xref: /openbmc/linux/arch/powerpc/kernel/signal_32.c (revision f35e839a)
1 /*
2  * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3  *
4  *  PowerPC version
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  * Copyright (C) 2001 IBM
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9  *
10  *  Derived from "arch/i386/kernel/signal.c"
11  *    Copyright (C) 1991, 1992 Linus Torvalds
12  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  */
19 
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
39 
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
54 
55 #include "signal.h"
56 
57 #undef DEBUG_SIG
58 
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn	compat_sys_rt_sigreturn
61 #define sys_swapcontext	compat_sys_swapcontext
62 #define sys_sigreturn	compat_sys_sigreturn
63 
64 #define old_sigaction	old_sigaction32
65 #define sigcontext	sigcontext32
66 #define mcontext	mcontext32
67 #define ucontext	ucontext32
68 
69 #define __save_altstack __compat_save_altstack
70 
71 /*
72  * Userspace code may pass a ucontext which doesn't include VSX added
73  * at the end.  We need to check for this case.
74  */
75 #define UCONTEXTSIZEWITHOUTVSX \
76 		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77 
78 /*
79  * Returning 0 means we return to userspace via
80  * ret_from_except and thus restore all user
81  * registers from *regs.  This is what we need
82  * to do when a signal has been delivered.
83  */
84 
85 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG	ELF_NVRREG32
90 
91 /*
92  * Functions for flipping sigsets (thanks to brain dead generic
93  * implementation that makes things simple for little endian only)
94  */
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96 {
97 	compat_sigset_t	cset;
98 
99 	switch (_NSIG_WORDS) {
100 	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101 		cset.sig[7] = set->sig[3] >> 32;
102 	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103 		cset.sig[5] = set->sig[2] >> 32;
104 	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105 		cset.sig[3] = set->sig[1] >> 32;
106 	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107 		cset.sig[1] = set->sig[0] >> 32;
108 	}
109 	return copy_to_user(uset, &cset, sizeof(*uset));
110 }
111 
112 static inline int get_sigset_t(sigset_t *set,
113 			       const compat_sigset_t __user *uset)
114 {
115 	compat_sigset_t s32;
116 
117 	if (copy_from_user(&s32, uset, sizeof(*uset)))
118 		return -EFAULT;
119 
120 	/*
121 	 * Swap the 2 words of the 64-bit sigset_t (they are stored
122 	 * in the "wrong" endian in 32-bit user storage).
123 	 */
124 	switch (_NSIG_WORDS) {
125 	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126 	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127 	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128 	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129 	}
130 	return 0;
131 }
132 
133 #define to_user_ptr(p)		ptr_to_compat(p)
134 #define from_user_ptr(p)	compat_ptr(p)
135 
136 static inline int save_general_regs(struct pt_regs *regs,
137 		struct mcontext __user *frame)
138 {
139 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140 	int i;
141 
142 	WARN_ON(!FULL_REGS(regs));
143 
144 	for (i = 0; i <= PT_RESULT; i ++) {
145 		if (i == 14 && !FULL_REGS(regs))
146 			i = 32;
147 		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148 			return -EFAULT;
149 	}
150 	return 0;
151 }
152 
153 static inline int restore_general_regs(struct pt_regs *regs,
154 		struct mcontext __user *sr)
155 {
156 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157 	int i;
158 
159 	for (i = 0; i <= PT_RESULT; i++) {
160 		if ((i == PT_MSR) || (i == PT_SOFTE))
161 			continue;
162 		if (__get_user(gregs[i], &sr->mc_gregs[i]))
163 			return -EFAULT;
164 	}
165 	return 0;
166 }
167 
168 #else /* CONFIG_PPC64 */
169 
170 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171 
172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173 {
174 	return copy_to_user(uset, set, sizeof(*uset));
175 }
176 
177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178 {
179 	return copy_from_user(set, uset, sizeof(*uset));
180 }
181 
182 #define to_user_ptr(p)		((unsigned long)(p))
183 #define from_user_ptr(p)	((void __user *)(p))
184 
185 static inline int save_general_regs(struct pt_regs *regs,
186 		struct mcontext __user *frame)
187 {
188 	WARN_ON(!FULL_REGS(regs));
189 	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
190 }
191 
192 static inline int restore_general_regs(struct pt_regs *regs,
193 		struct mcontext __user *sr)
194 {
195 	/* copy up to but not including MSR */
196 	if (__copy_from_user(regs, &sr->mc_gregs,
197 				PT_MSR * sizeof(elf_greg_t)))
198 		return -EFAULT;
199 	/* copy from orig_r3 (the word after the MSR) up to the end */
200 	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201 				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202 		return -EFAULT;
203 	return 0;
204 }
205 #endif
206 
207 /*
208  * When we have signals to deliver, we set up on the
209  * user stack, going down from the original stack pointer:
210  *	an ABI gap of 56 words
211  *	an mcontext struct
212  *	a sigcontext struct
213  *	a gap of __SIGNAL_FRAMESIZE bytes
214  *
215  * Each of these things must be a multiple of 16 bytes in size. The following
216  * structure represent all of this except the __SIGNAL_FRAMESIZE gap
217  *
218  */
219 struct sigframe {
220 	struct sigcontext sctx;		/* the sigcontext */
221 	struct mcontext	mctx;		/* all the register values */
222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223 	struct sigcontext sctx_transact;
224 	struct mcontext	mctx_transact;
225 #endif
226 	/*
227 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
228 	 * regs and 18 fp regs below sp before decrementing it.
229 	 */
230 	int			abigap[56];
231 };
232 
233 /* We use the mc_pad field for the signal return trampoline. */
234 #define tramp	mc_pad
235 
236 /*
237  *  When we have rt signals to deliver, we set up on the
238  *  user stack, going down from the original stack pointer:
239  *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
240  *	a gap of __SIGNAL_FRAMESIZE+16 bytes
241  *  (the +16 is to get the siginfo and ucontext in the same
242  *  positions as in older kernels).
243  *
244  *  Each of these things must be a multiple of 16 bytes in size.
