1 /* 2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC 3 * 4 * PowerPC version 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Copyright (C) 2001 IBM 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 9 * 10 * Derived from "arch/i386/kernel/signal.c" 11 * Copyright (C) 1991, 1992 Linus Torvalds 12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 13 * 14 * This program is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU General Public License 16 * as published by the Free Software Foundation; either version 17 * 2 of the License, or (at your option) any later version. 18 */ 19 20 #include <linux/sched.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/kernel.h> 24 #include <linux/signal.h> 25 #include <linux/errno.h> 26 #include <linux/elf.h> 27 #include <linux/ptrace.h> 28 #include <linux/ratelimit.h> 29 #ifdef CONFIG_PPC64 30 #include <linux/syscalls.h> 31 #include <linux/compat.h> 32 #else 33 #include <linux/wait.h> 34 #include <linux/unistd.h> 35 #include <linux/stddef.h> 36 #include <linux/tty.h> 37 #include <linux/binfmts.h> 38 #endif 39 40 #include <asm/uaccess.h> 41 #include <asm/cacheflush.h> 42 #include <asm/syscalls.h> 43 #include <asm/sigcontext.h> 44 #include <asm/vdso.h> 45 #include <asm/switch_to.h> 46 #include <asm/tm.h> 47 #ifdef CONFIG_PPC64 48 #include "ppc32.h" 49 #include <asm/unistd.h> 50 #else 51 #include <asm/ucontext.h> 52 #include <asm/pgtable.h> 53 #endif 54 55 #include "signal.h" 56 57 #undef DEBUG_SIG 58 59 #ifdef CONFIG_PPC64 60 #define sys_rt_sigreturn compat_sys_rt_sigreturn 61 #define sys_swapcontext compat_sys_swapcontext 62 #define sys_sigreturn compat_sys_sigreturn 63 64 #define old_sigaction old_sigaction32 65 #define sigcontext sigcontext32 66 #define mcontext mcontext32 67 #define ucontext ucontext32 68 69 #define __save_altstack __compat_save_altstack 70 71 /* 72 * Userspace code may pass a ucontext which doesn't include VSX added 73 * at the end. We need to check for this case. 74 */ 75 #define UCONTEXTSIZEWITHOUTVSX \ 76 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) 77 78 /* 79 * Returning 0 means we return to userspace via 80 * ret_from_except and thus restore all user 81 * registers from *regs. This is what we need 82 * to do when a signal has been delivered. 83 */ 84 85 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) 86 #undef __SIGNAL_FRAMESIZE 87 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 88 #undef ELF_NVRREG 89 #define ELF_NVRREG ELF_NVRREG32 90 91 /* 92 * Functions for flipping sigsets (thanks to brain dead generic 93 * implementation that makes things simple for little endian only) 94 */ 95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) 96 { 97 compat_sigset_t cset; 98 99 switch (_NSIG_WORDS) { 100 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull; 101 cset.sig[7] = set->sig[3] >> 32; 102 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull; 103 cset.sig[5] = set->sig[2] >> 32; 104 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull; 105 cset.sig[3] = set->sig[1] >> 32; 106 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull; 107 cset.sig[1] = set->sig[0] >> 32; 108 } 109 return copy_to_user(uset, &cset, sizeof(*uset)); 110 } 111 112 static inline int get_sigset_t(sigset_t *set, 113 const compat_sigset_t __user *uset) 114 { 115 compat_sigset_t s32; 116 117 if (copy_from_user(&s32, uset, sizeof(*uset))) 118 return -EFAULT; 119 120 /* 121 * Swap the 2 words of the 64-bit sigset_t (they are stored 122 * in the "wrong" endian in 32-bit user storage). 123 */ 124 switch (_NSIG_WORDS) { 125 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32); 126 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32); 127 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32); 128 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32); 129 } 130 return 0; 131 } 132 133 #define to_user_ptr(p) ptr_to_compat(p) 134 #define from_user_ptr(p) compat_ptr(p) 135 136 static inline int save_general_regs(struct pt_regs *regs, 137 struct mcontext __user *frame) 138 { 139 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 140 int i; 141 142 WARN_ON(!FULL_REGS(regs)); 143 144 for (i = 0; i <= PT_RESULT; i ++) { 145 if (i == 14 && !FULL_REGS(regs)) 146 i = 32; 147 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) 148 return -EFAULT; 149 } 150 return 0; 151 } 152 153 static inline int restore_general_regs(struct pt_regs *regs, 154 struct mcontext __user *sr) 155 { 156 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 157 int i; 158 159 for (i = 0; i <= PT_RESULT; i++) { 160 if ((i == PT_MSR) || (i == PT_SOFTE)) 161 continue; 162 if (__get_user(gregs[i], &sr->mc_gregs[i])) 163 return -EFAULT; 164 } 165 return 0; 166 } 167 168 #else /* CONFIG_PPC64 */ 169 170 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) 171 172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) 173 { 174 return copy_to_user(uset, set, sizeof(*uset)); 175 } 176 177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) 178 { 179 return copy_from_user(set, uset, sizeof(*uset)); 180 } 181 182 #define to_user_ptr(p) ((unsigned long)(p)) 183 #define from_user_ptr(p) ((void __user *)(p)) 184 185 static inline int save_general_regs(struct pt_regs *regs, 186 struct mcontext __user *frame) 187 { 188 WARN_ON(!FULL_REGS(regs)); 189 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); 190 } 191 192 static inline int restore_general_regs(struct pt_regs *regs, 193 struct mcontext __user *sr) 194 { 195 /* copy up to but not including MSR */ 196 if (__copy_from_user(regs, &sr->mc_gregs, 197 PT_MSR * sizeof(elf_greg_t))) 198 return -EFAULT; 199 /* copy from orig_r3 (the word after the MSR) up to the end */ 200 if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], 201 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) 202 return -EFAULT; 203 return 0; 204 } 205 #endif 206 207 /* 208 * When we have signals to deliver, we set up on the 209 * user stack, going down from the original stack pointer: 210 * an ABI gap of 56 words 211 * an mcontext struct 212 * a sigcontext struct 213 * a gap of __SIGNAL_FRAMESIZE bytes 214 * 215 * Each of these things must be a multiple of 16 bytes in size. The following 216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap 217 * 218 */ 219 struct sigframe { 220 struct sigcontext sctx; /* the sigcontext */ 221 struct mcontext mctx; /* all the register values */ 222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 223 struct sigcontext sctx_transact; 224 struct mcontext mctx_transact; 225 #endif 226 /* 227 * Programs using the rs6000/xcoff abi can save up to 19 gp 228 * regs and 18 fp regs below sp before decrementing it. 229 */ 230 int abigap[56]; 231 }; 232 233 /* We use the mc_pad field for the signal return trampoline. */ 234 #define tramp mc_pad 235 236 /* 237 * When we have rt signals to deliver, we set up on the 238 * user stack, going down from the original stack pointer: 239 * one rt_sigframe struct (siginfo + ucontext + ABI gap) 240 * a gap of __SIGNAL_FRAMESIZE+16 bytes 241 * (the +16 is to get the siginfo and ucontext in the same 242 * positions as in older kernels). 243 * 244 * Each of these things must be a multiple of 16 bytes in size. 245 * 246 */ 247 struct rt_sigframe { 248 #ifdef CONFIG_PPC64 249 compat_siginfo_t info; 250 #else 251 struct siginfo info; 252 #endif 253 struct ucontext uc; 254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 255 struct ucontext uc_transact; 256 #endif 257 /* 258 * Programs using the rs6000/xcoff abi can save up to 19 gp 259 * regs and 18 fp regs below sp before decrementing it. 260 */ 261 int abigap[56]; 262 }; 263 264 #ifdef CONFIG_VSX 265 unsigned long copy_fpr_to_user(void __user *to, 266 struct task_struct *task) 267 { 268 double buf[ELF_NFPREG]; 269 int i; 270 271 /* save FPR copy to local buffer then write to the thread_struct */ 272 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 273 buf[i] = task->thread.TS_FPR(i); 274 memcpy(&buf[i], &task->thread.fpscr, sizeof(double)); 275 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 276 } 277 278 unsigned long copy_fpr_from_user(struct task_struct *task, 279 void __user *from) 280 { 281 double buf[ELF_NFPREG]; 282 int i; 283 284 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 285 return 1; 286 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 287 task->thread.TS_FPR(i) = buf[i]; 288 memcpy(&task->thread.fpscr, &buf[i], sizeof(double)); 289 290 return 0; 291 } 292 293 unsigned long copy_vsx_to_user(void __user *to, 294 struct task_struct *task) 295 { 296 double buf[ELF_NVSRHALFREG]; 297 int i; 298 299 /* save FPR copy to local buffer then write to the thread_struct */ 300 for (i = 0; i < ELF_NVSRHALFREG; i++) 301 buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET]; 302 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 303 } 304 305 unsigned long copy_vsx_from_user(struct task_struct *task, 306 void __user *from) 307 { 308 double buf[ELF_NVSRHALFREG]; 309 int i; 310 311 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 312 return 1; 313 for (i = 0; i < ELF_NVSRHALFREG ; i++) 314 task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 315 return 0; 316 } 317 318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 319 unsigned long copy_transact_fpr_to_user(void __user *to, 320 struct task_struct *task) 321 { 322 double buf[ELF_NFPREG]; 323 int i; 324 325 /* save FPR copy to local buffer then write to the thread_struct */ 326 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 327 buf[i] = task->thread.TS_TRANS_FPR(i); 328 memcpy(&buf[i], &task->thread.transact_fpscr, sizeof(double)); 329 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 330 } 331 332 unsigned long copy_transact_fpr_from_user(struct task_struct *task, 333 void __user *from) 334 { 335 double buf[ELF_NFPREG]; 336 int i; 337 338 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 339 return 1; 340 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 341 task->thread.TS_TRANS_FPR(i) = buf[i]; 342 memcpy(&task->thread.transact_fpscr, &buf[i], sizeof(double)); 343 344 return 0; 345 } 346 347 unsigned long copy_transact_vsx_to_user(void __user *to, 348 struct task_struct *task) 349 { 350 double buf[ELF_NVSRHALFREG]; 351 int i; 352 353 /* save FPR copy to local buffer then write to the thread_struct */ 354 for (i = 0; i < ELF_NVSRHALFREG; i++) 355 buf[i] = task->thread.transact_fpr[i][TS_VSRLOWOFFSET]; 356 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 357 } 358 359 unsigned long copy_transact_vsx_from_user(struct task_struct *task, 360 void __user *from) 361 { 362 double buf[ELF_NVSRHALFREG]; 363 int i; 364 365 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 366 return 1; 367 for (i = 0; i < ELF_NVSRHALFREG ; i++) 368 task->thread.transact_fpr[i][TS_VSRLOWOFFSET] = buf[i]; 369 return 0; 370 } 371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 372 #else 373 inline unsigned long copy_fpr_to_user(void __user *to, 374 struct task_struct *task) 375 { 376 return __copy_to_user(to, task->thread.fpr, 377 ELF_NFPREG * sizeof(double)); 378 } 379 380 inline unsigned long copy_fpr_from_user(struct task_struct *task, 381 void __user *from) 382 { 383 return __copy_from_user(task->thread.fpr, from, 384 ELF_NFPREG * sizeof(double)); 385 } 386 387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 388 inline unsigned long copy_transact_fpr_to_user(void __user *to, 389 struct task_struct *task) 390 { 391 return __copy_to_user(to, task->thread.transact_fpr, 392 ELF_NFPREG * sizeof(double)); 393 } 394 395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task, 396 void __user *from) 397 { 398 return __copy_from_user(task->thread.transact_fpr, from, 399 ELF_NFPREG * sizeof(double)); 400 } 401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 402 #endif 403 404 /* 405 * Save the current user registers on the user stack. 406 * We only save the altivec/spe registers if the process has used 407 * altivec/spe instructions at some point. 