if (smp_ops->give_timebase)
1345 		smp_ops->give_timebase();
1346 
1347 	/* Wait until cpu puts itself in the online & active maps */
1348 	spin_until_cond(cpu_online(cpu));
1349 
1350 	return 0;
1351 }
1352 
1353 /* Return the value of the reg property corresponding to the given
1354  * logical cpu.
1355  */
1356 int cpu_to_core_id(int cpu)
1357 {
1358 	struct device_node *np;
1359 	int id = -1;
1360 
1361 	np = of_get_cpu_node(cpu, NULL);
1362 	if (!np)
1363 		goto out;
1364 
1365 	id = of_get_cpu_hwid(np, 0);
1366 out:
1367 	of_node_put(np);
1368 	return id;
1369 }
1370 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1371 
1372 /* Helper routines for cpu to core mapping */
1373 int cpu_core_index_of_thread(int cpu)
1374 {
1375 	return cpu >> threads_shift;
1376 }
1377 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1378 
1379 int cpu_first_thread_of_core(int core)
1380 {
1381 	return core << threads_shift;
1382 }
1383 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1384 
1385 /* Must be called when no change can occur to cpu_present_mask,
1386  * i.e. during cpu online or offline.
1387  */
1388 static struct device_node *cpu_to_l2cache(int cpu)
1389 {
1390 	struct device_node *np;
1391 	struct device_node *cache;
1392 
1393 	if (!cpu_present(cpu))
1394 		return NULL;
1395 
1396 	np = of_get_cpu_node(cpu, NULL);
1397 	if (np == NULL)
1398 		return NULL;
1399 
1400 	cache = of_find_next_cache_node(np);
1401 
1402 	of_node_put(np);
1403 
1404 	return cache;
1405 }
1406 
1407 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1408 {
1409 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1410 	struct device_node *l2_cache, *np;
1411 	int i;
1412 
1413 	if (has_big_cores)
1414 		submask_fn = cpu_smallcore_mask;
1415 
1416 	/*
1417 	 * If the threads in a thread-group share L2 cache, then the
1418 	 * L2-mask can be obtained from thread_group_l2_cache_map.
1419 	 */
1420 	if (thread_group_shares_l2) {
1421 		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1422 
1423 		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1424 			if (cpu_online(i))
1425 				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1426 		}
1427 
1428 		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1429 		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1430 		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1431 			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1432 				     cpu);
1433 		}
1434 
1435 		return true;
1436 	}
1437 
1438 	l2_cache = cpu_to_l2cache(cpu);
1439 	if (!l2_cache || !*mask) {
1440 		/* Assume only core siblings share cache with this CPU */
1441 		for_each_cpu(i, cpu_sibling_mask(cpu))
1442 			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1443 
1444 		return false;
1445 	}
1446 
1447 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1448 
1449 	/* Update l2-cache mask with all the CPUs that are part of submask */
1450 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1451 
1452 	/* Skip all CPUs already part of current CPU l2-cache mask */
1453 	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1454 
1455 	for_each_cpu(i, *mask) {
1456 		/*
1457 		 * when updating the marks the current CPU has not been marked
1458 		 * online, but we need to update the cache masks
1459 		 */
1460 		np = cpu_to_l2cache(i);
1461 
1462 		/* Skip all CPUs already part of current CPU l2-cache */
1463 		if (np == l2_cache) {
1464 			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1465 			cpumask_andnot(*mask, *mask, submask_fn(i));
1466 		} else {
1467 			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1468 		}
1469 
1470 		of_node_put(np);
1471 	}
1472 	of_node_put(l2_cache);
1473 
1474 	return true;
1475 }
1476 
1477 #ifdef CONFIG_HOTPLUG_CPU
1478 static void remove_cpu_from_masks(int cpu)
1479 {
1480 	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1481 	int i;
1482 
1483 	unmap_cpu_from_node(cpu);
1484 
1485 	if (shared_caches)
1486 		mask_fn = cpu_l2_cache_mask;
1487 
1488 	for_each_cpu(i, mask_fn(cpu)) {
1489 		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1490 		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1491 		if (has_big_cores)
1492 			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1493 	}
1494 
1495 	for_each_cpu(i, cpu_core_mask(cpu))
1496 		set_cpus_unrelated(cpu, i, cpu_core_mask);
1497 
1498 	if (has_coregroup_support()) {
1499 		for_each_cpu(i, cpu_coregroup_mask(cpu))
1500 			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1501 	}
1502 }
1503 #endif
1504 
1505 static inline void add_cpu_to_smallcore_masks(int cpu)
1506 {
1507 	int i;
1508 
1509 	if (!has_big_cores)