245  *
246  */
247 struct rt_sigframe {
248 #ifdef CONFIG_PPC64
249 	compat_siginfo_t info;
250 #else
251 	struct siginfo info;
252 #endif
253 	struct ucontext	uc;
254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255 	struct ucontext	uc_transact;
256 #endif
257 	/*
258 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
259 	 * regs and 18 fp regs below sp before decrementing it.
260 	 */
261 	int			abigap[56];
262 };
263 
264 #ifdef CONFIG_VSX
265 unsigned long copy_fpr_to_user(void __user *to,
266 			       struct task_struct *task)
267 {
268 	double buf[ELF_NFPREG];
269 	int i;
270 
271 	/* save FPR copy to local buffer then write to the thread_struct */
272 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273 		buf[i] = task->thread.TS_FPR(i);
274 	memcpy(&buf[i], &task->thread.fpscr, sizeof(double));
275 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
276 }
277 
278 unsigned long copy_fpr_from_user(struct task_struct *task,
279 				 void __user *from)
280 {
281 	double buf[ELF_NFPREG];
282 	int i;
283 
284 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285 		return 1;
286 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287 		task->thread.TS_FPR(i) = buf[i];
288 	memcpy(&task->thread.fpscr, &buf[i], sizeof(double));
289 
290 	return 0;
291 }
292 
293 unsigned long copy_vsx_to_user(void __user *to,
294 			       struct task_struct *task)
295 {
296 	double buf[ELF_NVSRHALFREG];
297 	int i;
298 
299 	/* save FPR copy to local buffer then write to the thread_struct */
300 	for (i = 0; i < ELF_NVSRHALFREG; i++)
301 		buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET];
302 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
303 }
304 
305 unsigned long copy_vsx_from_user(struct task_struct *task,
306 				 void __user *from)
307 {
308 	double buf[ELF_NVSRHALFREG];
309 	int i;
310 
311 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312 		return 1;
313 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
314 		task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315 	return 0;
316 }
317 
318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319 unsigned long copy_transact_fpr_to_user(void __user *to,
320 				  struct task_struct *task)
321 {
322 	double buf[ELF_NFPREG];
323 	int i;
324 
325 	/* save FPR copy to local buffer then write to the thread_struct */
326 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327 		buf[i] = task->thread.TS_TRANS_FPR(i);
328 	memcpy(&buf[i], &task->thread.transact_fpscr, sizeof(double));
329 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
330 }
331 
332 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333 					  void __user *from)
334 {
335 	double buf[ELF_NFPREG];
336 	int i;
337 
338 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339 		return 1;
340 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341 		task->thread.TS_TRANS_FPR(i) = buf[i];
342 	memcpy(&task->thread.transact_fpscr, &buf[i], sizeof(double));
343 
344 	return 0;
345 }
346 
347 unsigned long copy_transact_vsx_to_user(void __user *to,
348 				  struct task_struct *task)
349 {
350 	double buf[ELF_NVSRHALFREG];
351 	int i;
352 
353 	/* save FPR copy to local buffer then write to the thread_struct */
354 	for (i = 0; i < ELF_NVSRHALFREG; i++)
355 		buf[i] = task->thread.transact_fpr[i][TS_VSRLOWOFFSET];
356 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
357 }
358 
359 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360 					  void __user *from)
361 {
362 	double buf[ELF_NVSRHALFREG];
363 	int i;
364 
365 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366 		return 1;
367 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
368 		task->thread.transact_fpr[i][TS_VSRLOWOFFSET] = buf[i];
369 	return 0;
370 }
371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372 #else
373 inline unsigned long copy_fpr_to_user(void __user *to,
374 				      struct task_struct *task)
375 {
376 	return __copy_to_user(to, task->thread.fpr,
377 			      ELF_NFPREG * sizeof(double));
378 }
379 
380 inline unsigned long copy_fpr_from_user(struct task_struct *task,
381 					void __user *from)
382 {
383 	return __copy_from_user(task->thread.fpr, from,
384 			      ELF_NFPREG * sizeof(double));
385 }
386 
387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388 inline unsigned long copy_transact_fpr_to_user(void __user *to,
389 					 struct task_struct *task)
390 {
391 	return __copy_to_user(to, task->thread.transact_fpr,
392 			      ELF_NFPREG * sizeof(double));
393 }
394 
395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396 						 void __user *from)
397 {
398 	return __copy_from_user(task->thread.transact_fpr, from,
399 				ELF_NFPREG * sizeof(double));
400 }
401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402 #endif
403 
404 /*
405  * Save the current user registers on the user stack.
406  * We only save the altivec/spe registers if the process has used
407  * altivec/spe instructions at some point.
408  */
409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410 		int sigret, int ctx_has_vsx_region)
411 {
412 	unsigned long msr = regs->msr;
413 
414 	/* Make sure floating point registers are stored in regs */
415 	flush_fp_to_thread(current);
416 
417 	/* save general registers */
418 	if (save_general_regs(regs, frame))
419 		return 1;
420 
421 #ifdef CONFIG_ALTIVEC
422 	/* save altivec registers */
423 	if (current->thread.used_vr) {
424 		flush_altivec_to_thread(current);
425 		if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
426 				   ELF_NVRREG * sizeof(vector128)))
427 			return 1;
428 		/* set MSR_VEC in the saved MSR value to indicate that
429 		   frame->mc_vregs contains valid data */
430 		msr |= MSR_VEC;
431 	}
432 	/* else assert((regs->msr & MSR_VEC) == 0) */
433 
434 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
435 	 * use altivec. Since VSCR only contains 32 bits saved in the least
436 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
437 	 * most significant bits of that same vector. --BenH
438 	 */
439 	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
440 		return 1;
441 #endif /* CONFIG_ALTIVEC */
442 	if (copy_fpr_to_user(&frame->mc_fregs, current))
443 		return 1;
444 #ifdef CONFIG_VSX
445 	/*
446 	 * Copy VSR 0-31 upper half from thread_struct to local
447 	 * buffer, then write that to userspace.  Also set MSR_VSX in
448 	 * the saved MSR value to indicate that frame->mc_vregs
449 	 * contains valid data
450 	 */
451 	if (current->thread.used_vsr && ctx_has_vsx_region) {
452 		__giveup_vsx(current);
453 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
454 			return 1;
455 		msr |= MSR_VSX;
456 	}
457 #endif /* CONFIG_VSX */
458 #ifdef CONFIG_SPE
459 	/* save spe registers */
460 	if (current->thread.used_spe) {
461 		flush_spe_to_thread(current);
462 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
463 				   ELF_NEVRREG * sizeof(u32)))
464 			return 1;
465 		/* set MSR_SPE in the saved MSR value to indicate that
466 		   frame->mc_vregs contains valid data */
467 		msr |= MSR_SPE;
468 	}
469 	/* else assert((regs->msr & MSR_SPE) == 0) */
470 
471 	/* We always copy to/from spefscr */
472 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
473 		return 1;
474 #endif /* CONFIG_SPE */
475 
476 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
477 		return 1;
478 	if (sigret) {
479 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
480 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
481 		    || __put_user(0x44000002UL, &frame->tramp[1]))
482 			return 1;
483 		flush_icache_range((unsigned long) &frame->tramp[0],
484 				   (unsigned long) &frame->tramp[2]);
485 	}
486 
487 	return 0;
488 }
489 
490 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
491 /*
492  * Save the current user registers on the user stack.
