xref: /openbmc/linux/arch/powerpc/kernel/signal_32.c (revision eb3fcf00)
1 /*
2  * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3  *
4  *  PowerPC version
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  * Copyright (C) 2001 IBM
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9  *
10  *  Derived from "arch/i386/kernel/signal.c"
11  *    Copyright (C) 1991, 1992 Linus Torvalds
12  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  */
19 
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
39 
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
54 
55 #include "signal.h"
56 
57 
58 #ifdef CONFIG_PPC64
59 #define sys_rt_sigreturn	compat_sys_rt_sigreturn
60 #define sys_swapcontext	compat_sys_swapcontext
61 #define sys_sigreturn	compat_sys_sigreturn
62 
63 #define old_sigaction	old_sigaction32
64 #define sigcontext	sigcontext32
65 #define mcontext	mcontext32
66 #define ucontext	ucontext32
67 
68 #define __save_altstack __compat_save_altstack
69 
70 /*
71  * Userspace code may pass a ucontext which doesn't include VSX added
72  * at the end.  We need to check for this case.
73  */
74 #define UCONTEXTSIZEWITHOUTVSX \
75 		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
76 
77 /*
78  * Returning 0 means we return to userspace via
79  * ret_from_except and thus restore all user
80  * registers from *regs.  This is what we need
81  * to do when a signal has been delivered.
82  */
83 
84 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
85 #undef __SIGNAL_FRAMESIZE
86 #define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
87 #undef ELF_NVRREG
88 #define ELF_NVRREG	ELF_NVRREG32
89 
90 /*
91  * Functions for flipping sigsets (thanks to brain dead generic
92  * implementation that makes things simple for little endian only)
93  */
94 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
95 {
96 	compat_sigset_t	cset;
97 
98 	switch (_NSIG_WORDS) {
99 	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
100 		cset.sig[7] = set->sig[3] >> 32;
101 	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
102 		cset.sig[5] = set->sig[2] >> 32;
103 	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
104 		cset.sig[3] = set->sig[1] >> 32;
105 	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
106 		cset.sig[1] = set->sig[0] >> 32;
107 	}
108 	return copy_to_user(uset, &cset, sizeof(*uset));
109 }
110 
111 static inline int get_sigset_t(sigset_t *set,
112 			       const compat_sigset_t __user *uset)
113 {
114 	compat_sigset_t s32;
115 
116 	if (copy_from_user(&s32, uset, sizeof(*uset)))
117 		return -EFAULT;
118 
119 	/*
120 	 * Swap the 2 words of the 64-bit sigset_t (they are stored
121 	 * in the "wrong" endian in 32-bit user storage).
122 	 */
123 	switch (_NSIG_WORDS) {
124 	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
125 	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
126 	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
127 	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
128 	}
129 	return 0;
130 }
131 
132 #define to_user_ptr(p)		ptr_to_compat(p)
133 #define from_user_ptr(p)	compat_ptr(p)
134 
135 static inline int save_general_regs(struct pt_regs *regs,
136 		struct mcontext __user *frame)
137 {
138 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
139 	int i;
140 
141 	WARN_ON(!FULL_REGS(regs));
142 
143 	for (i = 0; i <= PT_RESULT; i ++) {
144 		if (i == 14 && !FULL_REGS(regs))
145 			i = 32;
146 		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
147 			return -EFAULT;
148 	}
149 	return 0;
150 }
151 
152 static inline int restore_general_regs(struct pt_regs *regs,
153 		struct mcontext __user *sr)
154 {
155 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
156 	int i;
157 
158 	for (i = 0; i <= PT_RESULT; i++) {
159 		if ((i == PT_MSR) || (i == PT_SOFTE))
160 			continue;
161 		if (__get_user(gregs[i], &sr->mc_gregs[i]))
162 			return -EFAULT;
163 	}
164 	return 0;
165 }
166 
167 #else /* CONFIG_PPC64 */
168 
169 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
170 
171 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
172 {
173 	return copy_to_user(uset, set, sizeof(*uset));
174 }
175 
176 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
177 {
178 	return copy_from_user(set, uset, sizeof(*uset));
179 }
180 
181 #define to_user_ptr(p)		((unsigned long)(p))
