1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SMP support for ppc. 4 * 5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great 6 * deal of code from the sparc and intel versions. 7 * 8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> 9 * 10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and 11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com 12 */ 13 14 #undef DEBUG 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/sched/topology.h> 21 #include <linux/smp.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/init.h> 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/err.h> 28 #include <linux/device.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/profile.h> 33 #include <linux/processor.h> 34 #include <linux/random.h> 35 #include <linux/stackprotector.h> 36 #include <linux/pgtable.h> 37 #include <linux/clockchips.h> 38 39 #include <asm/ptrace.h> 40 #include <linux/atomic.h> 41 #include <asm/irq.h> 42 #include <asm/hw_irq.h> 43 #include <asm/kvm_ppc.h> 44 #include <asm/dbell.h> 45 #include <asm/page.h> 46 #include <asm/prom.h> 47 #include <asm/smp.h> 48 #include <asm/time.h> 49 #include <asm/machdep.h> 50 #include <asm/cputhreads.h> 51 #include <asm/cputable.h> 52 #include <asm/mpic.h> 53 #include <asm/vdso_datapage.h> 54 #ifdef CONFIG_PPC64 55 #include <asm/paca.h> 56 #endif 57 #include <asm/vdso.h> 58 #include <asm/debug.h> 59 #include <asm/kexec.h> 60 #include <asm/asm-prototypes.h> 61 #include <asm/cpu_has_feature.h> 62 #include <asm/ftrace.h> 63 #include <asm/kup.h> 64 #include <asm/fadump.h> 65 66 #ifdef DEBUG 67 #include <asm/udbg.h> 68 #define DBG(fmt...) udbg_printf(fmt) 69 #else 70 #define DBG(fmt...) 71 #endif 72 73 #ifdef CONFIG_HOTPLUG_CPU 74 /* State of each CPU during hotplug phases */ 75 static DEFINE_PER_CPU(int, cpu_state) = { 0 }; 76 #endif 77 78 struct task_struct *secondary_current; 79 bool has_big_cores; 80 bool coregroup_enabled; 81 bool thread_group_shares_l2; 82 bool thread_group_shares_l3; 83 84 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); 85 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); 86 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); 87 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); 88 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map); 89 90 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 91 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); 92 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 93 EXPORT_SYMBOL_GPL(has_big_cores); 94 95 enum { 96 #ifdef CONFIG_SCHED_SMT 97 smt_idx, 98 #endif 99 cache_idx, 100 mc_idx, 101 die_idx, 102 }; 103 104 #define MAX_THREAD_LIST_SIZE 8 105 #define THREAD_GROUP_SHARE_L1 1 106 #define THREAD_GROUP_SHARE_L2_L3 2 107 struct thread_groups { 108 unsigned int property; 109 unsigned int nr_groups; 110 unsigned int threads_per_group; 111 unsigned int thread_list[MAX_THREAD_LIST_SIZE]; 112 }; 113 114 /* Maximum number of properties that groups of threads within a core can share */ 115 #define MAX_THREAD_GROUP_PROPERTIES 2 116 117 struct thread_groups_list { 118 unsigned int nr_properties; 119 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES]; 120 }; 121 122 static struct thread_groups_list tgl[NR_CPUS] __initdata; 123 /* 124 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to 125 * the set its siblings that share the L1-cache. 126 */ 127 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map); 128 129 /* 130 * On some big-cores system, thread_group_l2_cache_map for each CPU 131 * corresponds to the set its siblings within the core that share the 132 * L2-cache. 133 */ 134 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map); 135 136 /* 137 * On P10, thread_group_l3_cache_map for each CPU is equal to the 138 * thread_group_l2_cache_map 139 */ 140 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map); 141 142 /* SMP operations for this machine */ 143 struct smp_ops_t *smp_ops; 144 145 /* Can't be static due to PowerMac hackery */ 146 volatile unsigned int cpu_callin_map[NR_CPUS]; 147 148 int smt_enabled_at_boot = 1; 149 150 /* 151 * Returns 1 if the specified cpu should be brought up during boot. 152 * Used to inhibit booting threads if they've been disabled or 153 * limited on the command line 154 */ 155 int smp_generic_cpu_bootable(unsigned int nr) 156 { 157 /* Special case - we inhibit secondary thread startup 158 * during boot if the user requests it. 159 */ 160 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { 161 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) 162 return 0; 163 if (smt_enabled_at_boot 164 && cpu_thread_in_core(nr) >= smt_enabled_at_boot) 165 return 0; 166 } 167 168 return 1; 169 } 170 171 172 #ifdef CONFIG_PPC64 173 int smp_generic_kick_cpu(int nr) 174 { 175 if (nr < 0 || nr >= nr_cpu_ids) 176 return -EINVAL; 177 178 /* 179 * The processor is currently spinning, waiting for the 180 * cpu_start field to become non-zero After we set cpu_start, 181 * the processor will continue on to secondary_start 182 */ 183 if (!paca_ptrs[nr]->cpu_start) { 184 paca_ptrs[nr]->cpu_start = 1; 185 smp_mb(); 186 return 0; 187 } 188 189 #ifdef CONFIG_HOTPLUG_CPU 190 /* 191 * Ok it's not there, so it might be soft-unplugged, let's 192 * try to bring it back 193 */ 194 generic_set_cpu_up(nr); 195 smp_wmb(); 196 smp_send_reschedule(nr); 197 #endif /* CONFIG_HOTPLUG_CPU */ 198 199 return 0; 200 } 201 #endif /* CONFIG_PPC64 */ 202 203 static irqreturn_t call_function_action(int irq, void *data) 204 { 205 generic_smp_call_function_interrupt(); 206 return IRQ_HANDLED; 207 } 208 209 static irqreturn_t reschedule_action(int irq, void *data) 210 { 211 scheduler_ipi(); 212 return IRQ_HANDLED; 213 } 214 215 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 216 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) 217 { 218 timer_broadcast_interrupt(); 219 return IRQ_HANDLED; 220 } 221 #endif 222 223 #ifdef CONFIG_NMI_IPI 224 static irqreturn_t nmi_ipi_action(int irq, void *data) 225 { 226 smp_handle_nmi_ipi(get_irq_regs()); 227 return IRQ_HANDLED; 228 } 229 #endif 230 231 static irq_handler_t smp_ipi_action[] = { 232 [PPC_MSG_CALL_FUNCTION] = call_function_action, 233 [PPC_MSG_RESCHEDULE] = reschedule_action, 234 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 235 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, 236 #endif 237 #ifdef CONFIG_NMI_IPI 238 [PPC_MSG_NMI_IPI] = nmi_ipi_action, 239 #endif 240 }; 241 242 /* 243 * The NMI IPI is a fallback and not truly non-maskable. It is simpler 244 * than going through the call function infrastructure, and strongly 245 * serialized, so it is more appropriate for debugging. 