xref: /openbmc/linux/arch/powerpc/kernel/signal_64.c (revision ccd51b9f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/kernel/signal.c"
7  *    Copyright (C) 1991, 1992 Linus Torvalds
8  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/mm.h>
13 #include <linux/smp.h>
14 #include <linux/kernel.h>
15 #include <linux/signal.h>
16 #include <linux/errno.h>
17 #include <linux/wait.h>
18 #include <linux/unistd.h>
19 #include <linux/stddef.h>
20 #include <linux/elf.h>
21 #include <linux/ptrace.h>
22 #include <linux/ratelimit.h>
23 #include <linux/syscalls.h>
24 
25 #include <asm/sigcontext.h>
26 #include <asm/ucontext.h>
27 #include <linux/uaccess.h>
28 #include <asm/pgtable.h>
29 #include <asm/unistd.h>
30 #include <asm/cacheflush.h>
31 #include <asm/syscalls.h>
32 #include <asm/vdso.h>
33 #include <asm/switch_to.h>
34 #include <asm/tm.h>
35 #include <asm/asm-prototypes.h>
36 
37 #include "signal.h"
38 
39 
40 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
41 #define FP_REGS_SIZE	sizeof(elf_fpregset_t)
42 
43 #define TRAMP_TRACEBACK	3
44 #define TRAMP_SIZE	6
45 
46 /*
47  * When we have signals to deliver, we set up on the user stack,
48  * going down from the original stack pointer:
49  *	1) a rt_sigframe struct which contains the ucontext
50  *	2) a gap of __SIGNAL_FRAMESIZE bytes which acts as a dummy caller
51  *	   frame for the signal handler.
52  */
53 
54 struct rt_sigframe {
55 	/* sys_rt_sigreturn requires the ucontext be the first field */
56 	struct ucontext uc;
57 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
58 	struct ucontext uc_transact;
59 #endif
60 	unsigned long _unused[2];
61 	unsigned int tramp[TRAMP_SIZE];
62 	struct siginfo __user *pinfo;
63 	void __user *puc;
64 	struct siginfo info;
65 	/* New 64 bit little-endian ABI allows redzone of 512 bytes below sp */
66 	char abigap[USER_REDZONE_SIZE];
67 } __attribute__ ((aligned (16)));
68 
69 static const char fmt32[] = KERN_INFO \
70 	"%s[%d]: bad frame in %s: %08lx nip %08lx lr %08lx\n";
71 static const char fmt64[] = KERN_INFO \
72 	"%s[%d]: bad frame in %s: %016lx nip %016lx lr %016lx\n";
73 
74 /*
75  * This computes a quad word aligned pointer inside the vmx_reserve array
76  * element. For historical reasons sigcontext might not be quad word aligned,
77  * but the location we write the VMX regs to must be. See the comment in
78  * sigcontext for more detail.
79  */
80 #ifdef CONFIG_ALTIVEC
81 static elf_vrreg_t __user *sigcontext_vmx_regs(struct sigcontext __user *sc)
82 {
83 	return (elf_vrreg_t __user *) (((unsigned long)sc->vmx_reserve + 15) & ~0xful);
84 }
85 #endif
86 
87 /*
88  * Set up the sigcontext for the signal frame.
89  */
90 
91 static long setup_sigcontext(struct sigcontext __user *sc,
92 		struct task_struct *tsk, int signr, sigset_t *set,
93 		unsigned long handler, int ctx_has_vsx_region)
94 {
95 	/* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the
96 	 * process never used altivec yet (MSR_VEC is zero in pt_regs of
97 	 * the context). This is very important because we must ensure we
98 	 * don't lose the VRSAVE content that may have been set prior to
99 	 * the process doing its first vector operation
100 	 * Userland shall check AT_HWCAP to know whether it can rely on the
101 	 * v_regs pointer or not
102 	 */
103 #ifdef CONFIG_ALTIVEC
104 	elf_vrreg_t __user *v_regs = sigcontext_vmx_regs(sc);
105 	unsigned long vrsave;
106 #endif
107 	struct pt_regs *regs = tsk->thread.regs;
108 	unsigned long msr = regs->msr;
109 	long err = 0;
110 	/* Force usr to alway see softe as 1 (interrupts enabled) */
111 	unsigned long softe = 0x1;
112 
113 	BUG_ON(tsk != current);
114 
115 #ifdef CONFIG_ALTIVEC
116 	err |= __put_user(v_regs, &sc->v_regs);
117 
118 	/* save altivec registers */
119 	if (tsk->thread.used_vr) {
120 		flush_altivec_to_thread(tsk);
121 		/* Copy 33 vec registers (vr0..31 and vscr) to the stack */
122 		err |= __copy_to_user(v_regs, &tsk->thread.vr_state,
123 				      33 * sizeof(vector128));
124 		/* set MSR_VEC in the MSR value in the frame to indicate that sc->v_reg)
125 		 * contains valid data.
126 		 */
127 		msr |= MSR_VEC;
128 	}
129 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
130 	 * use altivec.