1510 		return;
1511 
1512 	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1513 
1514 	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1515 		if (cpu_online(i))
1516 			set_cpus_related(i, cpu, cpu_smallcore_mask);
1517 	}
1518 }
1519 
1520 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1521 {
1522 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1523 	int coregroup_id = cpu_to_coregroup_id(cpu);
1524 	int i;
1525 
1526 	if (shared_caches)
1527 		submask_fn = cpu_l2_cache_mask;
1528 
1529 	if (!*mask) {
1530 		/* Assume only siblings are part of this CPU's coregroup */
1531 		for_each_cpu(i, submask_fn(cpu))
1532 			set_cpus_related(cpu, i, cpu_coregroup_mask);
1533 
1534 		return;
1535 	}
1536 
1537 	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1538 
1539 	/* Update coregroup mask with all the CPUs that are part of submask */
1540 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1541 
1542 	/* Skip all CPUs already part of coregroup mask */
1543 	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1544 
1545 	for_each_cpu(i, *mask) {
1546 		/* Skip all CPUs not part of this coregroup */
1547 		if (coregroup_id == cpu_to_coregroup_id(i)) {
1548 			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1549 			cpumask_andnot(*mask, *mask, submask_fn(i));
1550 		} else {
1551 			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1552 		}
1553 	}
1554 }
1555 
1556 static void add_cpu_to_masks(int cpu)
1557 {
1558 	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1559 	int first_thread = cpu_first_thread_sibling(cpu);
1560 	cpumask_var_t mask;
1561 	int chip_id = -1;
1562 	bool ret;
1563 	int i;
1564 
1565 	/*
1566 	 * This CPU will not be in the online mask yet so we need to manually
1567 	 * add it to it's own thread sibling mask.
1568 	 */
1569 	map_cpu_to_node(cpu, cpu_to_node(cpu));
1570 	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1571 	cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1572 
1573 	for (i = first_thread; i < first_thread + threads_per_core; i++)
1574 		if (cpu_online(i))
1575 			set_cpus_related(i, cpu, cpu_sibling_mask);
1576 
1577 	add_cpu_to_smallcore_masks(cpu);
1578 
1579 	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1580 	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1581 	update_mask_by_l2(cpu, &mask);
1582 
1583 	if (has_coregroup_support())
1584 		update_coregroup_mask(cpu, &mask);
1585 
1586 	if (chip_id_lookup_table && ret)
1587 		chip_id = cpu_to_chip_id(cpu);
1588 
1589 	if (shared_caches)
1590 		submask_fn = cpu_l2_cache_mask;
1591 
1592 	/* Update core_mask with all the CPUs that are part of submask */
1593 	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1594 
1595 	/* Skip all CPUs already part of current CPU core mask */
1596 	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1597 
1598 	/* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1599 	if (chip_id == -1)
1600 		cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1601 
1602 	for_each_cpu(i, mask) {
1603 		if (chip_id == cpu_to_chip_id(i)) {
1604 			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1605 			cpumask_andnot(mask, mask, submask_fn(i));
1606 		} else {
1607 			cpumask_andnot(mask, mask, cpu_core_mask(i));
1608 		}
1609 	}
1610 
1611 	free_cpumask_var(mask);
1612 }
1613 
1614 /* Activate a secondary processor. */
1615 __no_stack_protector
1616 void start_secondary(void *unused)
1617 {
1618 	unsigned int cpu = raw_smp_processor_id();
1619 
1620 	/* PPC64 calls setup_kup() in early_setup_secondary() */
1621 	if (IS_ENABLED(CONFIG_PPC32))
1622 		setup_kup();
1623 
1624 	mmgrab_lazy_tlb(&init_mm);
1625 	current->active_mm = &init_mm;
1626 	VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
1627 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
1628 	inc_mm_active_cpus(&init_mm);
1629 
1630 	smp_store_cpu_info(cpu);
1631 	set_dec(tb_ticks_per_jiffy);
1632 	rcu_cpu_starting(cpu);
1633 	cpu_callin_map[cpu] = 1;
1634 
1635 	if (smp_ops->setup_cpu)
1636 		smp_ops->setup_cpu(cpu);
1637 	if (smp_ops->take_timebase)
1638 		smp_ops->take_timebase();
1639 
1640 	secondary_cpu_time_init();
1641 
1642 #ifdef CONFIG_PPC64
1643 	if (system_state == SYSTEM_RUNNING)
1644 		vdso_data->processorCount++;
1645 
1646 	vdso_getcpu_init();
1647 #endif
1648 	set_numa_node(numa_cpu_lookup_table[cpu]);
1649 	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1650 
1651 	/* Update topology CPU masks */
1652 	add_cpu_to_masks(cpu);
1653 
1654 	/*
1655 	 * Check for any shared caches. Note that this must be done on a
1656 	 * per-core basis because one core in the pair might be disabled.