182 #define from_user_ptr(p)	((void __user *)(p))
183 
184 static inline int save_general_regs(struct pt_regs *regs,
185 		struct mcontext __user *frame)
186 {
187 	WARN_ON(!FULL_REGS(regs));
188 	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
189 }
190 
191 static inline int restore_general_regs(struct pt_regs *regs,
192 		struct mcontext __user *sr)
193 {
194 	/* copy up to but not including MSR */
195 	if (__copy_from_user(regs, &sr->mc_gregs,
196 				PT_MSR * sizeof(elf_greg_t)))
197 		return -EFAULT;
198 	/* copy from orig_r3 (the word after the MSR) up to the end */
199 	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
200 				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
201 		return -EFAULT;
202 	return 0;
203 }
204 #endif
205 
206 /*
207  * When we have signals to deliver, we set up on the
208  * user stack, going down from the original stack pointer:
209  *	an ABI gap of 56 words
210  *	an mcontext struct
211  *	a sigcontext struct
212  *	a gap of __SIGNAL_FRAMESIZE bytes
213  *
214  * Each of these things must be a multiple of 16 bytes in size. The following
215  * structure represent all of this except the __SIGNAL_FRAMESIZE gap
216  *
217  */
218 struct sigframe {
219 	struct sigcontext sctx;		/* the sigcontext */
220 	struct mcontext	mctx;		/* all the register values */
221 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
222 	struct sigcontext sctx_transact;
223 	struct mcontext	mctx_transact;
224 #endif
225 	/*
226 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
227 	 * regs and 18 fp regs below sp before decrementing it.
228 	 */
229 	int			abigap[56];
230 };
231 
232 /* We use the mc_pad field for the signal return trampoline. */
233 #define tramp	mc_pad
234 
235 /*
236  *  When we have rt signals to deliver, we set up on the
237  *  user stack, going down from the original stack pointer:
238  *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
239  *	a gap of __SIGNAL_FRAMESIZE+16 bytes
240  *  (the +16 is to get the siginfo and ucontext in the same
241  *  positions as in older kernels).
242  *
243  *  Each of these things must be a multiple of 16 bytes in size.
244  *
245  */
246 struct rt_sigframe {
247 #ifdef CONFIG_PPC64
248 	compat_siginfo_t info;
249 #else
250 	struct siginfo info;
251 #endif
252 	struct ucontext	uc;
253 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
254 	struct ucontext	uc_transact;
255 #endif
256 	/*
257 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
258 	 * regs and 18 fp regs below sp before decrementing it.
259 	 */
260 	int			abigap[56];
261 };
262 
263 #ifdef CONFIG_VSX
264 unsigned long copy_fpr_to_user(void __user *to,
265 			       struct task_struct *task)
266 {
267 	u64 buf[ELF_NFPREG];
268 	int i;
269 
270 	/* save FPR copy to local buffer then write to the thread_struct */
271 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
272 		buf[i] = task->thread.TS_FPR(i);
273 	buf[i] = task->thread.fp_state.fpscr;
274 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
275 }
276 
277 unsigned long copy_fpr_from_user(struct task_struct *task,
278 				 void __user *from)
279 {
280 	u64 buf[ELF_NFPREG];
281 	int i;
282 
283 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
284 		return 1;
285 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
286 		task->thread.TS_FPR(i) = buf[i];
287 	task->thread.fp_state.fpscr = buf[i];
288 
289 	return 0;
290 }
291 
292 unsigned long copy_vsx_to_user(void __user *to,
293 			       struct task_struct *task)
294 {
295 	u64 buf[ELF_NVSRHALFREG];
296 	int i;
297 
298 	/* save FPR copy to local buffer then write to the thread_struct */
299 	for (i = 0; i < ELF_NVSRHALFREG; i++)
300 		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
301 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
302 }
303 
304 unsigned long copy_vsx_from_user(struct task_struct *task,
305 				 void __user *from)
306 {
307 	u64 buf[ELF_NVSRHALFREG];
308 	int i;
309 
310 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
311 		return 1;
312 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
313 		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
314 	return 0;
315 }
316 
317 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
318 unsigned long copy_transact_fpr_to_user(void __user *to,
319 				  struct task_struct *task)
320 {
321 	u64 buf[ELF_NFPREG];