131 	 */
132 	vrsave = 0;
133 	if (cpu_has_feature(CPU_FTR_ALTIVEC)) {
134 		vrsave = mfspr(SPRN_VRSAVE);
135 		tsk->thread.vrsave = vrsave;
136 	}
137 
138 	err |= __put_user(vrsave, (u32 __user *)&v_regs[33]);
139 #else /* CONFIG_ALTIVEC */
140 	err |= __put_user(0, &sc->v_regs);
141 #endif /* CONFIG_ALTIVEC */
142 	flush_fp_to_thread(tsk);
143 	/* copy fpr regs and fpscr */
144 	err |= copy_fpr_to_user(&sc->fp_regs, tsk);
145 
146 	/*
147 	 * Clear the MSR VSX bit to indicate there is no valid state attached
148 	 * to this context, except in the specific case below where we set it.
149 	 */
150 	msr &= ~MSR_VSX;
151 #ifdef CONFIG_VSX
152 	/*
153 	 * Copy VSX low doubleword to local buffer for formatting,
154 	 * then out to userspace.  Update v_regs to point after the
155 	 * VMX data.
156 	 */
157 	if (tsk->thread.used_vsr && ctx_has_vsx_region) {
158 		flush_vsx_to_thread(tsk);
159 		v_regs += ELF_NVRREG;
160 		err |= copy_vsx_to_user(v_regs, tsk);
161 		/* set MSR_VSX in the MSR value in the frame to
162 		 * indicate that sc->vs_reg) contains valid data.
163 		 */
164 		msr |= MSR_VSX;
165 	}
166 #endif /* CONFIG_VSX */
167 	err |= __put_user(&sc->gp_regs, &sc->regs);
168 	WARN_ON(!FULL_REGS(regs));
169 	err |= __copy_to_user(&sc->gp_regs, regs, GP_REGS_SIZE);
170 	err |= __put_user(msr, &sc->gp_regs[PT_MSR]);
171 	err |= __put_user(softe, &sc->gp_regs[PT_SOFTE]);
172 	err |= __put_user(signr, &sc->signal);
173 	err |= __put_user(handler, &sc->handler);
174 	if (set != NULL)
175 		err |=  __put_user(set->sig[0], &sc->oldmask);
176 
177 	return err;
178 }
179 
180 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
181 /*
182  * As above, but Transactional Memory is in use, so deliver sigcontexts
183  * containing checkpointed and transactional register states.
184  *
185  * To do this, we treclaim (done before entering here) to gather both sets of
186  * registers and set up the 'normal' sigcontext registers with rolled-back
187  * register values such that a simple signal handler sees a correct
188  * checkpointed register state.  If interested, a TM-aware sighandler can
189  * examine the transactional registers in the 2nd sigcontext to determine the
190  * real origin of the signal.
191  */
192 static long setup_tm_sigcontexts(struct sigcontext __user *sc,
193 				 struct sigcontext __user *tm_sc,
194 				 struct task_struct *tsk,
195 				 int signr, sigset_t *set, unsigned long handler)
196 {
197 	/* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the
198 	 * process never used altivec yet (MSR_VEC is zero in pt_regs of
199 	 * the context). This is very important because we must ensure we
200 	 * don't lose the VRSAVE content that may have been set prior to
201 	 * the process doing its first vector operation
202 	 * Userland shall check AT_HWCAP to know wether it can rely on the
203 	 * v_regs pointer or not.
204 	 */
205 #ifdef CONFIG_ALTIVEC
206 	elf_vrreg_t __user *v_regs = sigcontext_vmx_regs(sc);
207 	elf_vrreg_t __user *tm_v_regs = sigcontext_vmx_regs(tm_sc);
208 #endif
209 	struct pt_regs *regs = tsk->thread.regs;
210 	unsigned long msr = tsk->thread.regs->msr;
211 	long err = 0;
212 
213 	BUG_ON(tsk != current);
214 
215 	BUG_ON(!MSR_TM_ACTIVE(regs->msr));
216 
217 	WARN_ON(tm_suspend_disabled);
218 
219 	/* Restore checkpointed FP, VEC, and VSX bits from ckpt_regs as
220 	 * it contains the correct FP, VEC, VSX state after we treclaimed
221 	 * the transaction and giveup_all() was called on reclaiming.
222 	 */
223 	msr |= tsk->thread.ckpt_regs.msr & (MSR_FP | MSR_VEC | MSR_VSX);
224 
225 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
226 	 * just indicates to userland that we were doing a transaction, but we
227 	 * don't want to return in transactional state.  This also ensures
228 	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
229 	 */
230 	regs->msr &= ~MSR_TS_MASK;
231 
232 #ifdef CONFIG_ALTIVEC
233 	err |= __put_user(v_regs, &sc->v_regs);
234 	err |= __put_user(tm_v_regs, &tm_sc->v_regs);
235 
236 	/* save altivec registers */
237 	if (tsk->thread.used_vr) {
238 		/* Copy 33 vec registers (vr0..31 and vscr) to the stack */
239 		err |= __copy_to_user(v_regs, &tsk->thread.ckvr_state,
240 				      33 * sizeof(vector128));
241 		/* If VEC was enabled there are transactional VRs valid too,
242 		 * else they're a copy of the checkpointed VRs.