246 */ 247 const char *smp_ipi_name[] = { 248 [PPC_MSG_CALL_FUNCTION] = "ipi call function", 249 [PPC_MSG_RESCHEDULE] = "ipi reschedule", 250 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 251 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", 252 #endif 253 #ifdef CONFIG_NMI_IPI 254 [PPC_MSG_NMI_IPI] = "nmi ipi", 255 #endif 256 }; 257 258 /* optional function to request ipi, for controllers with >= 4 ipis */ 259 int smp_request_message_ipi(int virq, int msg) 260 { 261 int err; 262 263 if (msg < 0 || msg > PPC_MSG_NMI_IPI) 264 return -EINVAL; 265 #ifndef CONFIG_NMI_IPI 266 if (msg == PPC_MSG_NMI_IPI) 267 return 1; 268 #endif 269 270 err = request_irq(virq, smp_ipi_action[msg], 271 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, 272 smp_ipi_name[msg], NULL); 273 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", 274 virq, smp_ipi_name[msg], err); 275 276 return err; 277 } 278 279 #ifdef CONFIG_PPC_SMP_MUXED_IPI 280 struct cpu_messages { 281 long messages; /* current messages */ 282 }; 283 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); 284 285 void smp_muxed_ipi_set_message(int cpu, int msg) 286 { 287 struct cpu_messages *info = &per_cpu(ipi_message, cpu); 288 char *message = (char *)&info->messages; 289 290 /* 291 * Order previous accesses before accesses in the IPI handler. 292 */ 293 smp_mb(); 294 message[msg] = 1; 295 } 296 297 void smp_muxed_ipi_message_pass(int cpu, int msg) 298 { 299 smp_muxed_ipi_set_message(cpu, msg); 300 301 /* 302 * cause_ipi functions are required to include a full barrier 303 * before doing whatever causes the IPI. 304 */ 305 smp_ops->cause_ipi(cpu); 306 } 307 308 #ifdef __BIG_ENDIAN__ 309 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) 310 #else 311 #define IPI_MESSAGE(A) (1uL << (8 * (A))) 312 #endif 313 314 irqreturn_t smp_ipi_demux(void) 315 { 316 mb(); /* order any irq clear */ 317 318 return smp_ipi_demux_relaxed(); 319 } 320 321 /* sync-free variant. Callers should ensure synchronization */ 322 irqreturn_t smp_ipi_demux_relaxed(void) 323 { 324 struct cpu_messages *info; 325 unsigned long all; 326 327 info = this_cpu_ptr(&ipi_message); 328 do { 329 all = xchg(&info->messages, 0); 330 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) 331 /* 332 * Must check for PPC_MSG_RM_HOST_ACTION messages 333 * before PPC_MSG_CALL_FUNCTION messages because when 334 * a VM is destroyed, we call kick_all_cpus_sync() 335 * to ensure that any pending PPC_MSG_RM_HOST_ACTION 336 * messages have completed before we free any VCPUs. 337 */ 338 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) 339 kvmppc_xics_ipi_action(); 340 #endif 341 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) 342 generic_smp_call_function_interrupt(); 343 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) 344 scheduler_ipi(); 345 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 346 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) 347 timer_broadcast_interrupt(); 348 #endif 349 #ifdef CONFIG_NMI_IPI 350 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) 351 nmi_ipi_action(0, NULL); 352 #endif 353 } while (info->messages); 354 355 return IRQ_HANDLED; 356 } 357 #endif /* CONFIG_PPC_SMP_MUXED_IPI */ 358 359 static inline void do_message_pass(int cpu, int msg) 360 { 361 if (smp_ops->message_pass) 362 smp_ops->message_pass(cpu, msg); 363 #ifdef CONFIG_PPC_SMP_MUXED_IPI 364 else 365 smp_muxed_ipi_message_pass(cpu, msg); 366 #endif 367 } 368 369 void smp_send_reschedule(int cpu) 370 { 371 if (likely(smp_ops)) 372 do_message_pass(cpu, PPC_MSG_RESCHEDULE); 373 } 374 EXPORT_SYMBOL_GPL(smp_send_reschedule); 375 376 void arch_send_call_function_single_ipi(int cpu) 377 { 378 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 379 } 380 381 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 382 { 383 unsigned int cpu; 384 385 for_each_cpu(cpu, mask) 386 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); 387 } 388 389 #ifdef CONFIG_NMI_IPI 390 391 /* 392 * "NMI IPI" system. 393 * 394 * NMI IPIs may not be recoverable, so should not be used as ongoing part of 395 * a running system. They can be used for crash, debug, halt/reboot, etc. 396 * 397 * The IPI call waits with interrupts disabled until all targets enter the 398 * NMI handler, then returns. Subsequent IPIs can be issued before targets 399 * have returned from their handlers, so there is no guarantee about 400 * concurrency or re-entrancy. 401 * 402 * A new NMI can be issued before all targets exit the handler. 403 * 404 * The IPI call may time out without all targets entering the NMI handler. 405 * In that case, there is some logic to recover (and ignore subsequent 406 * NMI interrupts that may eventually be raised), but the platform interrupt 407 * handler may not be able to distinguish this from other exception causes, 408 * which may cause a crash. 