322 	int i;
323 
324 	/* save FPR copy to local buffer then write to the thread_struct */
325 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
326 		buf[i] = task->thread.TS_TRANS_FPR(i);
327 	buf[i] = task->thread.transact_fp.fpscr;
328 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
329 }
330 
331 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
332 					  void __user *from)
333 {
334 	u64 buf[ELF_NFPREG];
335 	int i;
336 
337 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
338 		return 1;
339 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
340 		task->thread.TS_TRANS_FPR(i) = buf[i];
341 	task->thread.transact_fp.fpscr = buf[i];
342 
343 	return 0;
344 }
345 
346 unsigned long copy_transact_vsx_to_user(void __user *to,
347 				  struct task_struct *task)
348 {
349 	u64 buf[ELF_NVSRHALFREG];
350 	int i;
351 
352 	/* save FPR copy to local buffer then write to the thread_struct */
353 	for (i = 0; i < ELF_NVSRHALFREG; i++)
354 		buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
355 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
356 }
357 
358 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
359 					  void __user *from)
360 {
361 	u64 buf[ELF_NVSRHALFREG];
362 	int i;
363 
364 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
365 		return 1;
366 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
367 		task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
368 	return 0;
369 }
370 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
371 #else
372 inline unsigned long copy_fpr_to_user(void __user *to,
373 				      struct task_struct *task)
374 {
375 	return __copy_to_user(to, task->thread.fp_state.fpr,
376 			      ELF_NFPREG * sizeof(double));
377 }
378 
379 inline unsigned long copy_fpr_from_user(struct task_struct *task,
380 					void __user *from)
381 {
382 	return __copy_from_user(task->thread.fp_state.fpr, from,
383 			      ELF_NFPREG * sizeof(double));
384 }
385 
386 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
387 inline unsigned long copy_transact_fpr_to_user(void __user *to,
388 					 struct task_struct *task)
389 {
390 	return __copy_to_user(to, task->thread.transact_fp.fpr,
391 			      ELF_NFPREG * sizeof(double));
392 }
393 
394 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
395 						 void __user *from)
396 {
397 	return __copy_from_user(task->thread.transact_fp.fpr, from,
398 				ELF_NFPREG * sizeof(double));
399 }
400 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
401 #endif
402 
403 /*
404  * Save the current user registers on the user stack.
405  * We only save the altivec/spe registers if the process has used
406  * altivec/spe instructions at some point.
407  */
408 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
409 			  struct mcontext __user *tm_frame, int sigret,
410 			  int ctx_has_vsx_region)
411 {
412 	unsigned long msr = regs->msr;
413 
414 	/* Make sure floating point registers are stored in regs */
415 	flush_fp_to_thread(current);
416 
417 	/* save general registers */
418 	if (save_general_regs(regs, frame))
419 		return 1;
420 
421 #ifdef CONFIG_ALTIVEC
422 	/* save altivec registers */
423 	if (current->thread.used_vr) {
424 		flush_altivec_to_thread(current);
425 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
426 				   ELF_NVRREG * sizeof(vector128)))
427 			return 1;
428 		/* set MSR_VEC in the saved MSR value to indicate that
429 		   frame->mc_vregs contains valid data */
430 		msr |= MSR_VEC;
431 	}
432 	/* else assert((regs->msr & MSR_VEC) == 0) */
433 
434 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
435 	 * use altivec. Since VSCR only contains 32 bits saved in the least
436 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
437 	 * most significant bits of that same vector. --BenH
438 	 * Note that the current VRSAVE value is in the SPR at this point.
439 	 */
440 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
441 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
442 	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
443 		return 1;
444 #endif /* CONFIG_ALTIVEC */
445 	if (copy_fpr_to_user(&frame->mc_fregs, current))
446 		return 1;
447 
448 	/*
449 	 * Clear the MSR VSX bit to indicate there is no valid state attached
450 	 * to this context, except in the specific case below where we set it.