243 		 */
244 		if (msr & MSR_VEC)
245 			err |= __copy_to_user(tm_v_regs,
246 					      &tsk->thread.vr_state,
247 					      33 * sizeof(vector128));
248 		else
249 			err |= __copy_to_user(tm_v_regs,
250 					      &tsk->thread.ckvr_state,
251 					      33 * sizeof(vector128));
252 
253 		/* set MSR_VEC in the MSR value in the frame to indicate
254 		 * that sc->v_reg contains valid data.
255 		 */
256 		msr |= MSR_VEC;
257 	}
258 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
259 	 * use altivec.
260 	 */
261 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
262 		tsk->thread.ckvrsave = mfspr(SPRN_VRSAVE);
263 	err |= __put_user(tsk->thread.ckvrsave, (u32 __user *)&v_regs[33]);
264 	if (msr & MSR_VEC)
265 		err |= __put_user(tsk->thread.vrsave,
266 				  (u32 __user *)&tm_v_regs[33]);
267 	else
268 		err |= __put_user(tsk->thread.ckvrsave,
269 				  (u32 __user *)&tm_v_regs[33]);
270 
271 #else /* CONFIG_ALTIVEC */
272 	err |= __put_user(0, &sc->v_regs);
273 	err |= __put_user(0, &tm_sc->v_regs);
274 #endif /* CONFIG_ALTIVEC */
275 
276 	/* copy fpr regs and fpscr */
277 	err |= copy_ckfpr_to_user(&sc->fp_regs, tsk);
278 	if (msr & MSR_FP)
279 		err |= copy_fpr_to_user(&tm_sc->fp_regs, tsk);
280 	else
281 		err |= copy_ckfpr_to_user(&tm_sc->fp_regs, tsk);
282 
283 #ifdef CONFIG_VSX
284 	/*
285 	 * Copy VSX low doubleword to local buffer for formatting,
286 	 * then out to userspace.  Update v_regs to point after the
287 	 * VMX data.
288 	 */
289 	if (tsk->thread.used_vsr) {
290 		v_regs += ELF_NVRREG;
291 		tm_v_regs += ELF_NVRREG;
292 
293 		err |= copy_ckvsx_to_user(v_regs, tsk);
294 
295 		if (msr & MSR_VSX)
296 			err |= copy_vsx_to_user(tm_v_regs, tsk);
297 		else
298 			err |= copy_ckvsx_to_user(tm_v_regs, tsk);
299 
300 		/* set MSR_VSX in the MSR value in the frame to
301 		 * indicate that sc->vs_reg) contains valid data.
302 		 */
303 		msr |= MSR_VSX;
304 	}
305 #endif /* CONFIG_VSX */
306 
307 	err |= __put_user(&sc->gp_regs, &sc->regs);
308 	err |= __put_user(&tm_sc->gp_regs, &tm_sc->regs);
309 	WARN_ON(!FULL_REGS(regs));
310 	err |= __copy_to_user(&tm_sc->gp_regs, regs, GP_REGS_SIZE);
311 	err |= __copy_to_user(&sc->gp_regs,
312 			      &tsk->thread.ckpt_regs, GP_REGS_SIZE);
313 	err |= __put_user(msr, &tm_sc->gp_regs[PT_MSR]);
314 	err |= __put_user(msr, &sc->gp_regs[PT_MSR]);
315 	err |= __put_user(signr, &sc->signal);
316 	err |= __put_user(handler, &sc->handler);
317 	if (set != NULL)
318 		err |=  __put_user(set->sig[0], &sc->oldmask);
319 
320 	return err;
321 }
322 #endif
323 
324 /*
325  * Restore the sigcontext from the signal frame.