408 */ 409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, 410 struct mcontext __user *tm_frame, int sigret, 411 int ctx_has_vsx_region) 412 { 413 unsigned long msr = regs->msr; 414 415 /* Make sure floating point registers are stored in regs */ 416 flush_fp_to_thread(current); 417 418 /* save general registers */ 419 if (save_general_regs(regs, frame)) 420 return 1; 421 422 #ifdef CONFIG_ALTIVEC 423 /* save altivec registers */ 424 if (current->thread.used_vr) { 425 flush_altivec_to_thread(current); 426 if (__copy_to_user(&frame->mc_vregs, current->thread.vr, 427 ELF_NVRREG * sizeof(vector128))) 428 return 1; 429 /* set MSR_VEC in the saved MSR value to indicate that 430 frame->mc_vregs contains valid data */ 431 msr |= MSR_VEC; 432 } 433 /* else assert((regs->msr & MSR_VEC) == 0) */ 434 435 /* We always copy to/from vrsave, it's 0 if we don't have or don't 436 * use altivec. Since VSCR only contains 32 bits saved in the least 437 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 438 * most significant bits of that same vector. --BenH 439 * Note that the current VRSAVE value is in the SPR at this point. 440 */ 441 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 442 current->thread.vrsave = mfspr(SPRN_VRSAVE); 443 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) 444 return 1; 445 #endif /* CONFIG_ALTIVEC */ 446 if (copy_fpr_to_user(&frame->mc_fregs, current)) 447 return 1; 448 #ifdef CONFIG_VSX 449 /* 450 * Copy VSR 0-31 upper half from thread_struct to local 451 * buffer, then write that to userspace. Also set MSR_VSX in 452 * the saved MSR value to indicate that frame->mc_vregs 453 * contains valid data 454 */ 455 if (current->thread.used_vsr && ctx_has_vsx_region) { 456 __giveup_vsx(current); 457 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 458 return 1; 459 msr |= MSR_VSX; 460 } 461 #endif /* CONFIG_VSX */ 462 #ifdef CONFIG_SPE 463 /* save spe registers */ 464 if (current->thread.used_spe) { 465 flush_spe_to_thread(current); 466 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 467 ELF_NEVRREG * sizeof(u32))) 468 return 1; 469 /* set MSR_SPE in the saved MSR value to indicate that 470 frame->mc_vregs contains valid data */ 471 msr |= MSR_SPE; 472 } 473 /* else assert((regs->msr & MSR_SPE) == 0) */ 474 475 /* We always copy to/from spefscr */ 476 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 477 return 1; 478 #endif /* CONFIG_SPE */ 479 480 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 481 return 1; 482 /* We need to write 0 the MSR top 32 bits in the tm frame so that we 483 * can check it on the restore to see if TM is active 484 */ 485 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) 486 return 1; 487 488 if (sigret) { 489 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 490 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 491 || __put_user(0x44000002UL, &frame->tramp[1])) 492 return 1; 493 flush_icache_range((unsigned long) &frame->tramp[0], 494 (unsigned long) &frame->tramp[2]); 495 } 496 497 return 0; 498 } 499 500 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 501 /* 502 * Save the current user registers on the user stack. 503 * We only save the altivec/spe registers if the process has used 504 * altivec/spe instructions at some point. 505 * We also save the transactional registers to a second ucontext in the 506 * frame. 507 * 508 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). 509 */ 510 static int save_tm_user_regs(struct pt_regs *regs, 511 struct mcontext __user *frame, 512 struct mcontext __user *tm_frame, int sigret) 513 { 514 unsigned long msr = regs->msr; 515 516 /* Make sure floating point registers are stored in regs */ 517 flush_fp_to_thread(current); 518 519 /* Save both sets of general registers */ 520 if (save_general_regs(¤t->thread.ckpt_regs, frame) 521 || save_general_regs(regs, tm_frame)) 522 return 1; 523 524 /* Stash the top half of the 64bit MSR into the 32bit MSR word 525 * of the transactional mcontext. This way we have a backward-compatible 526 * MSR in the 'normal' (checkpointed) mcontext and additionally one can 527 * also look at what type of transaction (T or S) was active at the 528 * time of the signal. 529 */ 530 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) 531 return 1; 532 533 #ifdef CONFIG_ALTIVEC 534 /* save altivec registers */ 535 if (current->thread.used_vr) { 536 flush_altivec_to_thread(current); 537 if (__copy_to_user(&frame->mc_vregs, current->thread.vr, 538 ELF_NVRREG * sizeof(vector128))) 539 return 1; 540 if (msr & MSR_VEC) { 541 if (__copy_to_user(&tm_frame->mc_vregs, 542 current->thread.transact_vr, 543 ELF_NVRREG * sizeof(vector128))) 544 return 1; 545 } else { 546 if (__copy_to_user(&tm_frame->mc_vregs, 547 current->thread.vr, 548 ELF_NVRREG * sizeof(vector128))) 549 return 1; 550 } 551 552 /* set MSR_VEC in the saved MSR value to indicate that 553 * frame->mc_vregs contains valid data 554 */ 555 msr |= MSR_VEC; 556 } 557 558 /* We always copy to/from vrsave, it's 0 if we don't have or don't 559 * use altivec. Since VSCR only contains 32 bits saved in the least 560 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 561 * most significant bits of that same vector. --BenH 562 */ 563 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 564 current->thread.vrsave = mfspr(SPRN_VRSAVE); 565 if (__put_user(current->thread.vrsave, 566 (u32 __user *)&frame->mc_vregs[32])) 567 return 1; 568 if (msr & MSR_VEC) { 569 if (__put_user(current->thread.transact_vrsave, 570 (u32 __user *)&tm_frame->mc_vregs[32])) 571 return 1; 572 } else { 573 if (__put_user(current->thread.vrsave, 574 (u32 __user *)&tm_frame->mc_vregs[32])) 575 return 1; 576 } 577 #endif /* CONFIG_ALTIVEC */ 578 579 if (copy_fpr_to_user(&frame->mc_fregs, current)) 580 return 1; 581 if (msr & MSR_FP) { 582 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current)) 583 return 1; 584 } else { 585 if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) 586 return 1; 587 } 588 589 #ifdef CONFIG_VSX 590 /* 591 * Copy VSR 0-31 upper half from thread_struct to local 592 * buffer, then write that to userspace. Also set MSR_VSX in 593 * the saved MSR value to indicate that frame->mc_vregs 594 * contains valid data 595 */ 596 if (current->thread.used_vsr) { 597 __giveup_vsx(current); 598 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 599 return 1; 600 if (msr & MSR_VSX) { 601 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs, 602 current)) 603 return 1; 604 } else { 605 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current)) 606 return 1; 607 } 608 609 msr |= MSR_VSX; 610 } 611 #endif /* CONFIG_VSX */ 612 #ifdef CONFIG_SPE 613 /* SPE regs are not checkpointed with TM, so this section is 614 * simply the same as in save_user_regs(). 