493  * We only save the altivec/spe registers if the process has used
494  * altivec/spe instructions at some point.
495  * We also save the transactional registers to a second ucontext in the
496  * frame.
497  *
498  * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
499  */
500 static int save_tm_user_regs(struct pt_regs *regs,
501 			     struct mcontext __user *frame,
502 			     struct mcontext __user *tm_frame, int sigret)
503 {
504 	unsigned long msr = regs->msr;
505 
506 	/* tm_reclaim rolls back all reg states, updating thread.ckpt_regs,
507 	 * thread.transact_fpr[], thread.transact_vr[], etc.
508 	 */
509 	tm_enable();
510 	tm_reclaim(&current->thread, msr, TM_CAUSE_SIGNAL);
511 
512 	/* Make sure floating point registers are stored in regs */
513 	flush_fp_to_thread(current);
514 
515 	/* Save both sets of general registers */
516 	if (save_general_regs(&current->thread.ckpt_regs, frame)
517 	    || save_general_regs(regs, tm_frame))
518 		return 1;
519 
520 	/* Stash the top half of the 64bit MSR into the 32bit MSR word
521 	 * of the transactional mcontext.  This way we have a backward-compatible
522 	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
523 	 * also look at what type of transaction (T or S) was active at the
524 	 * time of the signal.
525 	 */
526 	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
527 		return 1;
528 
529 #ifdef CONFIG_ALTIVEC
530 	/* save altivec registers */
531 	if (current->thread.used_vr) {
532 		flush_altivec_to_thread(current);
533 		if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
534 				   ELF_NVRREG * sizeof(vector128)))
535 			return 1;
536 		if (msr & MSR_VEC) {
537 			if (__copy_to_user(&tm_frame->mc_vregs,
538 					   current->thread.transact_vr,
539 					   ELF_NVRREG * sizeof(vector128)))
540 				return 1;
541 		} else {
542 			if (__copy_to_user(&tm_frame->mc_vregs,
543 					   current->thread.vr,
544 					   ELF_NVRREG * sizeof(vector128)))
545 				return 1;
546 		}
547 
548 		/* set MSR_VEC in the saved MSR value to indicate that
549 		 * frame->mc_vregs contains valid data
550 		 */
551 		msr |= MSR_VEC;
552 	}
553 
554 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
555 	 * use altivec. Since VSCR only contains 32 bits saved in the least
556 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
557 	 * most significant bits of that same vector. --BenH
558 	 */
559 	if (__put_user(current->thread.vrsave,
560 		       (u32 __user *)&frame->mc_vregs[32]))
561 		return 1;
562 	if (msr & MSR_VEC) {
563 		if (__put_user(current->thread.transact_vrsave,
564 			       (u32 __user *)&tm_frame->mc_vregs[32]))
565 			return 1;
566 	} else {
567 		if (__put_user(current->thread.vrsave,
568 			       (u32 __user *)&tm_frame->mc_vregs[32]))
569 			return 1;
570 	}
571 #endif /* CONFIG_ALTIVEC */
572 
573 	if (copy_fpr_to_user(&frame->mc_fregs, current))
574 		return 1;
575 	if (msr & MSR_FP) {
576 		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
577 			return 1;
578 	} else {
579 		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
580 			return 1;
581 	}
582 
583 #ifdef CONFIG_VSX
584 	/*
585 	 * Copy VSR 0-31 upper half from thread_struct to local
586 	 * buffer, then write that to userspace.  Also set MSR_VSX in
587 	 * the saved MSR value to indicate that frame->mc_vregs
588 	 * contains valid data
589 	 */
590 	if (current->thread.used_vsr) {
591 		__giveup_vsx(current);
592 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
593 			return 1;
594 		if (msr & MSR_VSX) {
595 			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
596 						      current))
597 				return 1;
598 		} else {
599 			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
600 				return 1;
601 		}
602 
603 		msr |= MSR_VSX;
604 	}
605 #endif /* CONFIG_VSX */
606 #ifdef CONFIG_SPE
607 	/* SPE regs are not checkpointed with TM, so this section is
608 	 * simply the same as in save_user_regs().
609 	 */
610 	if (current->thread.used_spe) {
611 		flush_spe_to_thread(current);
612 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
613 				   ELF_NEVRREG * sizeof(u32)))
614 			return 1;
615 		/* set MSR_SPE in the saved MSR value to indicate that
616 		 * frame->mc_vregs contains valid data */
617 		msr |= MSR_SPE;
618 	}
619 
620 	/* We always copy to/from spefscr */
621 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
622 		return 1;
623 #endif /* CONFIG_SPE */
624 
625 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
626 		return 1;
627 	if (sigret) {
628 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
629 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
630 		    || __put_user(0x44000002UL, &frame->tramp[1]))
631 			return 1;
632 		flush_icache_range((unsigned long) &frame->tramp[0],
633 				   (unsigned long) &frame->tramp[2]);
634 	}
635 
636 	return 0;
637 }
638 #endif
639 
640 /*
641  * Restore the current user register values from the user stack,
642  * (except for MSR).