326  */
327 
328 static long restore_sigcontext(struct task_struct *tsk, sigset_t *set, int sig,
329 			      struct sigcontext __user *sc)
330 {
331 #ifdef CONFIG_ALTIVEC
332 	elf_vrreg_t __user *v_regs;
333 #endif
334 	unsigned long err = 0;
335 	unsigned long save_r13 = 0;
336 	unsigned long msr;
337 	struct pt_regs *regs = tsk->thread.regs;
338 #ifdef CONFIG_VSX
339 	int i;
340 #endif
341 
342 	BUG_ON(tsk != current);
343 
344 	/* If this is not a signal return, we preserve the TLS in r13 */
345 	if (!sig)
346 		save_r13 = regs->gpr[13];
347 
348 	/* copy the GPRs */
349 	err |= __copy_from_user(regs->gpr, sc->gp_regs, sizeof(regs->gpr));
350 	err |= __get_user(regs->nip, &sc->gp_regs[PT_NIP]);
351 	/* get MSR separately, transfer the LE bit if doing signal return */
352 	err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
353 	if (sig)
354 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
355 	err |= __get_user(regs->orig_gpr3, &sc->gp_regs[PT_ORIG_R3]);
356 	err |= __get_user(regs->ctr, &sc->gp_regs[PT_CTR]);
357 	err |= __get_user(regs->link, &sc->gp_regs[PT_LNK]);
358 	err |= __get_user(regs->xer, &sc->gp_regs[PT_XER]);
359 	err |= __get_user(regs->ccr, &sc->gp_regs[PT_CCR]);
360 	/* skip SOFTE */
361 	regs->trap = 0;
362 	err |= __get_user(regs->dar, &sc->gp_regs[PT_DAR]);
363 	err |= __get_user(regs->dsisr, &sc->gp_regs[PT_DSISR]);
364 	err |= __get_user(regs->result, &sc->gp_regs[PT_RESULT]);
365 
366 	if (!sig)
367 		regs->gpr[13] = save_r13;
368 	if (set != NULL)
369 		err |=  __get_user(set->sig[0], &sc->oldmask);
370 
371 	/*
372 	 * Force reload of FP/VEC.
373 	 * This has to be done before copying stuff into tsk->thread.fpr/vr
374 	 * for the reasons explained in the previous comment.
375 	 */
376 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX);
377 
378 #ifdef CONFIG_ALTIVEC
379 	err |= __get_user(v_regs, &sc->v_regs);
380 	if (err)
381 		return err;
382 	if (v_regs && !access_ok(v_regs, 34 * sizeof(vector128)))
383 		return -EFAULT;
384 	/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
385 	if (v_regs != NULL && (msr & MSR_VEC) != 0) {
386 		err |= __copy_from_user(&tsk->thread.vr_state, v_regs,
387 					33 * sizeof(vector128));
388 		tsk->thread.used_vr = true;
389 	} else if (tsk->thread.used_vr) {
390 		memset(&tsk->thread.vr_state, 0, 33 * sizeof(vector128));
391 	}
392 	/* Always get VRSAVE back */
393 	if (v_regs != NULL)
394 		err |= __get_user(tsk->thread.vrsave, (u32 __user *)&v_regs[33]);
395 	else
396 		tsk->thread.vrsave = 0;
397 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
398 		mtspr(SPRN_VRSAVE, tsk->thread.vrsave);
399 #endif /* CONFIG_ALTIVEC */
400 	/* restore floating point */
401 	err |= copy_fpr_from_user(tsk, &sc->fp_regs);
402 #ifdef CONFIG_VSX
403 	/*
404 	 * Get additional VSX data. Update v_regs to point after the
405 	 * VMX data.  Copy VSX low doubleword from userspace to local
406 	 * buffer for formatting, then into the taskstruct.
407 	 */
408 	v_regs += ELF_NVRREG;
409 	if ((msr & MSR_VSX) != 0) {
410 		err |= copy_vsx_from_user(tsk, v_regs);
411 		tsk->thread.used_vsr = true;
412 	} else {
413 		for (i = 0; i < 32 ; i++)
414 			tsk->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
415 	}
416 #endif
417 	return err;
418 }
419 
420 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
421 /*
422  * Restore the two sigcontexts from the frame of a transactional processes.
423  */
424 
425 static long restore_tm_sigcontexts(struct task_struct *tsk,
426 				   struct sigcontext __user *sc,
427 				   struct sigcontext __user *tm_sc)
428 {
429 #ifdef CONFIG_ALTIVEC
430 	elf_vrreg_t __user *v_regs, *tm_v_regs;
431 #endif
432 	unsigned long err = 0;
433 	unsigned long msr;
434 	struct pt_regs *regs = tsk->thread.regs;
435 #ifdef CONFIG_VSX
436 	int i;
437 #endif
438 
439 	BUG_ON(tsk != current);
440 
441 	if (tm_suspend_disabled)
442 		return -EINVAL;
443 
444 	/* copy the GPRs */
445 	err |= __copy_from_user(regs->gpr, tm_sc->gp_regs, sizeof(regs->gpr));
446 	err |= __copy_from_user(&tsk->thread.ckpt_regs, sc->gp_regs,
447 				sizeof(regs->gpr));
448 
449 	/*
450 	 * TFHAR is restored from the checkpointed 'wound-back' ucontext's NIP.
451 	 * TEXASR was set by the signal delivery reclaim, as was TFIAR.
452 	 * Users doing anything abhorrent like thread-switching w/ signals for
453 	 * TM-Suspended code will have to back TEXASR/TFIAR up themselves.
454 	 * For the case of getting a signal and simply returning from it,
455 	 * we don't need to re-copy them here.