409 */ 410 411 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); 412 static struct cpumask nmi_ipi_pending_mask; 413 static bool nmi_ipi_busy = false; 414 static void (*nmi_ipi_function)(struct pt_regs *) = NULL; 415 416 static void nmi_ipi_lock_start(unsigned long *flags) 417 { 418 raw_local_irq_save(*flags); 419 hard_irq_disable(); 420 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { 421 raw_local_irq_restore(*flags); 422 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 423 raw_local_irq_save(*flags); 424 hard_irq_disable(); 425 } 426 } 427 428 static void nmi_ipi_lock(void) 429 { 430 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) 431 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); 432 } 433 434 static void nmi_ipi_unlock(void) 435 { 436 smp_mb(); 437 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1); 438 atomic_set(&__nmi_ipi_lock, 0); 439 } 440 441 static void nmi_ipi_unlock_end(unsigned long *flags) 442 { 443 nmi_ipi_unlock(); 444 raw_local_irq_restore(*flags); 445 } 446 447 /* 448 * Platform NMI handler calls this to ack 449 */ 450 int smp_handle_nmi_ipi(struct pt_regs *regs) 451 { 452 void (*fn)(struct pt_regs *) = NULL; 453 unsigned long flags; 454 int me = raw_smp_processor_id(); 455 int ret = 0; 456 457 /* 458 * Unexpected NMIs are possible here because the interrupt may not 459 * be able to distinguish NMI IPIs from other types of NMIs, or 460 * because the caller may have timed out. 461 */ 462 nmi_ipi_lock_start(&flags); 463 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { 464 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 465 fn = READ_ONCE(nmi_ipi_function); 466 WARN_ON_ONCE(!fn); 467 ret = 1; 468 } 469 nmi_ipi_unlock_end(&flags); 470 471 if (fn) 472 fn(regs); 473 474 return ret; 475 } 476 477 static void do_smp_send_nmi_ipi(int cpu, bool safe) 478 { 479 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) 480 return; 481 482 if (cpu >= 0) { 483 do_message_pass(cpu, PPC_MSG_NMI_IPI); 484 } else { 485 int c; 486 487 for_each_online_cpu(c) { 488 if (c == raw_smp_processor_id()) 489 continue; 490 do_message_pass(c, PPC_MSG_NMI_IPI); 491 } 492 } 493 } 494 495 /* 496 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. 497 * - fn is the target callback function. 498 * - delay_us > 0 is the delay before giving up waiting for targets to 499 * begin executing the handler, == 0 specifies indefinite delay. 500 */ 501 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), 502 u64 delay_us, bool safe) 503 { 504 unsigned long flags; 505 int me = raw_smp_processor_id(); 506 int ret = 1; 507 508 BUG_ON(cpu == me); 509 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); 510 511 if (unlikely(!smp_ops)) 512 return 0; 513 514 nmi_ipi_lock_start(&flags); 515 while (nmi_ipi_busy) { 516 nmi_ipi_unlock_end(&flags); 517 spin_until_cond(!nmi_ipi_busy); 518 nmi_ipi_lock_start(&flags); 519 } 520 nmi_ipi_busy = true; 521 nmi_ipi_function = fn; 522 523 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); 524 525 if (cpu < 0) { 526 /* ALL_OTHERS */ 527 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); 528 cpumask_clear_cpu(me, &nmi_ipi_pending_mask); 529 } else { 530 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); 531 } 532 533 nmi_ipi_unlock(); 534 535 /* Interrupts remain hard disabled */ 536 537 do_smp_send_nmi_ipi(cpu, safe); 538 539 nmi_ipi_lock(); 540 /* nmi_ipi_busy is set here, so unlock/lock is okay */ 541 while (!cpumask_empty(&nmi_ipi_pending_mask)) { 542 nmi_ipi_unlock(); 543 udelay(1); 544 nmi_ipi_lock(); 545 if (delay_us) { 546 delay_us--; 547 if (!delay_us) 548 break; 549 } 550 } 551 552 if (!cpumask_empty(&nmi_ipi_pending_mask)) { 553 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ 554 ret = 0; 555 cpumask_clear(&nmi_ipi_pending_mask); 556 } 557 558 nmi_ipi_function = NULL; 559 nmi_ipi_busy = false; 560 561 nmi_ipi_unlock_end(&flags); 562 563 return ret; 564 } 565 566 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 567 { 568 return __smp_send_nmi_ipi(cpu, fn, delay_us, false); 569 } 570 571 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) 572 { 573 return __smp_send_nmi_ipi(cpu, fn, delay_us, true); 574 } 575 #endif /* CONFIG_NMI_IPI */ 576 577 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 578 void tick_broadcast(const struct cpumask *mask) 579 { 580 unsigned int cpu; 581 582 for_each_cpu(cpu, mask) 583 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); 584 } 585 #endif 586 587 #ifdef CONFIG_DEBUGGER 588 static void debugger_ipi_callback(struct pt_regs *regs) 589 { 590 debugger_ipi(regs); 591 } 592 593 void smp_send_debugger_break(void) 594 { 595 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); 596 } 597 #endif 598 599 #ifdef CONFIG_KEXEC_CORE 600 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) 601 { 602 int cpu; 603 604 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); 605 if (kdump_in_progress() && crash_wake_offline) { 606 for_each_present_cpu(cpu) { 607 if (cpu_online(cpu)) 608 continue; 609 /* 610 * crash_ipi_callback will wait for 611 * all cpus, including offline CPUs. 612 * We don't care about nmi_ipi_function. 613 * Offline cpus will jump straight into 614 * crash_ipi_callback, we can skip the 615 * entire NMI dance and waiting for 616 * cpus to clear pending mask, etc. 617 */ 618 do_smp_send_nmi_ipi(cpu, false); 619 } 620 } 621 } 622 #endif 623 624 #ifdef CONFIG_NMI_IPI 625 static void crash_stop_this_cpu(struct pt_regs *regs) 626 #else 627 static void crash_stop_this_cpu(void *dummy) 628 #endif 629 { 630 /* 631 * Just busy wait here and avoid marking CPU as offline to ensure 632 * register data is captured appropriately. 633 */ 634 while (1) 635 cpu_relax(); 636 } 637 638 void crash_smp_send_stop(void) 639 { 640 static bool stopped = false; 641 642 /* 643 * In case of fadump, register data for all CPUs is captured by f/w 644 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before 645 * this rtas call to avoid tricky post processing of those CPUs' 646 * backtraces. 