1657 	 */
1658 	if (!shared_caches) {
1659 		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1660 		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1661 
1662 		if (has_big_cores)
1663 			sibling_mask = cpu_smallcore_mask;
1664 
1665 		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1666 			shared_caches = true;
1667 	}
1668 
1669 	smp_wmb();
1670 	notify_cpu_starting(cpu);
1671 	set_cpu_online(cpu, true);
1672 
1673 	boot_init_stack_canary();
1674 
1675 	local_irq_enable();
1676 
1677 	/* We can enable ftrace for secondary cpus now */
1678 	this_cpu_enable_ftrace();
1679 
1680 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1681 
1682 	BUG();
1683 }
1684 
1685 static void __init fixup_topology(void)
1686 {
1687 	int i;
1688 
1689 #ifdef CONFIG_SCHED_SMT
1690 	if (has_big_cores) {
1691 		pr_info("Big cores detected but using small core scheduling\n");
1692 		powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1693 	}
1694 #endif
1695 
1696 	if (!has_coregroup_support())
1697 		powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1698 
1699 	/*
1700 	 * Try to consolidate topology levels here instead of
1701 	 * allowing scheduler to degenerate.
1702 	 * - Dont consolidate if masks are different.
1703 	 * - Dont consolidate if sd_flags exists and are different.
1704 	 */
1705 	for (i = 1; i <= die_idx; i++) {
1706 		if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1707 			continue;
1708 
1709 		if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1710 				powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1711 			continue;
1712 
1713 		if (!powerpc_topology[i - 1].sd_flags)
1714 			powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1715 
1716 		powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1717 		powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1718 #ifdef CONFIG_SCHED_DEBUG
1719 		powerpc_topology[i].name = powerpc_topology[i + 1].name;
1720 #endif
1721 	}
1722 }
1723 
1724 void __init smp_cpus_done(unsigned int max_cpus)
1725 {
1726 	/*
1727 	 * We are running pinned to the boot CPU, see rest_init().
1728 	 */
1729 	if (smp_ops && smp_ops->setup_cpu)
1730 		smp_ops->setup_cpu(boot_cpuid);
1731 
1732 	if (smp_ops && smp_ops->bringup_done)
1733 		smp_ops->bringup_done();
1734 
1735 	dump_numa_cpu_topology();
1736 
1737 	fixup_topology();
1738 	set_sched_topology(powerpc_topology);
1739 }
1740 
1741 #ifdef CONFIG_HOTPLUG_CPU
1742 int __cpu_disable(void)
1743 {
1744 	int cpu = smp_processor_id();
1745 	int err;
1746 
1747 	if (!smp_ops->cpu_disable)
1748 		return -ENOSYS;
1749 
1750 	this_cpu_disable_ftrace();
1751 
1752 	err = smp_ops->cpu_disable();
1753 	if (err)
1754 		return err;
1755 
1756 	/* Update sibling maps */
1757 	remove_cpu_from_masks(cpu);
1758 
1759 	return 0;
1760 }
1761 
1762 void __cpu_die(unsigned int cpu)
1763 {
1764 	/*
1765 	 * This could perhaps be a generic call in idlea_task_dead(), but
1766 	 * that requires testing from all archs, so first put it here to
1767 	 */
1768 	VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm)));
1769 	dec_mm_active_cpus(&init_mm);
1770 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
1771 
1772 	if (smp_ops->cpu_die)
1773 		smp_ops->cpu_die(cpu);
1774 }
1775 
1776 void __noreturn arch_cpu_idle_dead(void)
1777 {
1778 	/*
1779 	 * Disable on the down path. This will be re-enabled by
1780 	 * start_secondary() via start_secondary_resume() below
1781 	 */
1782 	this_cpu_disable_ftrace();
1783 
1784 	if (smp_ops->cpu_offline_self)
1785 		smp_ops->cpu_offline_self();
1786 
1787 	/* If we return, we re-enter start_secondary */
1788 	start_secondary_resume();
1789 }
1790 
1791 #endif
1792