456 	 */
457 	err |= __get_user(regs->nip, &tm_sc->gp_regs[PT_NIP]);
458 	err |= __get_user(tsk->thread.tm_tfhar, &sc->gp_regs[PT_NIP]);
459 
460 	/* get MSR separately, transfer the LE bit if doing signal return */
461 	err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
462 	/* Don't allow reserved mode. */
463 	if (MSR_TM_RESV(msr))
464 		return -EINVAL;
465 
466 	/* pull in MSR LE from user context */
467 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
468 
469 	/* The following non-GPR non-FPR non-VR state is also checkpointed: */
470 	err |= __get_user(regs->ctr, &tm_sc->gp_regs[PT_CTR]);
471 	err |= __get_user(regs->link, &tm_sc->gp_regs[PT_LNK]);
472 	err |= __get_user(regs->xer, &tm_sc->gp_regs[PT_XER]);
473 	err |= __get_user(regs->ccr, &tm_sc->gp_regs[PT_CCR]);
474 	err |= __get_user(tsk->thread.ckpt_regs.ctr,
475 			  &sc->gp_regs[PT_CTR]);
476 	err |= __get_user(tsk->thread.ckpt_regs.link,
477 			  &sc->gp_regs[PT_LNK]);
478 	err |= __get_user(tsk->thread.ckpt_regs.xer,
479 			  &sc->gp_regs[PT_XER]);
480 	err |= __get_user(tsk->thread.ckpt_regs.ccr,
481 			  &sc->gp_regs[PT_CCR]);
482 
483 	/* These regs are not checkpointed; they can go in 'regs'. */
484 	err |= __get_user(regs->trap, &sc->gp_regs[PT_TRAP]);
485 	err |= __get_user(regs->dar, &sc->gp_regs[PT_DAR]);
486 	err |= __get_user(regs->dsisr, &sc->gp_regs[PT_DSISR]);
487 	err |= __get_user(regs->result, &sc->gp_regs[PT_RESULT]);
488 
489 	/*
490 	 * Force reload of FP/VEC.
491 	 * This has to be done before copying stuff into tsk->thread.fpr/vr
492 	 * for the reasons explained in the previous comment.
493 	 */
494 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX);
495 
496 #ifdef CONFIG_ALTIVEC
497 	err |= __get_user(v_regs, &sc->v_regs);
498 	err |= __get_user(tm_v_regs, &tm_sc->v_regs);
499 	if (err)
500 		return err;
501 	if (v_regs && !access_ok(v_regs, 34 * sizeof(vector128)))
502 		return -EFAULT;
503 	if (tm_v_regs && !access_ok(tm_v_regs, 34 * sizeof(vector128)))
504 		return -EFAULT;
505 	/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
506 	if (v_regs != NULL && tm_v_regs != NULL && (msr & MSR_VEC) != 0) {
507 		err |= __copy_from_user(&tsk->thread.ckvr_state, v_regs,
508 					33 * sizeof(vector128));
509 		err |= __copy_from_user(&tsk->thread.vr_state, tm_v_regs,
510 					33 * sizeof(vector128));
511 		current->thread.used_vr = true;
512 	}
513 	else if (tsk->thread.used_vr) {
514 		memset(&tsk->thread.vr_state, 0, 33 * sizeof(vector128));
515 		memset(&tsk->thread.ckvr_state, 0, 33 * sizeof(vector128));
516 	}
517 	/* Always get VRSAVE back */
518 	if (v_regs != NULL && tm_v_regs != NULL) {
519 		err |= __get_user(tsk->thread.ckvrsave,
520 				  (u32 __user *)&v_regs[33]);
521 		err |= __get_user(tsk->thread.vrsave,
522 				  (u32 __user *)&tm_v_regs[33]);
523 	}
524 	else {
525 		tsk->thread.vrsave = 0;
526 		tsk->thread.ckvrsave = 0;
527 	}
528 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
529 		mtspr(SPRN_VRSAVE, tsk->thread.vrsave);
530 #endif /* CONFIG_ALTIVEC */
531 	/* restore floating point */
532 	err |= copy_fpr_from_user(tsk, &tm_sc->fp_regs);
533 	err |= copy_ckfpr_from_user(tsk, &sc->fp_regs);
534 #ifdef CONFIG_VSX
535 	/*
536 	 * Get additional VSX data. Update v_regs to point after the
537 	 * VMX data.  Copy VSX low doubleword from userspace to local
538 	 * buffer for formatting, then into the taskstruct.
539 	 */
540 	if (v_regs && ((msr & MSR_VSX) != 0)) {
541 		v_regs += ELF_NVRREG;
542 		tm_v_regs += ELF_NVRREG;
543 		err |= copy_vsx_from_user(tsk, tm_v_regs);
544 		err |= copy_ckvsx_from_user(tsk, v_regs);
545 		tsk->thread.used_vsr = true;
546 	} else {
547 		for (i = 0; i < 32 ; i++) {
548 			tsk->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
549 			tsk->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
550 		}
551 	}
552 #endif
553 	tm_enable();
554 	/* Make sure the transaction is marked as failed */
555 	tsk->thread.tm_texasr |= TEXASR_FS;
556 
557 	/*
558 	 * Disabling preemption, since it is unsafe to be preempted
559 	 * with MSR[TS] set without recheckpointing.