615 */ 616 if (current->thread.used_spe) { 617 flush_spe_to_thread(current); 618 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 619 ELF_NEVRREG * sizeof(u32))) 620 return 1; 621 /* set MSR_SPE in the saved MSR value to indicate that 622 * frame->mc_vregs contains valid data */ 623 msr |= MSR_SPE; 624 } 625 626 /* We always copy to/from spefscr */ 627 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 628 return 1; 629 #endif /* CONFIG_SPE */ 630 631 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 632 return 1; 633 if (sigret) { 634 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 635 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 636 || __put_user(0x44000002UL, &frame->tramp[1])) 637 return 1; 638 flush_icache_range((unsigned long) &frame->tramp[0], 639 (unsigned long) &frame->tramp[2]); 640 } 641 642 return 0; 643 } 644 #endif 645 646 /* 647 * Restore the current user register values from the user stack, 648 * (except for MSR). 649 */ 650 static long restore_user_regs(struct pt_regs *regs, 651 struct mcontext __user *sr, int sig) 652 { 653 long err; 654 unsigned int save_r2 = 0; 655 unsigned long msr; 656 #ifdef CONFIG_VSX 657 int i; 658 #endif 659 660 /* 661 * restore general registers but not including MSR or SOFTE. Also 662 * take care of keeping r2 (TLS) intact if not a signal 663 */ 664 if (!sig) 665 save_r2 = (unsigned int)regs->gpr[2]; 666 err = restore_general_regs(regs, sr); 667 regs->trap = 0; 668 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 669 if (!sig) 670 regs->gpr[2] = (unsigned long) save_r2; 671 if (err) 672 return 1; 673 674 /* if doing signal return, restore the previous little-endian mode */ 675 if (sig) 676 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 677 678 /* 679 * Do this before updating the thread state in 680 * current->thread.fpr/vr/evr. That way, if we get preempted 681 * and another task grabs the FPU/Altivec/SPE, it won't be 682 * tempted to save the current CPU state into the thread_struct 683 * and corrupt what we are writing there. 684 */ 685 discard_lazy_cpu_state(); 686 687 #ifdef CONFIG_ALTIVEC 688 /* 689 * Force the process to reload the altivec registers from 690 * current->thread when it next does altivec instructions 691 */ 692 regs->msr &= ~MSR_VEC; 693 if (msr & MSR_VEC) { 694 /* restore altivec registers from the stack */ 695 if (__copy_from_user(current->thread.vr, &sr->mc_vregs, 696 sizeof(sr->mc_vregs))) 697 return 1; 698 } else if (current->thread.used_vr) 699 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128)); 700 701 /* Always get VRSAVE back */ 702 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) 703 return 1; 704 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 705 mtspr(SPRN_VRSAVE, current->thread.vrsave); 706 #endif /* CONFIG_ALTIVEC */ 707 if (copy_fpr_from_user(current, &sr->mc_fregs)) 708 return 1; 709 710 #ifdef CONFIG_VSX 711 /* 712 * Force the process to reload the VSX registers from 713 * current->thread when it next does VSX instruction. 714 */ 715 regs->msr &= ~MSR_VSX; 716 if (msr & MSR_VSX) { 717 /* 718 * Restore altivec registers from the stack to a local 719 * buffer, then write this out to the thread_struct 720 */ 721 if (copy_vsx_from_user(current, &sr->mc_vsregs)) 722 return 1; 723 } else if (current->thread.used_vsr) 724 for (i = 0; i < 32 ; i++) 725 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0; 726 #endif /* CONFIG_VSX */ 727 /* 728 * force the process to reload the FP registers from 729 * current->thread when it next does FP instructions 730 */ 731 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 732 733 #ifdef CONFIG_SPE 734 /* force the process to reload the spe registers from 735 current->thread when it next does spe instructions */ 736 regs->msr &= ~MSR_SPE; 737 if (msr & MSR_SPE) { 738 /* restore spe registers from the stack */ 739 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 740 ELF_NEVRREG * sizeof(u32))) 741 return 1; 742 } else if (current->thread.used_spe) 743 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 744 745 /* Always get SPEFSCR back */ 746 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) 747 return 1; 748 #endif /* CONFIG_SPE */ 749 750 return 0; 751 } 752 753 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 754 /* 755 * Restore the current user register values from the user stack, except for 756 * MSR, and recheckpoint the original checkpointed register state for processes 757 * in transactions. 758 */ 759 static long restore_tm_user_regs(struct pt_regs *regs, 760 struct mcontext __user *sr, 761 struct mcontext __user *tm_sr) 762 { 763 long err; 764 unsigned long msr, msr_hi; 765 #ifdef CONFIG_VSX 766 int i; 767 #endif 768 769 /* 770 * restore general registers but not including MSR or SOFTE. Also 771 * take care of keeping r2 (TLS) intact if not a signal. 772 * See comment in signal_64.c:restore_tm_sigcontexts(); 773 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR 774 * were set by the signal delivery. 775 */ 776 err = restore_general_regs(regs, tm_sr); 777 err |= restore_general_regs(¤t->thread.ckpt_regs, sr); 778 779 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); 780 781 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 782 if (err) 783 return 1; 784 785 /* Restore the previous little-endian mode */ 786 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 787 788 /* 789 * Do this before updating the thread state in 790 * current->thread.fpr/vr/evr. That way, if we get preempted 791 * and another task grabs the FPU/Altivec/SPE, it won't be 792 * tempted to save the current CPU state into the thread_struct 793 * and corrupt what we are writing there. 