647 */ 648 if (should_fadump_crash()) 649 return; 650 651 if (stopped) 652 return; 653 654 stopped = true; 655 656 #ifdef CONFIG_NMI_IPI 657 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000); 658 #else 659 smp_call_function(crash_stop_this_cpu, NULL, 0); 660 #endif /* CONFIG_NMI_IPI */ 661 } 662 663 #ifdef CONFIG_NMI_IPI 664 static void nmi_stop_this_cpu(struct pt_regs *regs) 665 { 666 /* 667 * IRQs are already hard disabled by the smp_handle_nmi_ipi. 668 */ 669 set_cpu_online(smp_processor_id(), false); 670 671 spin_begin(); 672 while (1) 673 spin_cpu_relax(); 674 } 675 676 void smp_send_stop(void) 677 { 678 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); 679 } 680 681 #else /* CONFIG_NMI_IPI */ 682 683 static void stop_this_cpu(void *dummy) 684 { 685 hard_irq_disable(); 686 687 /* 688 * Offlining CPUs in stop_this_cpu can result in scheduler warnings, 689 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants 690 * to know other CPUs are offline before it breaks locks to flush 691 * printk buffers, in case we panic()ed while holding the lock. 692 */ 693 set_cpu_online(smp_processor_id(), false); 694 695 spin_begin(); 696 while (1) 697 spin_cpu_relax(); 698 } 699 700 void smp_send_stop(void) 701 { 702 static bool stopped = false; 703 704 /* 705 * Prevent waiting on csd lock from a previous smp_send_stop. 706 * This is racy, but in general callers try to do the right 707 * thing and only fire off one smp_send_stop (e.g., see 708 * kernel/panic.c) 709 */ 710 if (stopped) 711 return; 712 713 stopped = true; 714 715 smp_call_function(stop_this_cpu, NULL, 0); 716 } 717 #endif /* CONFIG_NMI_IPI */ 718 719 struct task_struct *current_set[NR_CPUS]; 720 721 static void smp_store_cpu_info(int id) 722 { 723 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); 724 #ifdef CONFIG_PPC_FSL_BOOK3E 725 per_cpu(next_tlbcam_idx, id) 726 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; 727 #endif 728 } 729 730 /* 731 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so 732 * rather than just passing around the cpumask we pass around a function that 733 * returns the that cpumask for the given CPU. 734 */ 735 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) 736 { 737 cpumask_set_cpu(i, get_cpumask(j)); 738 cpumask_set_cpu(j, get_cpumask(i)); 739 } 740 741 #ifdef CONFIG_HOTPLUG_CPU 742 static void set_cpus_unrelated(int i, int j, 743 struct cpumask *(*get_cpumask)(int)) 744 { 745 cpumask_clear_cpu(i, get_cpumask(j)); 746 cpumask_clear_cpu(j, get_cpumask(i)); 747 } 748 #endif 749 750 /* 751 * Extends set_cpus_related. Instead of setting one CPU at a time in 752 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask. 753 */ 754 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int), 755 struct cpumask *(*dstmask)(int)) 756 { 757 struct cpumask *mask; 758 int k; 759 760 mask = srcmask(j); 761 for_each_cpu(k, srcmask(i)) 762 cpumask_or(dstmask(k), dstmask(k), mask); 763 764 if (i == j) 765 return; 766 767 mask = srcmask(i); 768 for_each_cpu(k, srcmask(j)) 769 cpumask_or(dstmask(k), dstmask(k), mask); 770 } 771 772 /* 773 * parse_thread_groups: Parses the "ibm,thread-groups" device tree 774 * property for the CPU device node @dn and stores 775 * the parsed output in the thread_groups_list 776 * structure @tglp. 777 * 778 * @dn: The device node of the CPU device. 779 * @tglp: Pointer to a thread group list structure into which the parsed 780 * output of "ibm,thread-groups" is stored. 781 * 782 * ibm,thread-groups[0..N-1] array defines which group of threads in 783 * the CPU-device node can be grouped together based on the property. 784 * 785 * This array can represent thread groupings for multiple properties. 786 * 787 * ibm,thread-groups[i + 0] tells us the property based on which the 788 * threads are being grouped together. If this value is 1, it implies 789 * that the threads in the same group share L1, translation cache. If 790 * the value is 2, it implies that the threads in the same group share 791 * the same L2 cache. 792 * 793 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the 794 * property ibm,thread-groups[i] 795 * 796 * ibm,thread-groups[i+2] tells us the number of threads in each such 797 * group. 798 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then, 799 * 800 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by 801 * "ibm,ppc-interrupt-server#s" arranged as per their membership in 802 * the grouping. 803 * 804 * Example: 805 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15] 806 * This can be decomposed up into two consecutive arrays: 807 * a) [1,2,4,8,10,12,14,9,11,13,15] 808 * b) [2,2,4,8,10,12,14,9,11,13,15] 809 * 810 * where in, 811 * 812 * a) provides information of Property "1" being shared by "2" groups, 813 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of 814 * the first group is {8,10,12,14} and the 815 * "ibm,ppc-interrupt-server#s" of the second group is 816 * {9,11,13,15}. Property "1" is indicative of the thread in the 817 * group sharing L1 cache, translation cache and Instruction Data 818 * flow. 819 * 820 * b) provides information of Property "2" being shared by "2" groups, 821 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of 822 * the first group is {8,10,12,14} and the 823 * "ibm,ppc-interrupt-server#s" of the second group is 824 * {9,11,13,15}. Property "2" indicates that the threads in each 825 * group share the L2-cache. 826 * 827 * Returns 0 on success, -EINVAL if the property does not exist, 828 * -ENODATA if property does not have a value, and -EOVERFLOW if the 829 * property data isn't large enough. 830 */ 831 static int parse_thread_groups(struct device_node *dn, 832 struct thread_groups_list *tglp) 833 { 834 unsigned int property_idx = 0; 835 u32 *thread_group_array; 836 size_t total_threads; 837 int ret = 0, count; 838 u32 *thread_list; 839 int i = 0; 840 841 count = of_property_count_u32_elems(dn, "ibm,thread-groups"); 842 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL); 843 ret = of_property_read_u32_array(dn, "ibm,thread-groups", 844 thread_group_array, count); 845 if (ret) 846 goto out_free; 847 848 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) { 849 int j; 850 struct thread_groups *tg = &tglp->property_tgs[property_idx++]; 851 852 tg->property = thread_group_array[i]; 853 tg->nr_groups = thread_group_array[i + 1]; 854 tg->threads_per_group = thread_group_array[i + 2]; 855 total_threads = tg->nr_groups * tg->threads_per_group; 856 857 thread_list = &thread_group_array[i + 3]; 858 859 for (j = 0; j < total_threads; j++) 860 tg->thread_list[j] = thread_list[j]; 861 i = i + 3 + total_threads; 862 } 863 864 tglp->nr_properties = property_idx; 865 866 out_free: 867 kfree(thread_group_array); 868 return ret; 869 } 870 871 /* 872 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list 873 * that @cpu belongs to. 874 * 875 * @cpu : The logical CPU whose thread group is being searched. 