560 	 */
561 	preempt_disable();
562 
563 	/* pull in MSR TS bits from user context */
564 	regs->msr |= msr & MSR_TS_MASK;
565 
566 	/*
567 	 * Ensure that TM is enabled in regs->msr before we leave the signal
568 	 * handler. It could be the case that (a) user disabled the TM bit
569 	 * through the manipulation of the MSR bits in uc_mcontext or (b) the
570 	 * TM bit was disabled because a sufficient number of context switches
571 	 * happened whilst in the signal handler and load_tm overflowed,
572 	 * disabling the TM bit. In either case we can end up with an illegal
573 	 * TM state leading to a TM Bad Thing when we return to userspace.
574 	 *
575 	 * CAUTION:
576 	 * After regs->MSR[TS] being updated, make sure that get_user(),
577 	 * put_user() or similar functions are *not* called. These
578 	 * functions can generate page faults which will cause the process
579 	 * to be de-scheduled with MSR[TS] set but without calling
580 	 * tm_recheckpoint(). This can cause a bug.
581 	 */
582 	regs->msr |= MSR_TM;
583 
584 	/* This loads the checkpointed FP/VEC state, if used */
585 	tm_recheckpoint(&tsk->thread);
586 
587 	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
588 	if (msr & MSR_FP) {
589 		load_fp_state(&tsk->thread.fp_state);
590 		regs->msr |= (MSR_FP | tsk->thread.fpexc_mode);
591 	}
592 	if (msr & MSR_VEC) {
593 		load_vr_state(&tsk->thread.vr_state);
594 		regs->msr |= MSR_VEC;
595 	}
596 
597 	preempt_enable();
598 
599 	return err;
600 }
601 #endif
602 
603 /*
604  * Setup the trampoline code on the stack
605  */
606 static long setup_trampoline(unsigned int syscall, unsigned int __user *tramp)
607 {
608 	int i;
609 	long err = 0;
610 
611 	/* addi r1, r1, __SIGNAL_FRAMESIZE  # Pop the dummy stackframe */
612 	err |= __put_user(PPC_INST_ADDI | __PPC_RT(R1) | __PPC_RA(R1) |
613 			  (__SIGNAL_FRAMESIZE & 0xffff), &tramp[0]);
614 	/* li r0, __NR_[rt_]sigreturn| */
615 	err |= __put_user(PPC_INST_ADDI | (syscall & 0xffff), &tramp[1]);
616 	/* sc */
617 	err |= __put_user(PPC_INST_SC, &tramp[2]);
618 
619 	/* Minimal traceback info */
620 	for (i=TRAMP_TRACEBACK; i < TRAMP_SIZE ;i++)
621 		err |= __put_user(0, &tramp[i]);
622 
623 	if (!err)
624 		flush_icache_range((unsigned long) &tramp[0],
625 			   (unsigned long) &tramp[TRAMP_SIZE]);
626 
627 	return err;
628 }
629 
630 /*
631  * Userspace code may pass a ucontext which doesn't include VSX added
632  * at the end.  We need to check for this case.
633  */
634 #define UCONTEXTSIZEWITHOUTVSX \
635 		(sizeof(struct ucontext) - 32*sizeof(long))
636 
637 /*
638  * Handle {get,set,swap}_context operations
639  */
640 SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
641 		struct ucontext __user *, new_ctx, long, ctx_size)
642 {
643 	unsigned char tmp;
644 	sigset_t set;
645 	unsigned long new_msr = 0;
646 	int ctx_has_vsx_region = 0;
647 
648 	if (new_ctx &&
649 	    get_user(new_msr, &new_ctx->uc_mcontext.gp_regs[PT_MSR]))
650 		return -EFAULT;
651 	/*
652 	 * Check that the context is not smaller than the original
653 	 * size (with VMX but without VSX)
654 	 */
655 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
656 		return -EINVAL;
657 	/*
658 	 * If the new context state sets the MSR VSX bits but
659 	 * it doesn't provide VSX state.
660 	 */
661 	if ((ctx_size < sizeof(struct ucontext)) &&
662 	    (new_msr & MSR_VSX))
663 		return -EINVAL;
664 	/* Does the context have enough room to store VSX data? */
665 	if (ctx_size >= sizeof(struct ucontext))
666 		ctx_has_vsx_region = 1;
667 
668 	if (old_ctx != NULL) {
669 		if (!access_ok(old_ctx, ctx_size)
670 		    || setup_sigcontext(&old_ctx->uc_mcontext, current, 0, NULL, 0,
671 					ctx_has_vsx_region)
672 		    || __copy_to_user(&old_ctx->uc_sigmask,
673 				      &current->blocked, sizeof(sigset_t)))
674 			return -EFAULT;
675 	}
676 	if (new_ctx == NULL)
677 		return 0;
678 	if (!access_ok(new_ctx, ctx_size)
679 	    || __get_user(tmp, (u8 __user *) new_ctx)
680 	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
681 		return -EFAULT;
682 
683 	/*
684 	 * If we get a fault copying the context into the kernel's
685 	 * image of the user's registers, we can't just return -EFAULT
686 	 * because the user's registers will be corrupted.  For instance
687 	 * the NIP value may have been updated but not some of the
688 	 * other registers.  Given that we have done the access_ok
689 	 * and successfully read the first and last bytes of the region
690 	 * above, this should only happen in an out-of-memory situation
691 	 * or if another thread unmaps the region containing the context.