451 	 */
452 	msr &= ~MSR_VSX;
453 #ifdef CONFIG_VSX
454 	/*
455 	 * Copy VSR 0-31 upper half from thread_struct to local
456 	 * buffer, then write that to userspace.  Also set MSR_VSX in
457 	 * the saved MSR value to indicate that frame->mc_vregs
458 	 * contains valid data
459 	 */
460 	if (current->thread.used_vsr && ctx_has_vsx_region) {
461 		__giveup_vsx(current);
462 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
463 			return 1;
464 		msr |= MSR_VSX;
465 	}
466 #endif /* CONFIG_VSX */
467 #ifdef CONFIG_SPE
468 	/* save spe registers */
469 	if (current->thread.used_spe) {
470 		flush_spe_to_thread(current);
471 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
472 				   ELF_NEVRREG * sizeof(u32)))
473 			return 1;
474 		/* set MSR_SPE in the saved MSR value to indicate that
475 		   frame->mc_vregs contains valid data */
476 		msr |= MSR_SPE;
477 	}
478 	/* else assert((regs->msr & MSR_SPE) == 0) */
479 
480 	/* We always copy to/from spefscr */
481 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
482 		return 1;
483 #endif /* CONFIG_SPE */
484 
485 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
486 		return 1;
487 	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
488 	 * can check it on the restore to see if TM is active
489 	 */
490 	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
491 		return 1;
492 
493 	if (sigret) {
494 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
495 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
496 		    || __put_user(0x44000002UL, &frame->tramp[1]))
497 			return 1;
498 		flush_icache_range((unsigned long) &frame->tramp[0],
499 				   (unsigned long) &frame->tramp[2]);
500 	}
501 
502 	return 0;
503 }
504 
505 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
506 /*
507  * Save the current user registers on the user stack.
508  * We only save the altivec/spe registers if the process has used
509  * altivec/spe instructions at some point.
510  * We also save the transactional registers to a second ucontext in the
511  * frame.
512  *
513  * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
514  */
515 static int save_tm_user_regs(struct pt_regs *regs,
516 			     struct mcontext __user *frame,
517 			     struct mcontext __user *tm_frame, int sigret)
518 {
519 	unsigned long msr = regs->msr;
520 
521 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
522 	 * just indicates to userland that we were doing a transaction, but we
523 	 * don't want to return in transactional state.  This also ensures
524 	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
525 	 */
526 	regs->msr &= ~MSR_TS_MASK;
527 
528 	/* Make sure floating point registers are stored in regs */
529 	flush_fp_to_thread(current);
530 
531 	/* Save both sets of general registers */
532 	if (save_general_regs(&current->thread.ckpt_regs, frame)
533 	    || save_general_regs(regs, tm_frame))
534 		return 1;
535 
536 	/* Stash the top half of the 64bit MSR into the 32bit MSR word
537 	 * of the transactional mcontext.  This way we have a backward-compatible
538 	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
539 	 * also look at what type of transaction (T or S) was active at the
540 	 * time of the signal.