643  */
644 static long restore_user_regs(struct pt_regs *regs,
645 			      struct mcontext __user *sr, int sig)
646 {
647 	long err;
648 	unsigned int save_r2 = 0;
649 	unsigned long msr;
650 #ifdef CONFIG_VSX
651 	int i;
652 #endif
653 
654 	/*
655 	 * restore general registers but not including MSR or SOFTE. Also
656 	 * take care of keeping r2 (TLS) intact if not a signal
657 	 */
658 	if (!sig)
659 		save_r2 = (unsigned int)regs->gpr[2];
660 	err = restore_general_regs(regs, sr);
661 	regs->trap = 0;
662 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
663 	if (!sig)
664 		regs->gpr[2] = (unsigned long) save_r2;
665 	if (err)
666 		return 1;
667 
668 	/* if doing signal return, restore the previous little-endian mode */
669 	if (sig)
670 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
671 
672 	/*
673 	 * Do this before updating the thread state in
674 	 * current->thread.fpr/vr/evr.  That way, if we get preempted
675 	 * and another task grabs the FPU/Altivec/SPE, it won't be
676 	 * tempted to save the current CPU state into the thread_struct
677 	 * and corrupt what we are writing there.
678 	 */
679 	discard_lazy_cpu_state();
680 
681 #ifdef CONFIG_ALTIVEC
682 	/*
683 	 * Force the process to reload the altivec registers from
684 	 * current->thread when it next does altivec instructions
685 	 */
686 	regs->msr &= ~MSR_VEC;
687 	if (msr & MSR_VEC) {
688 		/* restore altivec registers from the stack */
689 		if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
690 				     sizeof(sr->mc_vregs)))
691 			return 1;
692 	} else if (current->thread.used_vr)
693 		memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
694 
695 	/* Always get VRSAVE back */
696 	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
697 		return 1;
698 #endif /* CONFIG_ALTIVEC */
699 	if (copy_fpr_from_user(current, &sr->mc_fregs))
700 		return 1;
701 
702 #ifdef CONFIG_VSX
703 	/*
704 	 * Force the process to reload the VSX registers from
705 	 * current->thread when it next does VSX instruction.
706 	 */
707 	regs->msr &= ~MSR_VSX;
708 	if (msr & MSR_VSX) {
709 		/*
710 		 * Restore altivec registers from the stack to a local
711 		 * buffer, then write this out to the thread_struct
712 		 */
713 		if (copy_vsx_from_user(current, &sr->mc_vsregs))
714 			return 1;
715 	} else if (current->thread.used_vsr)
716 		for (i = 0; i < 32 ; i++)
717 			current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
718 #endif /* CONFIG_VSX */
719 	/*
720 	 * force the process to reload the FP registers from
721 	 * current->thread when it next does FP instructions
722 	 */
723 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
724 
725 #ifdef CONFIG_SPE
726 	/* force the process to reload the spe registers from
727 	   current->thread when it next does spe instructions */
728 	regs->msr &= ~MSR_SPE;
729 	if (msr & MSR_SPE) {
730 		/* restore spe registers from the stack */
731 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
732 				     ELF_NEVRREG * sizeof(u32)))
733 			return 1;
734 	} else if (current->thread.used_spe)
735 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
736 
737 	/* Always get SPEFSCR back */
738 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
739 		return 1;
740 #endif /* CONFIG_SPE */
741 
742 	return 0;
743 }
744 
745 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
746 /*
747  * Restore the current user register values from the user stack, except for
748  * MSR, and recheckpoint the original checkpointed register state for processes
749  * in transactions.
750  */
751 static long restore_tm_user_regs(struct pt_regs *regs,
752 				 struct mcontext __user *sr,
753 				 struct mcontext __user *tm_sr)
754 {
755 	long err;
756 	unsigned long msr;
757 #ifdef CONFIG_VSX
758 	int i;
759 #endif
760 
761 	/*
762 	 * restore general registers but not including MSR or SOFTE. Also
763 	 * take care of keeping r2 (TLS) intact if not a signal.
764 	 * See comment in signal_64.c:restore_tm_sigcontexts();
765 	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
766 	 * were set by the signal delivery.
767 	 */
768 	err = restore_general_regs(regs, tm_sr);
769 	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
770 
771 	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
772 
773 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
774 	if (err)
775 		return 1;
776 
777 	/* Restore the previous little-endian mode */
778 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
779 
780 	/*
781 	 * Do this before updating the thread state in
782 	 * current->thread.fpr/vr/evr.  That way, if we get preempted
783 	 * and another task grabs the FPU/Altivec/SPE, it won't be
784 	 * tempted to save the current CPU state into the thread_struct
785 	 * and corrupt what we are writing there.
786 	 */
787 	discard_lazy_cpu_state();
788 
789 #ifdef CONFIG_ALTIVEC
790 	regs->msr &= ~MSR_VEC;
791 	if (msr & MSR_VEC) {
792 		/* restore altivec registers from the stack */
793 		if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
794 				     sizeof(sr->mc_vregs)) ||
795 		    __copy_from_user(current->thread.transact_vr,
796 				     &tm_sr->mc_vregs,
797 				     sizeof(sr->mc_vregs)))
798 			return 1;
799 	} else if (current->thread.used_vr) {
800 		memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
801 		memset(current->thread.transact_vr, 0,
802 		       ELF_NVRREG * sizeof(vector128));
803 	}
804 
805 	/* Always get VRSAVE back */
806 	if (__get_user(current->thread.vrsave,
807 		       (u32 __user *)&sr->mc_vregs[32]) ||
808 	    __get_user(current->thread.transact_vrsave,
809 		       (u32 __user *)&tm_sr->mc_vregs[32]))
810 		return 1;
811 #endif /* CONFIG_ALTIVEC */
812 
813 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
814 
815 	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
816 	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
817 		return 1;
818 
819 #ifdef CONFIG_VSX
820 	regs->msr &= ~MSR_VSX;
821 	if (msr & MSR_VSX) {
822 		/*
823 		 * Restore altivec registers from the stack to a local
824 		 * buffer, then write this out to the thread_struct
825 		 */
826 		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
827 		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
828 			return 1;
829 	} else if (current->thread.used_vsr)
830 		for (i = 0; i < 32 ; i++) {
831 			current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
832 			current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0;
833 		}
834 #endif /* CONFIG_VSX */
835 
836 #ifdef CONFIG_SPE
837 	/* SPE regs are not checkpointed with TM, so this section is
838 	 * simply the same as in restore_user_regs().