692 	 * We kill the task with a SIGSEGV in this situation.
693 	 */
694 
695 	if (__copy_from_user(&set, &new_ctx->uc_sigmask, sizeof(set)))
696 		do_exit(SIGSEGV);
697 	set_current_blocked(&set);
698 	if (restore_sigcontext(current, NULL, 0, &new_ctx->uc_mcontext))
699 		do_exit(SIGSEGV);
700 
701 	/* This returns like rt_sigreturn */
702 	set_thread_flag(TIF_RESTOREALL);
703 	return 0;
704 }
705 
706 
707 /*
708  * Do a signal return; undo the signal stack.
709  */
710 
711 SYSCALL_DEFINE0(rt_sigreturn)
712 {
713 	struct pt_regs *regs = current_pt_regs();
714 	struct ucontext __user *uc = (struct ucontext __user *)regs->gpr[1];
715 	sigset_t set;
716 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
717 	unsigned long msr;
718 #endif
719 
720 	/* Always make any pending restarted system calls return -EINTR */
721 	current->restart_block.fn = do_no_restart_syscall;
722 
723 	if (!access_ok(uc, sizeof(*uc)))
724 		goto badframe;
725 
726 	if (__copy_from_user(&set, &uc->uc_sigmask, sizeof(set)))
727 		goto badframe;
728 	set_current_blocked(&set);
729 
730 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
731 	/*
732 	 * If there is a transactional state then throw it away.
733 	 * The purpose of a sigreturn is to destroy all traces of the
734 	 * signal frame, this includes any transactional state created
735 	 * within in. We only check for suspended as we can never be
736 	 * active in the kernel, we are active, there is nothing better to
737 	 * do than go ahead and Bad Thing later.
738 	 * The cause is not important as there will never be a
739 	 * recheckpoint so it's not user visible.
740 	 */
741 	if (MSR_TM_SUSPENDED(mfmsr()))
742 		tm_reclaim_current(0);
743 
744 	/*
745 	 * Disable MSR[TS] bit also, so, if there is an exception in the
746 	 * code below (as a page fault in copy_ckvsx_to_user()), it does
747 	 * not recheckpoint this task if there was a context switch inside
748 	 * the exception.
749 	 *
750 	 * A major page fault can indirectly call schedule(). A reschedule
751 	 * process in the middle of an exception can have a side effect
752 	 * (Changing the CPU MSR[TS] state), since schedule() is called
753 	 * with the CPU MSR[TS] disable and returns with MSR[TS]=Suspended
754 	 * (switch_to() calls tm_recheckpoint() for the 'new' process). In
755 	 * this case, the process continues to be the same in the CPU, but
756 	 * the CPU state just changed.
757 	 *
758 	 * This can cause a TM Bad Thing, since the MSR in the stack will
759 	 * have the MSR[TS]=0, and this is what will be used to RFID.
760 	 *
761 	 * Clearing MSR[TS] state here will avoid a recheckpoint if there
762 	 * is any process reschedule in kernel space. The MSR[TS] state
763 	 * does not need to be saved also, since it will be replaced with
764 	 * the MSR[TS] that came from user context later, at
765 	 * restore_tm_sigcontexts.
766 	 */
767 	regs->msr &= ~MSR_TS_MASK;
768 
769 	if (__get_user(msr, &uc->uc_mcontext.gp_regs[PT_MSR]))
770 		goto badframe;
771 	if (MSR_TM_ACTIVE(msr)) {
772 		/* We recheckpoint on return. */
773 		struct ucontext __user *uc_transact;
774 		if (__get_user(uc_transact, &uc->uc_link))
775 			goto badframe;
776 		if (restore_tm_sigcontexts(current, &uc->uc_mcontext,
777 					   &uc_transact->uc_mcontext))
778 			goto badframe;
779 	} else
780 #endif
781 	{
782 		/*
783 		 * Fall through, for non-TM restore
784 		 *
785 		 * Unset MSR[TS] on the thread regs since MSR from user
786 		 * context does not have MSR active, and recheckpoint was
787 		 * not called since restore_tm_sigcontexts() was not called
788 		 * also.
789 		 *
790 		 * If not unsetting it, the code can RFID to userspace with
791 		 * MSR[TS] set, but without CPU in the proper state,
792 		 * causing a TM bad thing.