541 	 */
542 	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
543 		return 1;
544 
545 #ifdef CONFIG_ALTIVEC
546 	/* save altivec registers */
547 	if (current->thread.used_vr) {
548 		flush_altivec_to_thread(current);
549 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
550 				   ELF_NVRREG * sizeof(vector128)))
551 			return 1;
552 		if (msr & MSR_VEC) {
553 			if (__copy_to_user(&tm_frame->mc_vregs,
554 					   &current->thread.transact_vr,
555 					   ELF_NVRREG * sizeof(vector128)))
556 				return 1;
557 		} else {
558 			if (__copy_to_user(&tm_frame->mc_vregs,
559 					   &current->thread.vr_state,
560 					   ELF_NVRREG * sizeof(vector128)))
561 				return 1;
562 		}
563 
564 		/* set MSR_VEC in the saved MSR value to indicate that
565 		 * frame->mc_vregs contains valid data
566 		 */
567 		msr |= MSR_VEC;
568 	}
569 
570 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
571 	 * use altivec. Since VSCR only contains 32 bits saved in the least
572 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
573 	 * most significant bits of that same vector. --BenH
574 	 */
575 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
576 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
577 	if (__put_user(current->thread.vrsave,
578 		       (u32 __user *)&frame->mc_vregs[32]))
579 		return 1;
580 	if (msr & MSR_VEC) {
581 		if (__put_user(current->thread.transact_vrsave,
582 			       (u32 __user *)&tm_frame->mc_vregs[32]))
583 			return 1;
584 	} else {
585 		if (__put_user(current->thread.vrsave,
586 			       (u32 __user *)&tm_frame->mc_vregs[32]))
587 			return 1;
588 	}
589 #endif /* CONFIG_ALTIVEC */
590 
591 	if (copy_fpr_to_user(&frame->mc_fregs, current))
592 		return 1;
593 	if (msr & MSR_FP) {
594 		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
595 			return 1;
596 	} else {
597 		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
598 			return 1;
599 	}
600 
601 #ifdef CONFIG_VSX
602 	/*
603 	 * Copy VSR 0-31 upper half from thread_struct to local
604 	 * buffer, then write that to userspace.  Also set MSR_VSX in
605 	 * the saved MSR value to indicate that frame->mc_vregs
606 	 * contains valid data
607 	 */
608 	if (current->thread.used_vsr) {
609 		__giveup_vsx(current);
610 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
611 			return 1;
612 		if (msr & MSR_VSX) {
613 			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
614 						      current))
615 				return 1;
616 		} else {
617 			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
618 				return 1;
619 		}
620 
621 		msr |= MSR_VSX;
622 	}
623 #endif /* CONFIG_VSX */
624 #ifdef CONFIG_SPE
625 	/* SPE regs are not checkpointed with TM, so this section is
626 	 * simply the same as in save_user_regs().
627 	 */
628 	if (current->thread.used_spe) {
629 		flush_spe_to_thread(current);
630 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
631 				   ELF_NEVRREG * sizeof(u32)))
632 			return 1;
633 		/* set MSR_SPE in the saved MSR value to indicate that
634 		 * frame->mc_vregs contains valid data */
635 		msr |= MSR_SPE;
636 	}
637 
638 	/* We always copy to/from spefscr */
639 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
640 		return 1;
641 #endif /* CONFIG_SPE */
642 
643 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
644 		return 1;
645 	if (sigret) {
646 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
647 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
648 		    || __put_user(0x44000002UL, &frame->tramp[1]))
649 			return 1;
650 		flush_icache_range((unsigned long) &frame->tramp[0],
651 				   (unsigned long) &frame->tramp[2]);
652 	}
653 
654 	return 0;
655 }
656 #endif
657 
658 /*
659  * Restore the current user register values from the user stack,
660  * (except for MSR).
661  */
662 static long restore_user_regs(struct pt_regs *regs,
663 			      struct mcontext __user *sr, int sig)
664 {
665 	long err;
666 	unsigned int save_r2 = 0;
667 	unsigned long msr;
668 #ifdef CONFIG_VSX
669 	int i;
670 #endif
671 
672 	/*
673 	 * restore general registers but not including MSR or SOFTE. Also
674 	 * take care of keeping r2 (TLS) intact if not a signal
675 	 */
676 	if (!sig)
677 		save_r2 = (unsigned int)regs->gpr[2];
678 	err = restore_general_regs(regs, sr);
679 	regs->trap = 0;
680 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
681 	if (!sig)
682 		regs->gpr[2] = (unsigned long) save_r2;
683 	if (err)
684 		return 1;
685 
686 	/* if doing signal return, restore the previous little-endian mode */
687 	if (sig)
688 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
689 
690 	/*
691 	 * Do this before updating the thread state in
692 	 * current->thread.fpr/vr/evr.  That way, if we get preempted
693 	 * and another task grabs the FPU/Altivec/SPE, it won't be
694 	 * tempted to save the current CPU state into the thread_struct
695 	 * and corrupt what we are writing there.