794 */ 795 discard_lazy_cpu_state(); 796 797 #ifdef CONFIG_ALTIVEC 798 regs->msr &= ~MSR_VEC; 799 if (msr & MSR_VEC) { 800 /* restore altivec registers from the stack */ 801 if (__copy_from_user(current->thread.vr, &sr->mc_vregs, 802 sizeof(sr->mc_vregs)) || 803 __copy_from_user(current->thread.transact_vr, 804 &tm_sr->mc_vregs, 805 sizeof(sr->mc_vregs))) 806 return 1; 807 } else if (current->thread.used_vr) { 808 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128)); 809 memset(current->thread.transact_vr, 0, 810 ELF_NVRREG * sizeof(vector128)); 811 } 812 813 /* Always get VRSAVE back */ 814 if (__get_user(current->thread.vrsave, 815 (u32 __user *)&sr->mc_vregs[32]) || 816 __get_user(current->thread.transact_vrsave, 817 (u32 __user *)&tm_sr->mc_vregs[32])) 818 return 1; 819 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 820 mtspr(SPRN_VRSAVE, current->thread.vrsave); 821 #endif /* CONFIG_ALTIVEC */ 822 823 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 824 825 if (copy_fpr_from_user(current, &sr->mc_fregs) || 826 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs)) 827 return 1; 828 829 #ifdef CONFIG_VSX 830 regs->msr &= ~MSR_VSX; 831 if (msr & MSR_VSX) { 832 /* 833 * Restore altivec registers from the stack to a local 834 * buffer, then write this out to the thread_struct 835 */ 836 if (copy_vsx_from_user(current, &sr->mc_vsregs) || 837 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs)) 838 return 1; 839 } else if (current->thread.used_vsr) 840 for (i = 0; i < 32 ; i++) { 841 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0; 842 current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0; 843 } 844 #endif /* CONFIG_VSX */ 845 846 #ifdef CONFIG_SPE 847 /* SPE regs are not checkpointed with TM, so this section is 848 * simply the same as in restore_user_regs(). 849 */ 850 regs->msr &= ~MSR_SPE; 851 if (msr & MSR_SPE) { 852 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 853 ELF_NEVRREG * sizeof(u32))) 854 return 1; 855 } else if (current->thread.used_spe) 856 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 857 858 /* Always get SPEFSCR back */ 859 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs 860 + ELF_NEVRREG)) 861 return 1; 862 #endif /* CONFIG_SPE */ 863 864 /* Now, recheckpoint. This loads up all of the checkpointed (older) 865 * registers, including FP and V[S]Rs. After recheckpointing, the 866 * transactional versions should be loaded. 867 */ 868 tm_enable(); 869 /* This loads the checkpointed FP/VEC state, if used */ 870 tm_recheckpoint(¤t->thread, msr); 871 /* Get the top half of the MSR */ 872 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) 873 return 1; 874 /* Pull in MSR TM from user context */ 875 regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK); 876 877 /* This loads the speculative FP/VEC state, if used */ 878 if (msr & MSR_FP) { 879 do_load_up_transact_fpu(¤t->thread); 880 regs->msr |= (MSR_FP | current->thread.fpexc_mode); 881 } 882 #ifdef CONFIG_ALTIVEC 883 if (msr & MSR_VEC) { 884 do_load_up_transact_altivec(¤t->thread); 885 regs->msr |= MSR_VEC; 886 } 887 #endif 888 889 return 0; 890 } 891 #endif 892 893 #ifdef CONFIG_PPC64 894 int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s) 895 { 896 int err; 897 898 if (!access_ok (VERIFY_WRITE, d, sizeof(*d))) 899 return -EFAULT; 900 901 /* If you change siginfo_t structure, please be sure 902 * this code is fixed accordingly. 903 * It should never copy any pad contained in the structure 904 * to avoid security leaks, but must copy the generic 905 * 3 ints plus the relevant union member. 906 * This routine must convert siginfo from 64bit to 32bit as well 907 * at the same time. 908 */ 909 err = __put_user(s->si_signo, &d->si_signo); 910 err |= __put_user(s->si_errno, &d->si_errno); 911 err |= __put_user((short)s->si_code, &d->si_code); 912 if (s->si_code < 0) 913 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad, 914 SI_PAD_SIZE32); 915 else switch(s->si_code >> 16) { 916 case __SI_CHLD >> 16: 917 err |= __put_user(s->si_pid, &d->si_pid); 918 err |= __put_user(s->si_uid, &d->si_uid); 919 err |= __put_user(s->si_utime, &d->si_utime); 920 err |= __put_user(s->si_stime, &d->si_stime); 921 err |= __put_user(s->si_status, &d->si_status); 922 break; 923 case __SI_FAULT >> 16: 924 err |= __put_user((unsigned int)(unsigned long)s->si_addr, 925 &d->si_addr); 926 break; 927 case __SI_POLL >> 16: 928 err |= __put_user(s->si_band, &d->si_band); 929 err |= __put_user(s->si_fd, &d->si_fd); 930 break; 931 case __SI_TIMER >> 16: 932 err |= __put_user(s->si_tid, &d->si_tid); 933 err |= __put_user(s->si_overrun, &d->si_overrun); 934 err |= __put_user(s->si_int, &d->si_int); 935 break; 936 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */ 937 case __SI_MESGQ >> 16: 938 err |= __put_user(s->si_int, &d->si_int); 939 /* fallthrough */ 940 case __SI_KILL >> 16: 941 default: 942 err |= __put_user(s->si_pid, &d->si_pid); 943 err |= __put_user(s->si_uid, &d->si_uid); 944 break; 945 } 946 return err; 947 } 948 949 #define copy_siginfo_to_user copy_siginfo_to_user32 950 951 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from) 952 { 953 memset(to, 0, sizeof *to); 954 955 if (copy_from_user(to, from, 3*sizeof(int)) || 956 copy_from_user(to->_sifields._pad, 957 from->_sifields._pad, SI_PAD_SIZE32)) 958 return -EFAULT; 959 960 return 0; 961 } 962 #endif /* CONFIG_PPC64 */ 963 964 /* 965 * Set up a signal frame for a "real-time" signal handler 966 * (one which gets siginfo). 