876 * @tg : The thread-group structure of the CPU node which @cpu belongs 877 * to. 878 * 879 * Returns the index to tg->thread_list that points to the the start 880 * of the thread_group that @cpu belongs to. 881 * 882 * Returns -1 if cpu doesn't belong to any of the groups pointed to by 883 * tg->thread_list. 884 */ 885 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) 886 { 887 int hw_cpu_id = get_hard_smp_processor_id(cpu); 888 int i, j; 889 890 for (i = 0; i < tg->nr_groups; i++) { 891 int group_start = i * tg->threads_per_group; 892 893 for (j = 0; j < tg->threads_per_group; j++) { 894 int idx = group_start + j; 895 896 if (tg->thread_list[idx] == hw_cpu_id) 897 return group_start; 898 } 899 } 900 901 return -1; 902 } 903 904 static struct thread_groups *__init get_thread_groups(int cpu, 905 int group_property, 906 int *err) 907 { 908 struct device_node *dn = of_get_cpu_node(cpu, NULL); 909 struct thread_groups_list *cpu_tgl = &tgl[cpu]; 910 struct thread_groups *tg = NULL; 911 int i; 912 *err = 0; 913 914 if (!dn) { 915 *err = -ENODATA; 916 return NULL; 917 } 918 919 if (!cpu_tgl->nr_properties) { 920 *err = parse_thread_groups(dn, cpu_tgl); 921 if (*err) 922 goto out; 923 } 924 925 for (i = 0; i < cpu_tgl->nr_properties; i++) { 926 if (cpu_tgl->property_tgs[i].property == group_property) { 927 tg = &cpu_tgl->property_tgs[i]; 928 break; 929 } 930 } 931 932 if (!tg) 933 *err = -EINVAL; 934 out: 935 of_node_put(dn); 936 return tg; 937 } 938 939 static int update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, int cpu, int cpu_group_start) 940 { 941 int first_thread = cpu_first_thread_sibling(cpu); 942 int i; 943 944 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu)); 945 946 for (i = first_thread; i < first_thread + threads_per_core; i++) { 947 int i_group_start = get_cpu_thread_group_start(i, tg); 948 949 if (unlikely(i_group_start == -1)) { 950 WARN_ON_ONCE(1); 951 return -ENODATA; 952 } 953 954 if (i_group_start == cpu_group_start) 955 cpumask_set_cpu(i, *mask); 956 } 957 958 return 0; 959 } 960 961 static int __init init_thread_group_cache_map(int cpu, int cache_property) 962 963 { 964 int cpu_group_start = -1, err = 0; 965 struct thread_groups *tg = NULL; 966 cpumask_var_t *mask = NULL; 967 968 if (cache_property != THREAD_GROUP_SHARE_L1 && 969 cache_property != THREAD_GROUP_SHARE_L2_L3) 970 return -EINVAL; 971 972 tg = get_thread_groups(cpu, cache_property, &err); 973 974 if (!tg) 975 return err; 976 977 cpu_group_start = get_cpu_thread_group_start(cpu, tg); 978 979 if (unlikely(cpu_group_start == -1)) { 980 WARN_ON_ONCE(1); 981 return -ENODATA; 982 } 983 984 if (cache_property == THREAD_GROUP_SHARE_L1) { 985 mask = &per_cpu(thread_group_l1_cache_map, cpu); 986 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 987 } 988 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) { 989 mask = &per_cpu(thread_group_l2_cache_map, cpu); 990 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 991 mask = &per_cpu(thread_group_l3_cache_map, cpu); 992 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start); 993 } 994 995 996 return 0; 997 } 998 999 static bool shared_caches; 1000 1001 #ifdef CONFIG_SCHED_SMT 1002 /* cpumask of CPUs with asymmetric SMT dependency */ 1003 static int powerpc_smt_flags(void) 1004 { 1005 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1006 1007 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { 1008 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); 1009 flags |= SD_ASYM_PACKING; 1010 } 1011 return flags; 1012 } 1013 #endif 1014 1015 /* 1016 * P9 has a slightly odd architecture where pairs of cores share an L2 cache. 1017 * This topology makes it *much* cheaper to migrate tasks between adjacent cores 1018 * since the migrated task remains cache hot. We want to take advantage of this 1019 * at the scheduler level so an extra topology level is required. 1020 */ 1021 static int powerpc_shared_cache_flags(void) 1022 { 1023 return SD_SHARE_PKG_RESOURCES; 1024 } 1025 1026 /* 1027 * We can't just pass cpu_l2_cache_mask() directly because 1028 * returns a non-const pointer and the compiler barfs on that. 1029 */ 1030 static const struct cpumask *shared_cache_mask(int cpu) 1031 { 1032 return per_cpu(cpu_l2_cache_map, cpu); 1033 } 1034 1035 #ifdef CONFIG_SCHED_SMT 1036 static const struct cpumask *smallcore_smt_mask(int cpu) 1037 { 1038 return cpu_smallcore_mask(cpu); 1039 } 1040 #endif 1041 1042 static struct cpumask *cpu_coregroup_mask(int cpu) 1043 { 1044 return per_cpu(cpu_coregroup_map, cpu); 1045 } 1046 1047 static bool has_coregroup_support(void) 1048 { 1049 return coregroup_enabled; 1050 } 1051 1052 static const struct cpumask *cpu_mc_mask(int cpu) 1053 { 1054 return cpu_coregroup_mask(cpu); 1055 } 1056 1057 static struct sched_domain_topology_level powerpc_topology[] = { 1058 #ifdef CONFIG_SCHED_SMT 1059 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, 1060 #endif 1061 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, 1062 { cpu_mc_mask, SD_INIT_NAME(MC) }, 1063 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1064 { NULL, }, 1065 }; 1066 1067 static int __init init_big_cores(void) 1068 { 1069 int cpu; 1070 1071 for_each_possible_cpu(cpu) { 1072 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1); 1073 1074 if (err) 1075 return err; 1076 1077 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), 1078 GFP_KERNEL, 1079 cpu_to_node(cpu)); 1080 } 1081 1082 has_big_cores = true; 1083 1084 for_each_possible_cpu(cpu) { 1085 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3); 1086 1087 if (err) 1088 return err; 1089 } 1090 1091 thread_group_shares_l2 = true; 1092 thread_group_shares_l3 = true; 1093 pr_debug("L2/L3 cache only shared by the threads in the small core\n"); 1094 1095 return 0; 1096 } 1097 1098 void __init smp_prepare_cpus(unsigned int max_cpus) 1099 { 1100 unsigned int cpu; 1101 1102 DBG("smp_prepare_cpus\n"); 1103 1104 /* 1105 * setup_cpu may need to be called on the boot cpu. We havent 1106 * spun any cpus up but lets be paranoid. 