696 	 */
697 	discard_lazy_cpu_state();
698 
699 #ifdef CONFIG_ALTIVEC
700 	/*
701 	 * Force the process to reload the altivec registers from
702 	 * current->thread when it next does altivec instructions
703 	 */
704 	regs->msr &= ~MSR_VEC;
705 	if (msr & MSR_VEC) {
706 		/* restore altivec registers from the stack */
707 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
708 				     sizeof(sr->mc_vregs)))
709 			return 1;
710 	} else if (current->thread.used_vr)
711 		memset(&current->thread.vr_state, 0,
712 		       ELF_NVRREG * sizeof(vector128));
713 
714 	/* Always get VRSAVE back */
715 	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
716 		return 1;
717 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
718 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
719 #endif /* CONFIG_ALTIVEC */
720 	if (copy_fpr_from_user(current, &sr->mc_fregs))
721 		return 1;
722 
723 #ifdef CONFIG_VSX
724 	/*
725 	 * Force the process to reload the VSX registers from
726 	 * current->thread when it next does VSX instruction.
727 	 */
728 	regs->msr &= ~MSR_VSX;
729 	if (msr & MSR_VSX) {
730 		/*
731 		 * Restore altivec registers from the stack to a local
732 		 * buffer, then write this out to the thread_struct
733 		 */
734 		if (copy_vsx_from_user(current, &sr->mc_vsregs))
735 			return 1;
736 	} else if (current->thread.used_vsr)
737 		for (i = 0; i < 32 ; i++)
738 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
739 #endif /* CONFIG_VSX */
740 	/*
741 	 * force the process to reload the FP registers from
742 	 * current->thread when it next does FP instructions
743 	 */
744 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
745 
746 #ifdef CONFIG_SPE
747 	/* force the process to reload the spe registers from
748 	   current->thread when it next does spe instructions */
749 	regs->msr &= ~MSR_SPE;
750 	if (msr & MSR_SPE) {
751 		/* restore spe registers from the stack */
752 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
753 				     ELF_NEVRREG * sizeof(u32)))
754 			return 1;
755 	} else if (current->thread.used_spe)
756 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
757 
758 	/* Always get SPEFSCR back */
759 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
760 		return 1;
761 #endif /* CONFIG_SPE */
762 
763 	return 0;
764 }
765 
766 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
767 /*
768  * Restore the current user register values from the user stack, except for
769  * MSR, and recheckpoint the original checkpointed register state for processes
770  * in transactions.
771  */
772 static long restore_tm_user_regs(struct pt_regs *regs,
773 				 struct mcontext __user *sr,
774 				 struct mcontext __user *tm_sr)
775 {
776 	long err;
777 	unsigned long msr, msr_hi;
778 #ifdef CONFIG_VSX
779 	int i;
780 #endif
781 
782 	/*
783 	 * restore general registers but not including MSR or SOFTE. Also
784 	 * take care of keeping r2 (TLS) intact if not a signal.
785 	 * See comment in signal_64.c:restore_tm_sigcontexts();
786 	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
787 	 * were set by the signal delivery.
788 	 */
789 	err = restore_general_regs(regs, tm_sr);
790 	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
791 
792 	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
793 
794 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
795 	if (err)
796 		return 1;
797 
798 	/* Restore the previous little-endian mode */
799 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
800 
801 	/*
802 	 * Do this before updating the thread state in
803 	 * current->thread.fpr/vr/evr.  That way, if we get preempted
804 	 * and another task grabs the FPU/Altivec/SPE, it won't be
805 	 * tempted to save the current CPU state into the thread_struct
806 	 * and corrupt what we are writing there.