967 */ 968 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka, 969 siginfo_t *info, sigset_t *oldset, 970 struct pt_regs *regs) 971 { 972 struct rt_sigframe __user *rt_sf; 973 struct mcontext __user *frame; 974 struct mcontext __user *tm_frame = NULL; 975 void __user *addr; 976 unsigned long newsp = 0; 977 int sigret; 978 unsigned long tramp; 979 980 /* Set up Signal Frame */ 981 /* Put a Real Time Context onto stack */ 982 rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1); 983 addr = rt_sf; 984 if (unlikely(rt_sf == NULL)) 985 goto badframe; 986 987 /* Put the siginfo & fill in most of the ucontext */ 988 if (copy_siginfo_to_user(&rt_sf->info, info) 989 || __put_user(0, &rt_sf->uc.uc_flags) 990 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) 991 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), 992 &rt_sf->uc.uc_regs) 993 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) 994 goto badframe; 995 996 /* Save user registers on the stack */ 997 frame = &rt_sf->uc.uc_mcontext; 998 addr = frame; 999 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) { 1000 sigret = 0; 1001 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp; 1002 } else { 1003 sigret = __NR_rt_sigreturn; 1004 tramp = (unsigned long) frame->tramp; 1005 } 1006 1007 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1008 tm_frame = &rt_sf->uc_transact.uc_mcontext; 1009 if (MSR_TM_ACTIVE(regs->msr)) { 1010 if (save_tm_user_regs(regs, frame, tm_frame, sigret)) 1011 goto badframe; 1012 } 1013 else 1014 #endif 1015 { 1016 if (save_user_regs(regs, frame, tm_frame, sigret, 1)) 1017 goto badframe; 1018 } 1019 regs->link = tramp; 1020 1021 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1022 if (MSR_TM_ACTIVE(regs->msr)) { 1023 if (__put_user((unsigned long)&rt_sf->uc_transact, 1024 &rt_sf->uc.uc_link) 1025 || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs)) 1026 goto badframe; 1027 } 1028 else 1029 #endif 1030 if (__put_user(0, &rt_sf->uc.uc_link)) 1031 goto badframe; 1032 1033 current->thread.fpscr.val = 0; /* turn off all fp exceptions */ 1034 1035 /* create a stack frame for the caller of the handler */ 1036 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); 1037 addr = (void __user *)regs->gpr[1]; 1038 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1039 goto badframe; 1040 1041 /* Fill registers for signal handler */ 1042 regs->gpr[1] = newsp; 1043 regs->gpr[3] = sig; 1044 regs->gpr[4] = (unsigned long) &rt_sf->info; 1045 regs->gpr[5] = (unsigned long) &rt_sf->uc; 1046 regs->gpr[6] = (unsigned long) rt_sf; 1047 regs->nip = (unsigned long) ka->sa.sa_handler; 1048 /* enter the signal handler in big-endian mode */ 1049 regs->msr &= ~MSR_LE; 1050 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1051 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 1052 * just indicates to userland that we were doing a transaction, but we 1053 * don't want to return in transactional state: 1054 */ 1055 regs->msr &= ~MSR_TS_MASK; 1056 #endif 1057 return 1; 1058 1059 badframe: 1060 #ifdef DEBUG_SIG 1061 printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n", 1062 regs, frame, newsp); 1063 #endif 1064 if (show_unhandled_signals) 1065 printk_ratelimited(KERN_INFO 1066 "%s[%d]: bad frame in handle_rt_signal32: " 1067 "%p nip %08lx lr %08lx\n", 1068 current->comm, current->pid, 1069 addr, regs->nip, regs->link); 1070 1071 force_sigsegv(sig, current); 1072 return 0; 1073 } 1074 1075 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) 1076 { 1077 sigset_t set; 1078 struct mcontext __user *mcp; 1079 1080 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1081 return -EFAULT; 1082 #ifdef CONFIG_PPC64 1083 { 1084 u32 cmcp; 1085 1086 if (__get_user(cmcp, &ucp->uc_regs)) 1087 return -EFAULT; 1088 mcp = (struct mcontext __user *)(u64)cmcp; 1089 /* no need to check access_ok(mcp), since mcp < 4GB */ 1090 } 1091 #else 1092 if (__get_user(mcp, &ucp->uc_regs)) 1093 return -EFAULT; 1094 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp))) 1095 return -EFAULT; 1096 #endif 1097 set_current_blocked(&set); 1098 if (restore_user_regs(regs, mcp, sig)) 1099 return -EFAULT; 1100 1101 return 0; 1102 } 1103 1104 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1105 static int do_setcontext_tm(struct ucontext __user *ucp, 1106 struct ucontext __user *tm_ucp, 1107 struct pt_regs *regs) 1108 { 1109 sigset_t set; 1110 struct mcontext __user *mcp; 1111 struct mcontext __user *tm_mcp; 1112 u32 cmcp; 1113 u32 tm_cmcp; 1114 1115 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1116 return -EFAULT; 1117 1118 if (__get_user(cmcp, &ucp->uc_regs) || 1119 __get_user(tm_cmcp, &tm_ucp->uc_regs)) 1120 return -EFAULT; 1121 mcp = (struct mcontext __user *)(u64)cmcp; 1122 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; 1123 /* no need to check access_ok(mcp), since mcp < 4GB */ 1124 1125 set_current_blocked(&set); 1126 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1127 return -EFAULT; 1128 1129 return 0; 1130 } 1131 #endif 1132 1133 long sys_swapcontext(struct ucontext __user *old_ctx, 1134 struct ucontext __user *new_ctx, 1135 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs) 1136 { 1137 unsigned char tmp; 1138 int ctx_has_vsx_region = 0; 1139 1140 #ifdef CONFIG_PPC64 1141 unsigned long new_msr = 0; 1142 1143 if (new_ctx) { 1144 struct mcontext __user *mcp; 1145 u32 cmcp; 1146 1147 /* 1148 * Get pointer to the real mcontext. No need for 1149 * access_ok since we are dealing with compat 1150 * pointers. 1151 */ 1152 if (__get_user(cmcp, &new_ctx->uc_regs)) 1153 return -EFAULT; 1154 mcp = (struct mcontext __user *)(u64)cmcp; 1155 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) 1156 return -EFAULT; 1157 } 1158 /* 1159 * Check that the context is not smaller than the original 1160 * size (with VMX but without VSX) 1161 */ 1162 if (ctx_size < UCONTEXTSIZEWITHOUTVSX) 1163 return -EINVAL; 1164 /* 1165 * If the new context state sets the MSR VSX bits but 1166 * it doesn't provide VSX state. 1167 */ 1168 if ((ctx_size < sizeof(struct ucontext)) && 1169 (new_msr & MSR_VSX)) 1170 return -EINVAL; 1171 /* Does the context have enough room to store VSX data? */ 1172 if (ctx_size >= sizeof(struct ucontext)) 1173 ctx_has_vsx_region = 1; 1174 #else 1175 /* Context size is for future use. Right now, we only make sure 1176 * we are passed something we understand 1177 */ 1178 if (ctx_size < sizeof(struct ucontext)) 1179 return -EINVAL; 1180 #endif 1181 if (old_ctx != NULL) { 1182 struct mcontext __user *mctx; 1183 1184 /* 1185 * old_ctx might not be 16-byte aligned, in which 1186 * case old_ctx->uc_mcontext won't be either. 1187 * Because we have the old_ctx->uc_pad2 field 1188 * before old_ctx->uc_mcontext, we need to round down 1189 * from &old_ctx->uc_mcontext to a 16-byte boundary. 