793 		 */
794 		current->thread.regs->msr &= ~MSR_TS_MASK;
795 		if (restore_sigcontext(current, NULL, 1, &uc->uc_mcontext))
796 			goto badframe;
797 	}
798 
799 	if (restore_altstack(&uc->uc_stack))
800 		goto badframe;
801 
802 	set_thread_flag(TIF_RESTOREALL);
803 	return 0;
804 
805 badframe:
806 	if (show_unhandled_signals)
807 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
808 				   current->comm, current->pid, "rt_sigreturn",
809 				   (long)uc, regs->nip, regs->link);
810 
811 	force_sig(SIGSEGV);
812 	return 0;
813 }
814 
815 int handle_rt_signal64(struct ksignal *ksig, sigset_t *set,
816 		struct task_struct *tsk)
817 {
818 	struct rt_sigframe __user *frame;
819 	unsigned long newsp = 0;
820 	long err = 0;
821 	struct pt_regs *regs = tsk->thread.regs;
822 
823 	BUG_ON(tsk != current);
824 
825 	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 0);
826 	if (unlikely(frame == NULL))
827 		goto badframe;
828 
829 	err |= __put_user(&frame->info, &frame->pinfo);
830 	err |= __put_user(&frame->uc, &frame->puc);
831 	err |= copy_siginfo_to_user(&frame->info, &ksig->info);
832 	if (err)
833 		goto badframe;
834 
835 	/* Create the ucontext.  */
836 	err |= __put_user(0, &frame->uc.uc_flags);
837 	err |= __save_altstack(&frame->uc.uc_stack, regs->gpr[1]);
838 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
839 	if (MSR_TM_ACTIVE(regs->msr)) {
840 		/* The ucontext_t passed to userland points to the second
841 		 * ucontext_t (for transactional state) with its uc_link ptr.
842 		 */
843 		err |= __put_user(&frame->uc_transact, &frame->uc.uc_link);
844 		err |= setup_tm_sigcontexts(&frame->uc.uc_mcontext,
845 					    &frame->uc_transact.uc_mcontext,
846 					    tsk, ksig->sig, NULL,
847 					    (unsigned long)ksig->ka.sa.sa_handler);
848 	} else
849 #endif
850 	{
851 		err |= __put_user(0, &frame->uc.uc_link);
852 		err |= setup_sigcontext(&frame->uc.uc_mcontext, tsk, ksig->sig,
853 					NULL, (unsigned long)ksig->ka.sa.sa_handler,
854 					1);
855 	}
856 	err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));
857 	if (err)
858 		goto badframe;
859 
860 	/* Make sure signal handler doesn't get spurious FP exceptions */
861 	tsk->thread.fp_state.fpscr = 0;
862 
863 	/* Set up to return from userspace. */
864 	if (vdso64_rt_sigtramp && tsk->mm->context.vdso_base) {
865 		regs->link = tsk->mm->context.vdso_base + vdso64_rt_sigtramp;
866 	} else {
867 		err |= setup_trampoline(__NR_rt_sigreturn, &frame->tramp[0]);
868 		if (err)
869 			goto badframe;
870 		regs->link = (unsigned long) &frame->tramp[0];
871 	}
872 
873 	/* Allocate a dummy caller frame for the signal handler. */
874 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
875 	err |= put_user(regs->gpr[1], (unsigned long __user *)newsp);
876 
877 	/* Set up "regs" so we "return" to the signal handler. */
878 	if (is_elf2_task()) {
879 		regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
880 		regs->gpr[12] = regs->nip;
881 	} else {
882 		/* Handler is *really* a pointer to the function descriptor for
883 		 * the signal routine.  The first entry in the function
884 		 * descriptor is the entry address of signal and the second
885 		 * entry is the TOC value we need to use.
886 		 */
887 		func_descr_t __user *funct_desc_ptr =
888 			(func_descr_t __user *) ksig->ka.sa.sa_handler;
889 
890 		err |= get_user(regs->nip, &funct_desc_ptr->entry);
891 		err |= get_user(regs->gpr[2], &funct_desc_ptr->toc);
892 	}
893 
894 	/* enter the signal handler in native-endian mode */
895 	regs->msr &= ~MSR_LE;
896 	regs->msr |= (MSR_KERNEL & MSR_LE);
897 	regs->gpr[1] = newsp;
898 	regs->gpr[3] = ksig->sig;
899 	regs->result = 0;
900 	if (ksig->ka.sa.sa_flags & SA_SIGINFO) {
901 		err |= get_user(regs->gpr[4], (unsigned long __user *)&frame->pinfo);
902 		err |= get_user(regs->gpr[5], (unsigned long __user *)&frame->puc);
903 		regs->gpr[6] = (unsigned long) frame;
904 	} else {
905 		regs->gpr[4] = (unsigned long)&frame->uc.uc_mcontext;
906 	}
907 	if (err)
908 		goto badframe;
909 
910 	return 0;
911 
912 badframe:
913 	if (show_unhandled_signals)
914 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
915 				   tsk->comm, tsk->pid, "setup_rt_frame",
916 				   (long)frame, regs->nip, regs->link);
917 
918 	return 1;
919 }
920