839 	 */
840 	regs->msr &= ~MSR_SPE;
841 	if (msr & MSR_SPE) {
842 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
843 				     ELF_NEVRREG * sizeof(u32)))
844 			return 1;
845 	} else if (current->thread.used_spe)
846 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
847 
848 	/* Always get SPEFSCR back */
849 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
850 		       + ELF_NEVRREG))
851 		return 1;
852 #endif /* CONFIG_SPE */
853 
854 	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
855 	 * registers, including FP and V[S]Rs.  After recheckpointing, the
856 	 * transactional versions should be loaded.
857 	 */
858 	tm_enable();
859 	/* This loads the checkpointed FP/VEC state, if used */
860 	tm_recheckpoint(&current->thread, msr);
861 	/* The task has moved into TM state S, so ensure MSR reflects this */
862 	regs->msr = (regs->msr & ~MSR_TS_MASK) | MSR_TS_S;
863 
864 	/* This loads the speculative FP/VEC state, if used */
865 	if (msr & MSR_FP) {
866 		do_load_up_transact_fpu(&current->thread);
867 		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
868 	}
869 #ifdef CONFIG_ALTIVEC
870 	if (msr & MSR_VEC) {
871 		do_load_up_transact_altivec(&current->thread);
872 		regs->msr |= MSR_VEC;
873 	}
874 #endif
875 
876 	return 0;
877 }
878 #endif
879 
880 #ifdef CONFIG_PPC64
881 int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s)
882 {
883 	int err;
884 
885 	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
886 		return -EFAULT;
887 
888 	/* If you change siginfo_t structure, please be sure
889 	 * this code is fixed accordingly.
890 	 * It should never copy any pad contained in the structure
891 	 * to avoid security leaks, but must copy the generic
892 	 * 3 ints plus the relevant union member.
893 	 * This routine must convert siginfo from 64bit to 32bit as well
894 	 * at the same time.
895 	 */
896 	err = __put_user(s->si_signo, &d->si_signo);
897 	err |= __put_user(s->si_errno, &d->si_errno);
898 	err |= __put_user((short)s->si_code, &d->si_code);
899 	if (s->si_code < 0)
900 		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
901 				      SI_PAD_SIZE32);
902 	else switch(s->si_code >> 16) {
903 	case __SI_CHLD >> 16:
904 		err |= __put_user(s->si_pid, &d->si_pid);
905 		err |= __put_user(s->si_uid, &d->si_uid);
906 		err |= __put_user(s->si_utime, &d->si_utime);
907 		err |= __put_user(s->si_stime, &d->si_stime);
908 		err |= __put_user(s->si_status, &d->si_status);
909 		break;
910 	case __SI_FAULT >> 16:
911 		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
912 				  &d->si_addr);
913 		break;
914 	case __SI_POLL >> 16:
915 		err |= __put_user(s->si_band, &d->si_band);
916 		err |= __put_user(s->si_fd, &d->si_fd);
917 		break;
918 	case __SI_TIMER >> 16:
919 		err |= __put_user(s->si_tid, &d->si_tid);
920 		err |= __put_user(s->si_overrun, &d->si_overrun);
921 		err |= __put_user(s->si_int, &d->si_int);
922 		break;
923 	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
924 	case __SI_MESGQ >> 16:
925 		err |= __put_user(s->si_int, &d->si_int);
926 		/* fallthrough */
927 	case __SI_KILL >> 16:
928 	default:
929 		err |= __put_user(s->si_pid, &d->si_pid);
930 		err |= __put_user(s->si_uid, &d->si_uid);
931 		break;
932 	}
933 	return err;
934 }
935 
936 #define copy_siginfo_to_user	copy_siginfo_to_user32
937 
938 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
939 {
940 	memset(to, 0, sizeof *to);
941 
942 	if (copy_from_user(to, from, 3*sizeof(int)) ||
943 	    copy_from_user(to->_sifields._pad,
944 			   from->_sifields._pad, SI_PAD_SIZE32))
945 		return -EFAULT;
946 
947 	return 0;
948 }
949 #endif /* CONFIG_PPC64 */
950 
951 /*
952  * Set up a signal frame for a "real-time" signal handler
953  * (one which gets siginfo).