1107 */ 1108 BUG_ON(boot_cpuid != smp_processor_id()); 1109 1110 /* Fixup boot cpu */ 1111 smp_store_cpu_info(boot_cpuid); 1112 cpu_callin_map[boot_cpuid] = 1; 1113 1114 for_each_possible_cpu(cpu) { 1115 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), 1116 GFP_KERNEL, cpu_to_node(cpu)); 1117 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), 1118 GFP_KERNEL, cpu_to_node(cpu)); 1119 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), 1120 GFP_KERNEL, cpu_to_node(cpu)); 1121 if (has_coregroup_support()) 1122 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu), 1123 GFP_KERNEL, cpu_to_node(cpu)); 1124 1125 #ifdef CONFIG_NUMA 1126 /* 1127 * numa_node_id() works after this. 1128 */ 1129 if (cpu_present(cpu)) { 1130 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); 1131 set_cpu_numa_mem(cpu, 1132 local_memory_node(numa_cpu_lookup_table[cpu])); 1133 } 1134 #endif 1135 } 1136 1137 /* Init the cpumasks so the boot CPU is related to itself */ 1138 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); 1139 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); 1140 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); 1141 1142 if (has_coregroup_support()) 1143 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid)); 1144 1145 init_big_cores(); 1146 if (has_big_cores) { 1147 cpumask_set_cpu(boot_cpuid, 1148 cpu_smallcore_mask(boot_cpuid)); 1149 } 1150 1151 if (cpu_to_chip_id(boot_cpuid) != -1) { 1152 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); 1153 1154 /* 1155 * All threads of a core will all belong to the same core, 1156 * chip_id_lookup_table will have one entry per core. 1157 * Assumption: if boot_cpuid doesn't have a chip-id, then no 1158 * other CPUs, will also not have chip-id. 1159 */ 1160 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL); 1161 if (chip_id_lookup_table) 1162 memset(chip_id_lookup_table, -1, sizeof(int) * idx); 1163 } 1164 1165 if (smp_ops && smp_ops->probe) 1166 smp_ops->probe(); 1167 } 1168 1169 void smp_prepare_boot_cpu(void) 1170 { 1171 BUG_ON(smp_processor_id() != boot_cpuid); 1172 #ifdef CONFIG_PPC64 1173 paca_ptrs[boot_cpuid]->__current = current; 1174 #endif 1175 set_numa_node(numa_cpu_lookup_table[boot_cpuid]); 1176 current_set[boot_cpuid] = current; 1177 } 1178 1179 #ifdef CONFIG_HOTPLUG_CPU 1180 1181 int generic_cpu_disable(void) 1182 { 1183 unsigned int cpu = smp_processor_id(); 1184 1185 if (cpu == boot_cpuid) 1186 return -EBUSY; 1187 1188 set_cpu_online(cpu, false); 1189 #ifdef CONFIG_PPC64 1190 vdso_data->processorCount--; 1191 #endif 1192 /* Update affinity of all IRQs previously aimed at this CPU */ 1193 irq_migrate_all_off_this_cpu(); 1194 1195 /* 1196 * Depending on the details of the interrupt controller, it's possible 1197 * that one of the interrupts we just migrated away from this CPU is 1198 * actually already pending on this CPU. If we leave it in that state 1199 * the interrupt will never be EOI'ed, and will never fire again. So 1200 * temporarily enable interrupts here, to allow any pending interrupt to 1201 * be received (and EOI'ed), before we take this CPU offline. 1202 */ 1203 local_irq_enable(); 1204 mdelay(1); 1205 local_irq_disable(); 1206 1207 return 0; 1208 } 1209 1210 void generic_cpu_die(unsigned int cpu) 1211 { 1212 int i; 1213 1214 for (i = 0; i < 100; i++) { 1215 smp_rmb(); 1216 if (is_cpu_dead(cpu)) 1217 return; 1218 msleep(100); 1219 } 1220 printk(KERN_ERR "CPU%d didn't die...\n", cpu); 1221 } 1222 1223 void generic_set_cpu_dead(unsigned int cpu) 1224 { 1225 per_cpu(cpu_state, cpu) = CPU_DEAD; 1226 } 1227 1228 /* 1229 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise 1230 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), 1231 * which makes the delay in generic_cpu_die() not happen. 1232 */ 1233 void generic_set_cpu_up(unsigned int cpu) 1234 { 1235 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 1236 } 1237 1238 int generic_check_cpu_restart(unsigned int cpu) 1239 { 1240 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; 1241 } 1242 1243 int is_cpu_dead(unsigned int cpu) 1244 { 1245 return per_cpu(cpu_state, cpu) == CPU_DEAD; 1246 } 1247 1248 static bool secondaries_inhibited(void) 1249 { 1250 return kvm_hv_mode_active(); 1251 } 1252 1253 #else /* HOTPLUG_CPU */ 1254 1255 #define secondaries_inhibited() 0 1256 1257 #endif 1258 1259 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) 1260 { 1261 #ifdef CONFIG_PPC64 1262 paca_ptrs[cpu]->__current = idle; 1263 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + 1264 THREAD_SIZE - STACK_FRAME_OVERHEAD; 1265 #endif 1266 task_thread_info(idle)->cpu = cpu; 1267 secondary_current = current_set[cpu] = idle; 1268 } 1269 1270 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1271 { 1272 int rc, c; 1273 1274 /* 1275 * Don't allow secondary threads to come online if inhibited 1276 */ 1277 if (threads_per_core > 1 && secondaries_inhibited() && 1278 cpu_thread_in_subcore(cpu)) 1279 return -EBUSY; 1280 1281 if (smp_ops == NULL || 1282 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) 1283 return -EINVAL; 1284 1285 cpu_idle_thread_init(cpu, tidle); 1286 1287 /* 1288 * The platform might need to allocate resources prior to bringing 1289 * up the CPU 1290 */ 1291 if (smp_ops->prepare_cpu) { 1292 rc = smp_ops->prepare_cpu(cpu); 1293 if (rc) 1294 return rc; 1295 } 1296 1297 /* Make sure callin-map entry is 0 (can be leftover a CPU 1298 * hotplug 1299 */ 1300 cpu_callin_map[cpu] = 0; 1301 1302 /* The information for processor bringup must 1303 * be written out to main store before we release 1304 * the processor. 1305 */ 1306 smp_mb(); 1307 1308 /* wake up cpus */ 1309 DBG("smp: kicking cpu %d\n", cpu); 1310 rc = smp_ops->kick_cpu(cpu); 1311 if (rc) { 1312 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); 1313 return rc; 1314 } 1315 1316 /* 1317 * wait to see if the cpu made a callin (is actually up). 1318 * use this value that I found through experimentation. 1319 * -- Cort 1320 */ 1321 if (system_state < SYSTEM_RUNNING) 1322 for (c = 50000; c && !cpu_callin_map[cpu]; c--) 1323 udelay(100); 1324 #ifdef CONFIG_HOTPLUG_CPU 1325 else 1326 /* 1327 * CPUs can take much longer to come up in the 1328 * hotplug case. Wait five seconds. 1329 */ 1330 for (c = 5000; c && !cpu_callin_map[cpu]; c--) 1331 msleep(1); 1332 #endif 1333 1334 if (!cpu_callin_map[cpu]) { 1335 printk(KERN_ERR "Processor %u is stuck.