1190 */ 1191 mctx = (struct mcontext __user *) 1192 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); 1193 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size) 1194 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) 1195 || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) 1196 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) 1197 return -EFAULT; 1198 } 1199 if (new_ctx == NULL) 1200 return 0; 1201 if (!access_ok(VERIFY_READ, new_ctx, ctx_size) 1202 || __get_user(tmp, (u8 __user *) new_ctx) 1203 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1)) 1204 return -EFAULT; 1205 1206 /* 1207 * If we get a fault copying the context into the kernel's 1208 * image of the user's registers, we can't just return -EFAULT 1209 * because the user's registers will be corrupted. For instance 1210 * the NIP value may have been updated but not some of the 1211 * other registers. Given that we have done the access_ok 1212 * and successfully read the first and last bytes of the region 1213 * above, this should only happen in an out-of-memory situation 1214 * or if another thread unmaps the region containing the context. 1215 * We kill the task with a SIGSEGV in this situation. 1216 */ 1217 if (do_setcontext(new_ctx, regs, 0)) 1218 do_exit(SIGSEGV); 1219 1220 set_thread_flag(TIF_RESTOREALL); 1221 return 0; 1222 } 1223 1224 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1225 struct pt_regs *regs) 1226 { 1227 struct rt_sigframe __user *rt_sf; 1228 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1229 struct ucontext __user *uc_transact; 1230 unsigned long msr_hi; 1231 unsigned long tmp; 1232 int tm_restore = 0; 1233 #endif 1234 /* Always make any pending restarted system calls return -EINTR */ 1235 current_thread_info()->restart_block.fn = do_no_restart_syscall; 1236 1237 rt_sf = (struct rt_sigframe __user *) 1238 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); 1239 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf))) 1240 goto bad; 1241 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1242 if (__get_user(tmp, &rt_sf->uc.uc_link)) 1243 goto bad; 1244 uc_transact = (struct ucontext __user *)(uintptr_t)tmp; 1245 if (uc_transact) { 1246 u32 cmcp; 1247 struct mcontext __user *mcp; 1248 1249 if (__get_user(cmcp, &uc_transact->uc_regs)) 1250 return -EFAULT; 1251 mcp = (struct mcontext __user *)(u64)cmcp; 1252 /* The top 32 bits of the MSR are stashed in the transactional 1253 * ucontext. */ 1254 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) 1255 goto bad; 1256 1257 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1258 /* We only recheckpoint on return if we're 1259 * transaction. 1260 */ 1261 tm_restore = 1; 1262 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) 1263 goto bad; 1264 } 1265 } 1266 if (!tm_restore) 1267 /* Fall through, for non-TM restore */ 1268 #endif 1269 if (do_setcontext(&rt_sf->uc, regs, 1)) 1270 goto bad; 1271 1272 /* 1273 * It's not clear whether or why it is desirable to save the 1274 * sigaltstack setting on signal delivery and restore it on 1275 * signal return. But other architectures do this and we have 1276 * always done it up until now so it is probably better not to 1277 * change it. -- paulus 1278 */ 1279 #ifdef CONFIG_PPC64 1280 if (compat_restore_altstack(&rt_sf->uc.uc_stack)) 1281 goto bad; 1282 #else 1283 if (restore_altstack(&rt_sf->uc.uc_stack)) 1284 goto bad; 1285 #endif 1286 set_thread_flag(TIF_RESTOREALL); 1287 return 0; 1288 1289 bad: 1290 if (show_unhandled_signals) 1291 printk_ratelimited(KERN_INFO 1292 "%s[%d]: bad frame in sys_rt_sigreturn: " 1293 "%p nip %08lx lr %08lx\n", 1294 current->comm, current->pid, 1295 rt_sf, regs->nip, regs->link); 1296 1297 force_sig(SIGSEGV, current); 1298 return 0; 1299 } 1300 1301 #ifdef CONFIG_PPC32 1302 int sys_debug_setcontext(struct ucontext __user *ctx, 1303 int ndbg, struct sig_dbg_op __user *dbg, 1304 int r6, int r7, int r8, 1305 struct pt_regs *regs) 1306 { 1307 struct sig_dbg_op op; 1308 int i; 1309 unsigned char tmp; 1310 unsigned long new_msr = regs->msr; 1311 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1312 unsigned long new_dbcr0 = current->thread.dbcr0; 1313 #endif 1314 1315 for (i=0; i<ndbg; i++) { 1316 if (copy_from_user(&op, dbg + i, sizeof(op))) 1317 return -EFAULT; 1318 switch (op.dbg_type) { 1319 case SIG_DBG_SINGLE_STEPPING: 1320 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1321 if (op.dbg_value) { 1322 new_msr |= MSR_DE; 1323 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); 1324 } else { 1325 new_dbcr0 &= ~DBCR0_IC; 1326 if (!DBCR_ACTIVE_EVENTS(new_dbcr0, 1327 current->thread.dbcr1)) { 1328 new_msr &= ~MSR_DE; 1329 new_dbcr0 &= ~DBCR0_IDM; 1330 } 1331 } 1332 #else 1333 if (op.dbg_value) 1334 new_msr |= MSR_SE; 1335 else 1336 new_msr &= ~MSR_SE; 1337 #endif 1338 break; 1339 case SIG_DBG_BRANCH_TRACING: 1340 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1341 return -EINVAL; 1342 #else 1343 if (op.dbg_value) 1344 new_msr |= MSR_BE; 1345 else 1346 new_msr &= ~MSR_BE; 1347 #endif 1348 break; 1349 1350 default: 1351 return -EINVAL; 1352 } 1353 } 1354 1355 /* We wait until here to actually install the values in the 1356 registers so if we fail in the above loop, it will not 1357 affect the contents of these registers. After this point, 1358 failure is a problem, anyway, and it's very unlikely unless 1359 the user is really doing something wrong. */ 1360 regs->msr = new_msr; 1361 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1362 current->thread.dbcr0 = new_dbcr0; 1363 #endif 1364 1365 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx)) 1366 || __get_user(tmp, (u8 __user *) ctx) 1367 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1)) 1368 return -EFAULT; 1369 1370 /* 1371 * If we get a fault copying the context into the kernel's 1372 * image of the user's registers, we can't just return -EFAULT 1373 * because the user's registers will be corrupted. For instance 1374 * the NIP value may have been updated but not some of the 1375 * other registers. Given that we have done the access_ok 1376 * and successfully read the first and last bytes of the region 1377 * above, this should only happen in an out-of-memory situation 1378 * or if another thread unmaps the region containing the context. 