954  */
955 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
956 		siginfo_t *info, sigset_t *oldset,
957 		struct pt_regs *regs)
958 {
959 	struct rt_sigframe __user *rt_sf;
960 	struct mcontext __user *frame;
961 	void __user *addr;
962 	unsigned long newsp = 0;
963 	int sigret;
964 	unsigned long tramp;
965 
966 	/* Set up Signal Frame */
967 	/* Put a Real Time Context onto stack */
968 	rt_sf = get_sigframe(ka, regs, sizeof(*rt_sf), 1);
969 	addr = rt_sf;
970 	if (unlikely(rt_sf == NULL))
971 		goto badframe;
972 
973 	/* Put the siginfo & fill in most of the ucontext */
974 	if (copy_siginfo_to_user(&rt_sf->info, info)
975 	    || __put_user(0, &rt_sf->uc.uc_flags)
976 	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
977 	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
978 		    &rt_sf->uc.uc_regs)
979 	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
980 		goto badframe;
981 
982 	/* Save user registers on the stack */
983 	frame = &rt_sf->uc.uc_mcontext;
984 	addr = frame;
985 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
986 		sigret = 0;
987 		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
988 	} else {
989 		sigret = __NR_rt_sigreturn;
990 		tramp = (unsigned long) frame->tramp;
991 	}
992 
993 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
994 	if (MSR_TM_ACTIVE(regs->msr)) {
995 		if (save_tm_user_regs(regs, &rt_sf->uc.uc_mcontext,
996 				      &rt_sf->uc_transact.uc_mcontext, sigret))
997 			goto badframe;
998 	}
999 	else
1000 #endif
1001 		if (save_user_regs(regs, frame, sigret, 1))
1002 			goto badframe;
1003 	regs->link = tramp;
1004 
1005 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1006 	if (MSR_TM_ACTIVE(regs->msr)) {
1007 		if (__put_user((unsigned long)&rt_sf->uc_transact,
1008 			       &rt_sf->uc.uc_link)
1009 		    || __put_user(to_user_ptr(&rt_sf->uc_transact.uc_mcontext),
1010 				  &rt_sf->uc_transact.uc_regs))
1011 			goto badframe;
1012 	}
1013 	else
1014 #endif
1015 		if (__put_user(0, &rt_sf->uc.uc_link))
1016 			goto badframe;
1017 
1018 	current->thread.fpscr.val = 0;	/* turn off all fp exceptions */
1019 
1020 	/* create a stack frame for the caller of the handler */
1021 	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1022 	addr = (void __user *)regs->gpr[1];
1023 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1024 		goto badframe;
1025 
1026 	/* Fill registers for signal handler */
1027 	regs->gpr[1] = newsp;
1028 	regs->gpr[3] = sig;
1029 	regs->gpr[4] = (unsigned long) &rt_sf->info;
1030 	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1031 	regs->gpr[6] = (unsigned long) rt_sf;
1032 	regs->nip = (unsigned long) ka->sa.sa_handler;
1033 	/* enter the signal handler in big-endian mode */
1034 	regs->msr &= ~MSR_LE;
1035 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1036 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1037 	 * just indicates to userland that we were doing a transaction, but we
1038 	 * don't want to return in transactional state:
1039 	 */
1040 	regs->msr &= ~MSR_TS_MASK;
1041 #endif
1042 	return 1;
1043 
1044 badframe:
1045 #ifdef DEBUG_SIG
1046 	printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1047 	       regs, frame, newsp);
1048 #endif
1049 	if (show_unhandled_signals)
1050 		printk_ratelimited(KERN_INFO
1051 				   "%s[%d]: bad frame in handle_rt_signal32: "
1052 				   "%p nip %08lx lr %08lx\n",
1053 				   current->comm, current->pid,
1054 				   addr, regs->nip, regs->link);
1055 
1056 	force_sigsegv(sig, current);
1057 	return 0;
1058 }
1059 
1060 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1061 {
1062 	sigset_t set;
1063 	struct mcontext __user *mcp;
1064 
1065 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1066 		return -EFAULT;
1067 #ifdef CONFIG_PPC64
1068 	{
1069 		u32 cmcp;
1070 
1071 		if (__get_user(cmcp, &ucp->uc_regs))
1072 			return -EFAULT;
1073 		mcp = (struct mcontext __user *)(u64)cmcp;
1074 		/* no need to check access_ok(mcp), since mcp < 4GB */
1075 	}
1076 #else
1077 	if (__get_user(mcp, &ucp->uc_regs))
1078 		return -EFAULT;
1079 	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1080 		return -EFAULT;
1081 #endif
1082 	set_current_blocked(&set);
1083 	if (restore_user_regs(regs, mcp, sig))
1084 		return -EFAULT;
1085 
1086 	return 0;
1087 }
1088 
1089 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1090 static int do_setcontext_tm(struct ucontext __user *ucp,
1091 			    struct ucontext __user *tm_ucp,
1092 			    struct pt_regs *regs)
1093 {
1094 	sigset_t set;
1095 	struct mcontext __user *mcp;
1096 	struct mcontext __user *tm_mcp;
1097 	u32 cmcp;
1098 	u32 tm_cmcp;
1099 
1100 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1101 		return -EFAULT;
1102 
1103 	if (__get_user(cmcp, &ucp->uc_regs) ||
1104 	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1105 		return -EFAULT;
1106 	mcp = (struct mcontext __user *)(u64)cmcp;
1107 	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1108 	/* no need to check access_ok(mcp), since mcp < 4GB */
1109 
1110 	set_current_blocked(&set);
1111 	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1112 		return -EFAULT;
1113 
1114 	return 0;
1115 }
1116 #endif
1117 
1118 long sys_swapcontext(struct ucontext __user *old_ctx,
1119 		     struct ucontext __user *new_ctx,
1120 		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1121 {
1122 	unsigned char tmp;
1123 	int ctx_has_vsx_region = 0;
1124 
1125 #ifdef CONFIG_PPC64
1126 	unsigned long new_msr = 0;
1127 
1128 	if (new_ctx) {
1129 		struct mcontext __user *mcp;
1130 		u32 cmcp;
1131 
1132 		/*
1133 		 * Get pointer to the real mcontext.  No need for
1134 		 * access_ok since we are dealing with compat
1135 		 * pointers.
1136 		 */
1137 		if (__get_user(cmcp, &new_ctx->uc_regs))
1138 			return -EFAULT;
1139 		mcp = (struct mcontext __user *)(u64)cmcp;
1140 		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1141 			return -EFAULT;
1142 	}
1143 	/*
1144 	 * Check that the context is not smaller than the original
1145 	 * size (with VMX but without VSX)
1146 	 */
1147 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1148 		return -EINVAL;
1149 	/*
1150 	 * If the new context state sets the MSR VSX bits but
1151 	 * it doesn't provide VSX state.
1152 	 */
1153 	if ((ctx_size < sizeof(struct ucontext)) &&
1154 	    (new_msr & MSR_VSX))
1155 		return -EINVAL;
1156 	/* Does the context have enough room to store VSX data? */
1157 	if (ctx_size >= sizeof(struct ucontext))
1158 		ctx_has_vsx_region = 1;
1159 #else
1160 	/* Context size is for future use. Right now, we only make sure
1161 	 * we are passed something we understand
1162 	 */
1163 	if (ctx_size < sizeof(struct ucontext))
1164 		return -EINVAL;
1165 #endif
1166 	if (old_ctx != NULL) {
1167 		struct mcontext __user *mctx;
1168 
1169 		/*
1170 		 * old_ctx might not be 16-byte aligned, in which
1171 		 * case old_ctx->uc_mcontext won't be either.