\n", cpu); 1336 return -ENOENT; 1337 } 1338 1339 DBG("Processor %u found.\n", cpu); 1340 1341 if (smp_ops->give_timebase) 1342 smp_ops->give_timebase(); 1343 1344 /* Wait until cpu puts itself in the online & active maps */ 1345 spin_until_cond(cpu_online(cpu)); 1346 1347 return 0; 1348 } 1349 1350 /* Return the value of the reg property corresponding to the given 1351 * logical cpu. 1352 */ 1353 int cpu_to_core_id(int cpu) 1354 { 1355 struct device_node *np; 1356 int id = -1; 1357 1358 np = of_get_cpu_node(cpu, NULL); 1359 if (!np) 1360 goto out; 1361 1362 id = of_get_cpu_hwid(np, 0); 1363 out: 1364 of_node_put(np); 1365 return id; 1366 } 1367 EXPORT_SYMBOL_GPL(cpu_to_core_id); 1368 1369 /* Helper routines for cpu to core mapping */ 1370 int cpu_core_index_of_thread(int cpu) 1371 { 1372 return cpu >> threads_shift; 1373 } 1374 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); 1375 1376 int cpu_first_thread_of_core(int core) 1377 { 1378 return core << threads_shift; 1379 } 1380 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); 1381 1382 /* Must be called when no change can occur to cpu_present_mask, 1383 * i.e. during cpu online or offline. 1384 */ 1385 static struct device_node *cpu_to_l2cache(int cpu) 1386 { 1387 struct device_node *np; 1388 struct device_node *cache; 1389 1390 if (!cpu_present(cpu)) 1391 return NULL; 1392 1393 np = of_get_cpu_node(cpu, NULL); 1394 if (np == NULL) 1395 return NULL; 1396 1397 cache = of_find_next_cache_node(np); 1398 1399 of_node_put(np); 1400 1401 return cache; 1402 } 1403 1404 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask) 1405 { 1406 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1407 struct device_node *l2_cache, *np; 1408 int i; 1409 1410 if (has_big_cores) 1411 submask_fn = cpu_smallcore_mask; 1412 1413 /* 1414 * If the threads in a thread-group share L2 cache, then the 1415 * L2-mask can be obtained from thread_group_l2_cache_map. 1416 */ 1417 if (thread_group_shares_l2) { 1418 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu)); 1419 1420 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) { 1421 if (cpu_online(i)) 1422 set_cpus_related(i, cpu, cpu_l2_cache_mask); 1423 } 1424 1425 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */ 1426 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) && 1427 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) { 1428 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n", 1429 cpu); 1430 } 1431 1432 return true; 1433 } 1434 1435 l2_cache = cpu_to_l2cache(cpu); 1436 if (!l2_cache || !*mask) { 1437 /* Assume only core siblings share cache with this CPU */ 1438 for_each_cpu(i, cpu_sibling_mask(cpu)) 1439 set_cpus_related(cpu, i, cpu_l2_cache_mask); 1440 1441 return false; 1442 } 1443 1444 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1445 1446 /* Update l2-cache mask with all the CPUs that are part of submask */ 1447 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask); 1448 1449 /* Skip all CPUs already part of current CPU l2-cache mask */ 1450 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu)); 1451 1452 for_each_cpu(i, *mask) { 1453 /* 1454 * when updating the marks the current CPU has not been marked 1455 * online, but we need to update the cache masks 1456 */ 1457 np = cpu_to_l2cache(i); 1458 1459 /* Skip all CPUs already part of current CPU l2-cache */ 1460 if (np == l2_cache) { 1461 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask); 1462 cpumask_andnot(*mask, *mask, submask_fn(i)); 1463 } else { 1464 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i)); 1465 } 1466 1467 of_node_put(np); 1468 } 1469 of_node_put(l2_cache); 1470 1471 return true; 1472 } 1473 1474 #ifdef CONFIG_HOTPLUG_CPU 1475 static void remove_cpu_from_masks(int cpu) 1476 { 1477 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask; 1478 int i; 1479 1480 unmap_cpu_from_node(cpu); 1481 1482 if (shared_caches) 1483 mask_fn = cpu_l2_cache_mask; 1484 1485 for_each_cpu(i, mask_fn(cpu)) { 1486 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); 1487 set_cpus_unrelated(cpu, i, cpu_sibling_mask); 1488 if (has_big_cores) 1489 set_cpus_unrelated(cpu, i, cpu_smallcore_mask); 1490 } 1491 1492 for_each_cpu(i, cpu_core_mask(cpu)) 1493 set_cpus_unrelated(cpu, i, cpu_core_mask); 1494 1495 if (has_coregroup_support()) { 1496 for_each_cpu(i, cpu_coregroup_mask(cpu)) 1497 set_cpus_unrelated(cpu, i, cpu_coregroup_mask); 1498 } 1499 } 1500 #endif 1501 1502 static inline void add_cpu_to_smallcore_masks(int cpu) 1503 { 1504 int i; 1505 1506 if (!has_big_cores) 1507 return; 1508 1509 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); 1510 1511 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) { 1512 if (cpu_online(i)) 1513 set_cpus_related(i, cpu, cpu_smallcore_mask); 1514 } 1515 } 1516 1517 static void update_coregroup_mask(int cpu, cpumask_var_t *mask) 1518 { 1519 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1520 int coregroup_id = cpu_to_coregroup_id(cpu); 1521 int i; 1522 1523 if (shared_caches) 1524 submask_fn = cpu_l2_cache_mask; 1525 1526 if (!*mask) { 1527 /* Assume only siblings are part of this CPU's coregroup */ 1528 for_each_cpu(i, submask_fn(cpu)) 1529 set_cpus_related(cpu, i, cpu_coregroup_mask); 1530 1531 return; 1532 } 1533 1534 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu)); 1535 1536 /* Update coregroup mask with all the CPUs that are part of submask */ 1537 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask); 1538 1539 /* Skip all CPUs already part of coregroup mask */ 1540 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu)); 1541 1542 for_each_cpu(i, *mask) { 1543 /* Skip all CPUs not part of this coregroup */ 1544 if (coregroup_id == cpu_to_coregroup_id(i)) { 1545 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask); 1546 cpumask_andnot(*mask, *mask, submask_fn(i)); 1547 } else { 1548 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i)); 1549 } 1550 } 1551 } 1552 1553 static void add_cpu_to_masks(int cpu) 1554 { 1555 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask; 1556 