1379 * We kill the task with a SIGSEGV in this situation. 1380 */ 1381 if (do_setcontext(ctx, regs, 1)) { 1382 if (show_unhandled_signals) 1383 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " 1384 "sys_debug_setcontext: %p nip %08lx " 1385 "lr %08lx\n", 1386 current->comm, current->pid, 1387 ctx, regs->nip, regs->link); 1388 1389 force_sig(SIGSEGV, current); 1390 goto out; 1391 } 1392 1393 /* 1394 * It's not clear whether or why it is desirable to save the 1395 * sigaltstack setting on signal delivery and restore it on 1396 * signal return. But other architectures do this and we have 1397 * always done it up until now so it is probably better not to 1398 * change it. -- paulus 1399 */ 1400 restore_altstack(&ctx->uc_stack); 1401 1402 set_thread_flag(TIF_RESTOREALL); 1403 out: 1404 return 0; 1405 } 1406 #endif 1407 1408 /* 1409 * OK, we're invoking a handler 1410 */ 1411 int handle_signal32(unsigned long sig, struct k_sigaction *ka, 1412 siginfo_t *info, sigset_t *oldset, struct pt_regs *regs) 1413 { 1414 struct sigcontext __user *sc; 1415 struct sigframe __user *frame; 1416 struct mcontext __user *tm_mctx = NULL; 1417 unsigned long newsp = 0; 1418 int sigret; 1419 unsigned long tramp; 1420 1421 /* Set up Signal Frame */ 1422 frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1); 1423 if (unlikely(frame == NULL)) 1424 goto badframe; 1425 sc = (struct sigcontext __user *) &frame->sctx; 1426 1427 #if _NSIG != 64 1428 #error "Please adjust handle_signal()" 1429 #endif 1430 if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler) 1431 || __put_user(oldset->sig[0], &sc->oldmask) 1432 #ifdef CONFIG_PPC64 1433 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) 1434 #else 1435 || __put_user(oldset->sig[1], &sc->_unused[3]) 1436 #endif 1437 || __put_user(to_user_ptr(&frame->mctx), &sc->regs) 1438 || __put_user(sig, &sc->signal)) 1439 goto badframe; 1440 1441 if (vdso32_sigtramp && current->mm->context.vdso_base) { 1442 sigret = 0; 1443 tramp = current->mm->context.vdso_base + vdso32_sigtramp; 1444 } else { 1445 sigret = __NR_sigreturn; 1446 tramp = (unsigned long) frame->mctx.tramp; 1447 } 1448 1449 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1450 tm_mctx = &frame->mctx_transact; 1451 if (MSR_TM_ACTIVE(regs->msr)) { 1452 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, 1453 sigret)) 1454 goto badframe; 1455 } 1456 else 1457 #endif 1458 { 1459 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) 1460 goto badframe; 1461 } 1462 1463 regs->link = tramp; 1464 1465 current->thread.fpscr.val = 0; /* turn off all fp exceptions */ 1466 1467 /* create a stack frame for the caller of the handler */ 1468 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; 1469 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1470 goto badframe; 1471 1472 regs->gpr[1] = newsp; 1473 regs->gpr[3] = sig; 1474 regs->gpr[4] = (unsigned long) sc; 1475 regs->nip = (unsigned long) ka->sa.sa_handler; 1476 /* enter the signal handler in big-endian mode */ 1477 regs->msr &= ~MSR_LE; 1478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1479 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 1480 * just indicates to userland that we were doing a transaction, but we 1481 * don't want to return in transactional state: 1482 */ 1483 regs->msr &= ~MSR_TS_MASK; 1484 #endif 1485 return 1; 1486 1487 badframe: 1488 #ifdef DEBUG_SIG 1489 printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n", 1490 regs, frame, newsp); 1491 #endif 1492 if (show_unhandled_signals) 1493 printk_ratelimited(KERN_INFO 1494 "%s[%d]: bad frame in handle_signal32: " 1495 "%p nip %08lx lr %08lx\n", 1496 current->comm, current->pid, 1497 frame, regs->nip, regs->link); 1498 1499 force_sigsegv(sig, current); 1500 return 0; 1501 } 1502 1503 /* 1504 * Do a signal return; undo the signal stack. 1505 */ 1506 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1507 struct pt_regs *regs) 1508 { 1509 struct sigframe __user *sf; 1510 struct sigcontext __user *sc; 1511 struct sigcontext sigctx; 1512 struct mcontext __user *sr; 1513 void __user *addr; 1514 sigset_t set; 1515 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1516 struct mcontext __user *mcp, *tm_mcp; 1517 unsigned long msr_hi; 1518 #endif 1519 1520 /* Always make any pending restarted system calls return -EINTR */ 1521 current_thread_info()->restart_block.fn = do_no_restart_syscall; 1522 1523 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); 1524 sc = &sf->sctx; 1525 addr = sc; 1526 if (copy_from_user(&sigctx, sc, sizeof(sigctx))) 1527 goto badframe; 1528 1529 #ifdef CONFIG_PPC64 1530 /* 1531 * Note that PPC32 puts the upper 32 bits of the sigmask in the 1532 * unused part of the signal stackframe 1533 */ 1534 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); 1535 #else 1536 set.sig[0] = sigctx.oldmask; 1537 set.sig[1] = sigctx._unused[3]; 1538 #endif 1539 set_current_blocked(&set); 1540 1541 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1542 mcp = (struct mcontext __user *)&sf->mctx; 1543 tm_mcp = (struct mcontext __user *)&sf->mctx_transact; 1544 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) 1545 goto badframe; 1546 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1547 if (!cpu_has_feature(CPU_FTR_TM)) 1548 goto badframe; 1549 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1550 goto badframe; 1551 } else 1552 #endif 1553 { 1554 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); 1555 addr = sr; 1556 if (!access_ok(VERIFY_READ, sr, sizeof(*sr)) 1557 || restore_user_regs(regs, sr, 1)) 1558 goto badframe; 1559 } 1560 1561 set_thread_flag(TIF_RESTOREALL); 1562 return 0; 1563 1564 badframe: 1565 if (show_unhandled_signals) 1566 printk_ratelimited(KERN_INFO 1567 "%s[%d]: bad frame in sys_sigreturn: " 1568 "%p nip %08lx lr %08lx\n", 1569 current->comm, current->pid, 1570 addr, regs->nip, regs->link); 1571 1572 force_sig(SIGSEGV, current); 1573 return 0; 1574 } 1575