1172 		 * Because we have the old_ctx->uc_pad2 field
1173 		 * before old_ctx->uc_mcontext, we need to round down
1174 		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1175 		 */
1176 		mctx = (struct mcontext __user *)
1177 			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1178 		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1179 		    || save_user_regs(regs, mctx, 0, ctx_has_vsx_region)
1180 		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1181 		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1182 			return -EFAULT;
1183 	}
1184 	if (new_ctx == NULL)
1185 		return 0;
1186 	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1187 	    || __get_user(tmp, (u8 __user *) new_ctx)
1188 	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1189 		return -EFAULT;
1190 
1191 	/*
1192 	 * If we get a fault copying the context into the kernel's
1193 	 * image of the user's registers, we can't just return -EFAULT
1194 	 * because the user's registers will be corrupted.  For instance
1195 	 * the NIP value may have been updated but not some of the
1196 	 * other registers.  Given that we have done the access_ok
1197 	 * and successfully read the first and last bytes of the region
1198 	 * above, this should only happen in an out-of-memory situation
1199 	 * or if another thread unmaps the region containing the context.
1200 	 * We kill the task with a SIGSEGV in this situation.
1201 	 */
1202 	if (do_setcontext(new_ctx, regs, 0))
1203 		do_exit(SIGSEGV);
1204 
1205 	set_thread_flag(TIF_RESTOREALL);
1206 	return 0;
1207 }
1208 
1209 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1210 		     struct pt_regs *regs)
1211 {
1212 	struct rt_sigframe __user *rt_sf;
1213 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1214 	struct ucontext __user *uc_transact;
1215 	unsigned long msr_hi;
1216 	unsigned long tmp;
1217 	int tm_restore = 0;
1218 #endif
1219 	/* Always make any pending restarted system calls return -EINTR */
1220 	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1221 
1222 	rt_sf = (struct rt_sigframe __user *)
1223 		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1224 	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1225 		goto bad;
1226 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1227 	if (__get_user(tmp, &rt_sf->uc.uc_link))
1228 		goto bad;
1229 	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1230 	if (uc_transact) {
1231 		u32 cmcp;
1232 		struct mcontext __user *mcp;
1233 
1234 		if (__get_user(cmcp, &uc_transact->uc_regs))
1235 			return -EFAULT;
1236 		mcp = (struct mcontext __user *)(u64)cmcp;
1237 		/* The top 32 bits of the MSR are stashed in the transactional
1238 		 * ucontext. */
1239 		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1240 			goto bad;
1241 
1242 		if (MSR_TM_SUSPENDED(msr_hi<<32)) {
1243 			/* We only recheckpoint on return if we're
1244 			 * transaction.
1245 			 */
1246 			tm_restore = 1;
1247 			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1248 				goto bad;
1249 		}
1250 	}
1251 	if (!tm_restore)
1252 		/* Fall through, for non-TM restore */
1253 #endif
1254 	if (do_setcontext(&rt_sf->uc, regs, 1))
1255 		goto bad;
1256 
1257 	/*
1258 	 * It's not clear whether or why it is desirable to save the
1259 	 * sigaltstack setting on signal delivery and restore it on
1260 	 * signal return.  But other architectures do this and we have
1261 	 * always done it up until now so it is probably better not to
1262 	 * change it.  -- paulus
1263 	 */
1264 #ifdef CONFIG_PPC64
1265 	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1266 		goto bad;
1267 #else
1268 	if (restore_altstack(&rt_sf->uc.uc_stack))
1269 		goto bad;
1270 #endif
1271 	set_thread_flag(TIF_RESTOREALL);
1272 	return 0;
1273 
1274  bad:
1275 	if (show_unhandled_signals)
1276 		printk_ratelimited(KERN_INFO
1277 				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1278 				   "%p nip %08lx lr %08lx\n",
1279 				   current->comm, current->pid,
1280 				   rt_sf, regs->nip, regs->link);
1281 
1282 	force_sig(SIGSEGV, current);
1283 	return 0;
1284 }
1285 
1286 #ifdef CONFIG_PPC32
1287 int sys_debug_setcontext(struct ucontext __user *ctx,
1288 			 int ndbg, struct sig_dbg_op __user *dbg,
1289 			 int r6, int r7, int r8,
1290 			 struct pt_regs *regs)
1291 {
1292 	struct sig_dbg_op op;
1293 	int i;
1294 	unsigned char tmp;
1295 	unsigned long new_msr = regs->msr;
1296 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1297 	unsigned long new_dbcr0 = current->thread.dbcr0;
1298 #endif
1299 
1300 	for (i=0; i<ndbg; i++) {
1301 		if (copy_from_user(&op, dbg + i, sizeof(op)))
1302 			return -EFAULT;
1303 		switch (op.dbg_type) {
1304 		case SIG_DBG_SINGLE_STEPPING:
1305 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1306 			if (op.dbg_value) {
1307 				new_msr |= MSR_DE;
1308 				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1309 			} else {
1310 				new_dbcr0 &= ~DBCR0_IC;
1311 				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1312 						current->thread.dbcr1)) {
1313 					new_msr &= ~MSR_DE;
1314 					new_dbcr0 &= ~DBCR0_IDM;
1315 				}
1316 			}
1317 #else
1318 			if (op.dbg_value)
1319 				new_msr |= MSR_SE;
1320 			else
1321 				new_msr &= ~MSR_SE;
1322 #endif
1323 			break;
1324 		case SIG_DBG_BRANCH_TRACING:
1325 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1326 			return -EINVAL;
1327 #else
1328 			if (op.dbg_value)
1329 				new_msr |= MSR_BE;
1330 			else
1331 				new_msr &= ~MSR_BE;
1332 #endif
1333 			break;
1334 
1335 		default:
1336 			return -EINVAL;
1337 		}
1338 	}
1339 
1340 	/* We wait until here to actually install the values in the
1341 	   registers so if we fail in the above loop, it will not
1342 	   affect the contents of these registers.  After this point,
1343 	   failure is a problem, anyway, and it's very unlikely unless
1344 	   the user is really doing something wrong. */
1345 	regs->msr = new_msr;
1346 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1347 	current->thread.dbcr0 = new_dbcr0;
1348 #endif
1349 
1350 	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1351 	    || __get_user(tmp, (u8 __user *) ctx)
1352 	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1353 		return -EFAULT;
1354 
1355 	/*
1356 	 * If we get a fault copying the context into the kernel's
1357 	 * image of the user's registers, we can't just return -EFAULT
1358 	 * because the user's registers will be corrupted.  For instance
1359 	 * the NIP value may have been updated but not some of the
1360 	 * other registers.  Given that we have done the access_ok
1361 	 * and successfully read the first and last bytes of the region
1362 	 * above, this should only happen in an out-of-memory situation
1363 	 * or if another thread unmaps the region containing the context.