int first_thread = cpu_first_thread_sibling(cpu); 1557 cpumask_var_t mask; 1558 int chip_id = -1; 1559 bool ret; 1560 int i; 1561 1562 /* 1563 * This CPU will not be in the online mask yet so we need to manually 1564 * add it to it's own thread sibling mask. 1565 */ 1566 map_cpu_to_node(cpu, cpu_to_node(cpu)); 1567 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 1568 cpumask_set_cpu(cpu, cpu_core_mask(cpu)); 1569 1570 for (i = first_thread; i < first_thread + threads_per_core; i++) 1571 if (cpu_online(i)) 1572 set_cpus_related(i, cpu, cpu_sibling_mask); 1573 1574 add_cpu_to_smallcore_masks(cpu); 1575 1576 /* In CPU-hotplug path, hence use GFP_ATOMIC */ 1577 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu)); 1578 update_mask_by_l2(cpu, &mask); 1579 1580 if (has_coregroup_support()) 1581 update_coregroup_mask(cpu, &mask); 1582 1583 if (chip_id_lookup_table && ret) 1584 chip_id = cpu_to_chip_id(cpu); 1585 1586 if (shared_caches) 1587 submask_fn = cpu_l2_cache_mask; 1588 1589 /* Update core_mask with all the CPUs that are part of submask */ 1590 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask); 1591 1592 /* Skip all CPUs already part of current CPU core mask */ 1593 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu)); 1594 1595 /* If chip_id is -1; limit the cpu_core_mask to within DIE*/ 1596 if (chip_id == -1) 1597 cpumask_and(mask, mask, cpu_cpu_mask(cpu)); 1598 1599 for_each_cpu(i, mask) { 1600 if (chip_id == cpu_to_chip_id(i)) { 1601 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask); 1602 cpumask_andnot(mask, mask, submask_fn(i)); 1603 } else { 1604 cpumask_andnot(mask, mask, cpu_core_mask(i)); 1605 } 1606 } 1607 1608 free_cpumask_var(mask); 1609 } 1610 1611 /* Activate a secondary processor. */ 1612 void start_secondary(void *unused) 1613 { 1614 unsigned int cpu = raw_smp_processor_id(); 1615 1616 /* PPC64 calls setup_kup() in early_setup_secondary() */ 1617 if (IS_ENABLED(CONFIG_PPC32)) 1618 setup_kup(); 1619 1620 mmgrab(&init_mm); 1621 current->active_mm = &init_mm; 1622 1623 smp_store_cpu_info(cpu); 1624 set_dec(tb_ticks_per_jiffy); 1625 rcu_cpu_starting(cpu); 1626 cpu_callin_map[cpu] = 1; 1627 1628 if (smp_ops->setup_cpu) 1629 smp_ops->setup_cpu(cpu); 1630 if (smp_ops->take_timebase) 1631 smp_ops->take_timebase(); 1632 1633 secondary_cpu_time_init(); 1634 1635 #ifdef CONFIG_PPC64 1636 if (system_state == SYSTEM_RUNNING) 1637 vdso_data->processorCount++; 1638 1639 vdso_getcpu_init(); 1640 #endif 1641 set_numa_node(numa_cpu_lookup_table[cpu]); 1642 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); 1643 1644 /* Update topology CPU masks */ 1645 add_cpu_to_masks(cpu); 1646 1647 /* 1648 * Check for any shared caches. Note that this must be done on a 1649 * per-core basis because one core in the pair might be disabled. 1650 */ 1651 if (!shared_caches) { 1652 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; 1653 struct cpumask *mask = cpu_l2_cache_mask(cpu); 1654 1655 if (has_big_cores) 1656 sibling_mask = cpu_smallcore_mask; 1657 1658 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu))) 1659 shared_caches = true; 1660 } 1661 1662 smp_wmb(); 1663 notify_cpu_starting(cpu); 1664 set_cpu_online(cpu, true); 1665 1666 boot_init_stack_canary(); 1667 1668 local_irq_enable(); 1669 1670 /* We can enable ftrace for secondary cpus now */ 1671 this_cpu_enable_ftrace(); 1672 1673 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 1674 1675 BUG(); 1676 } 1677 1678 #ifdef CONFIG_PROFILING 1679 int setup_profiling_timer(unsigned int multiplier) 1680 { 1681 return 0; 1682 } 1683 #endif 1684 1685 static void fixup_topology(void) 1686 { 1687 int i; 1688 1689 #ifdef CONFIG_SCHED_SMT 1690 if (has_big_cores) { 1691 pr_info("Big cores detected but using small core scheduling\n"); 1692 powerpc_topology[smt_idx].mask = smallcore_smt_mask; 1693 } 1694 #endif 1695 1696 if (!has_coregroup_support()) 1697 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask; 1698 1699 /* 1700 * Try to consolidate topology levels here instead of 1701 * allowing scheduler to degenerate. 1702 * - Dont consolidate if masks are different. 1703 * - Dont consolidate if sd_flags exists and are different. 1704 */ 1705 for (i = 1; i <= die_idx; i++) { 1706 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask) 1707 continue; 1708 1709 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags && 1710 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags) 1711 continue; 1712 1713 if (!powerpc_topology[i - 1].sd_flags) 1714 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags; 1715 1716 powerpc_topology[i].mask = powerpc_topology[i + 1].mask; 1717 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags; 1718 #ifdef CONFIG_SCHED_DEBUG 1719 powerpc_topology[i].name = powerpc_topology[i + 1].name; 1720 #endif 1721 } 1722 } 1723 1724 void __init smp_cpus_done(unsigned int max_cpus) 1725 { 1726 /* 1727 * We are running pinned to the boot CPU, see rest_init(). 1728 */ 1729 if (smp_ops && smp_ops->setup_cpu) 1730 smp_ops->setup_cpu(boot_cpuid); 1731 1732 if (smp_ops && smp_ops->bringup_done) 1733 smp_ops->bringup_done(); 1734 1735 dump_numa_cpu_topology(); 1736 1737 fixup_topology(); 1738 set_sched_topology(powerpc_topology); 1739 } 1740 1741 #ifdef CONFIG_HOTPLUG_CPU 1742 int __cpu_disable(void) 1743 { 1744 int cpu = smp_processor_id(); 1745 int err; 1746 1747 if (!smp_ops->cpu_disable) 1748 return -ENOSYS; 1749 1750 this_cpu_disable_ftrace(); 1751 1752 err = smp_ops->cpu_disable(); 1753 if (err) 1754 return err; 1755 1756 /* Update sibling maps */ 1757 remove_cpu_from_masks(cpu); 1758 1759 return 0; 1760 } 1761 1762 void __cpu_die(unsigned int cpu) 1763 { 1764 if (smp_ops->cpu_die) 1765 smp_ops->cpu_die(cpu); 1766 } 1767 1768 void arch_cpu_idle_dead(void) 1769 { 1770 /* 1771 * Disable on the down path. This will be re-enabled by 1772 * start_secondary() via start_secondary_resume() below 1773 */ 1774 this_cpu_disable_ftrace(); 1775 1776 if (smp_ops->cpu_offline_self) 1777 smp_ops->cpu_offline_self(); 1778 1779 /* If we return, we re-enter start_secondary */ 1780 start_secondary_resume(); 1781 } 1782 1783 #endif 1784