1364 	 * We kill the task with a SIGSEGV in this situation.
1365 	 */
1366 	if (do_setcontext(ctx, regs, 1)) {
1367 		if (show_unhandled_signals)
1368 			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1369 					   "sys_debug_setcontext: %p nip %08lx "
1370 					   "lr %08lx\n",
1371 					   current->comm, current->pid,
1372 					   ctx, regs->nip, regs->link);
1373 
1374 		force_sig(SIGSEGV, current);
1375 		goto out;
1376 	}
1377 
1378 	/*
1379 	 * It's not clear whether or why it is desirable to save the
1380 	 * sigaltstack setting on signal delivery and restore it on
1381 	 * signal return.  But other architectures do this and we have
1382 	 * always done it up until now so it is probably better not to
1383 	 * change it.  -- paulus
1384 	 */
1385 	restore_altstack(&ctx->uc_stack);
1386 
1387 	set_thread_flag(TIF_RESTOREALL);
1388  out:
1389 	return 0;
1390 }
1391 #endif
1392 
1393 /*
1394  * OK, we're invoking a handler
1395  */
1396 int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1397 		    siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1398 {
1399 	struct sigcontext __user *sc;
1400 	struct sigframe __user *frame;
1401 	unsigned long newsp = 0;
1402 	int sigret;
1403 	unsigned long tramp;
1404 
1405 	/* Set up Signal Frame */
1406 	frame = get_sigframe(ka, regs, sizeof(*frame), 1);
1407 	if (unlikely(frame == NULL))
1408 		goto badframe;
1409 	sc = (struct sigcontext __user *) &frame->sctx;
1410 
1411 #if _NSIG != 64
1412 #error "Please adjust handle_signal()"
1413 #endif
1414 	if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1415 	    || __put_user(oldset->sig[0], &sc->oldmask)
1416 #ifdef CONFIG_PPC64
1417 	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1418 #else
1419 	    || __put_user(oldset->sig[1], &sc->_unused[3])
1420 #endif
1421 	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1422 	    || __put_user(sig, &sc->signal))
1423 		goto badframe;
1424 
1425 	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1426 		sigret = 0;
1427 		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1428 	} else {
1429 		sigret = __NR_sigreturn;
1430 		tramp = (unsigned long) frame->mctx.tramp;
1431 	}
1432 
1433 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1434 	if (MSR_TM_ACTIVE(regs->msr)) {
1435 		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1436 				      sigret))
1437 			goto badframe;
1438 	}
1439 	else
1440 #endif
1441 		if (save_user_regs(regs, &frame->mctx, sigret, 1))
1442 			goto badframe;
1443 
1444 	regs->link = tramp;
1445 
1446 	current->thread.fpscr.val = 0;	/* turn off all fp exceptions */
1447 
1448 	/* create a stack frame for the caller of the handler */
1449 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1450 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1451 		goto badframe;
1452 
1453 	regs->gpr[1] = newsp;
1454 	regs->gpr[3] = sig;
1455 	regs->gpr[4] = (unsigned long) sc;
1456 	regs->nip = (unsigned long) ka->sa.sa_handler;
1457 	/* enter the signal handler in big-endian mode */
1458 	regs->msr &= ~MSR_LE;
1459 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1460 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1461 	 * just indicates to userland that we were doing a transaction, but we
1462 	 * don't want to return in transactional state:
1463 	 */
1464 	regs->msr &= ~MSR_TS_MASK;
1465 #endif
1466 	return 1;
1467 
1468 badframe:
1469 #ifdef DEBUG_SIG
1470 	printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1471 	       regs, frame, newsp);
1472 #endif
1473 	if (show_unhandled_signals)
1474 		printk_ratelimited(KERN_INFO
1475 				   "%s[%d]: bad frame in handle_signal32: "
1476 				   "%p nip %08lx lr %08lx\n",
1477 				   current->comm, current->pid,
1478 				   frame, regs->nip, regs->link);
1479 
1480 	force_sigsegv(sig, current);
1481 	return 0;
1482 }
1483 
1484 /*
1485  * Do a signal return; undo the signal stack.
1486  */
1487 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1488 		       struct pt_regs *regs)
1489 {
1490 	struct sigcontext __user *sc;
1491 	struct sigcontext sigctx;
1492 	struct mcontext __user *sr;
1493 	void __user *addr;
1494 	sigset_t set;
1495 
1496 	/* Always make any pending restarted system calls return -EINTR */
1497 	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1498 
1499 	sc = (struct sigcontext __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1500 	addr = sc;
1501 	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1502 		goto badframe;
1503 
1504 #ifdef CONFIG_PPC64
1505 	/*
1506 	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1507 	 * unused part of the signal stackframe
1508 	 */
1509 	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1510 #else
1511 	set.sig[0] = sigctx.oldmask;
1512 	set.sig[1] = sigctx._unused[3];
1513 #endif
1514 	set_current_blocked(&set);
1515 
1516 	sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1517 	addr = sr;
1518 	if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1519 	    || restore_user_regs(regs, sr, 1))
1520 		goto badframe;
1521 
1522 	set_thread_flag(TIF_RESTOREALL);
1523 	return 0;
1524 
1525 badframe:
1526 	if (show_unhandled_signals)
1527 		printk_ratelimited(KERN_INFO
1528 				   "%s[%d]: bad frame in sys_sigreturn: "
1529 				   "%p nip %08lx lr %08lx\n",
1530 				   current->comm, current->pid,
1531 				   addr, regs->nip, regs->link);
1532 
1533 	force_sig(SIGSEGV, current);
1534 	return 0;
1535 }
1536