807 	 */
808 	discard_lazy_cpu_state();
809 
810 #ifdef CONFIG_ALTIVEC
811 	regs->msr &= ~MSR_VEC;
812 	if (msr & MSR_VEC) {
813 		/* restore altivec registers from the stack */
814 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
815 				     sizeof(sr->mc_vregs)) ||
816 		    __copy_from_user(&current->thread.transact_vr,
817 				     &tm_sr->mc_vregs,
818 				     sizeof(sr->mc_vregs)))
819 			return 1;
820 	} else if (current->thread.used_vr) {
821 		memset(&current->thread.vr_state, 0,
822 		       ELF_NVRREG * sizeof(vector128));
823 		memset(&current->thread.transact_vr, 0,
824 		       ELF_NVRREG * sizeof(vector128));
825 	}
826 
827 	/* Always get VRSAVE back */
828 	if (__get_user(current->thread.vrsave,
829 		       (u32 __user *)&sr->mc_vregs[32]) ||
830 	    __get_user(current->thread.transact_vrsave,
831 		       (u32 __user *)&tm_sr->mc_vregs[32]))
832 		return 1;
833 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
834 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
835 #endif /* CONFIG_ALTIVEC */
836 
837 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
838 
839 	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
840 	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
841 		return 1;
842 
843 #ifdef CONFIG_VSX
844 	regs->msr &= ~MSR_VSX;
845 	if (msr & MSR_VSX) {
846 		/*
847 		 * Restore altivec registers from the stack to a local
848 		 * buffer, then write this out to the thread_struct
849 		 */
850 		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
851 		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
852 			return 1;
853 	} else if (current->thread.used_vsr)
854 		for (i = 0; i < 32 ; i++) {
855 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
856 			current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
857 		}
858 #endif /* CONFIG_VSX */
859 
860 #ifdef CONFIG_SPE
861 	/* SPE regs are not checkpointed with TM, so this section is
862 	 * simply the same as in restore_user_regs().
863 	 */
864 	regs->msr &= ~MSR_SPE;
865 	if (msr & MSR_SPE) {
866 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
867 				     ELF_NEVRREG * sizeof(u32)))
868 			return 1;
869 	} else if (current->thread.used_spe)
870 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
871 
872 	/* Always get SPEFSCR back */
873 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
874 		       + ELF_NEVRREG))
875 		return 1;
876 #endif /* CONFIG_SPE */
877 
878 	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
879 	 * registers, including FP and V[S]Rs.  After recheckpointing, the
880 	 * transactional versions should be loaded.
881 	 */
882 	tm_enable();
883 	/* Make sure the transaction is marked as failed */
884 	current->thread.tm_texasr |= TEXASR_FS;
885 	/* This loads the checkpointed FP/VEC state, if used */
886 	tm_recheckpoint(&current->thread, msr);
887 	/* Get the top half of the MSR */
888 	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
889 		return 1;
890 	/* Pull in MSR TM from user context */
891 	regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
892 
893 	/* This loads the speculative FP/VEC state, if used */
894 	if (msr & MSR_FP) {
895 		do_load_up_transact_fpu(&current->thread);
896 		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
897 	}
898 #ifdef CONFIG_ALTIVEC
899 	if (msr & MSR_VEC) {
900 		do_load_up_transact_altivec(&current->thread);
901 		regs->msr |= MSR_VEC;
902 	}
903 #endif
904 
905 	return 0;
906 }
907 #endif
908 
909 #ifdef CONFIG_PPC64
910 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
911 {
912 	int err;
913 
914 	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
915 		return -EFAULT;
916 
917 	/* If you change siginfo_t structure, please be sure
918 	 * this code is fixed accordingly.
919 	 * It should never copy any pad contained in the structure
920 	 * to avoid security leaks, but must copy the generic
921 	 * 3 ints plus the relevant union member.
922 	 * This routine must convert siginfo from 64bit to 32bit as well
923 	 * at the same time.
924 	 */
925 	err = __put_user(s->si_signo, &d->si_signo);
926 	err |= __put_user(s->si_errno, &d->si_errno);
927 	err |= __put_user((short)s->si_code, &d->si_code);
928 	if (s->si_code < 0)
929 		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
930 				      SI_PAD_SIZE32);
931 	else switch(s->si_code >> 16) {
932 	case __SI_CHLD >> 16:
933 		err |= __put_user(s->si_pid, &d->si_pid);
934 		err |= __put_user(s->si_uid, &d->si_uid);
935 		err |= __put_user(s->si_utime, &d->si_utime);
936 		err |= __put_user(s->si_stime, &d->si_stime);
937 		err |= __put_user(s->si_status, &d->si_status);
938 		break;
939 	case __SI_FAULT >> 16:
940 		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
941 				  &d->si_addr);
942 		break;
943 	case __SI_POLL >> 16:
944 		err |= __put_user(s->si_band, &d->si_band);
945 		err |= __put_user(s->si_fd, &d->si_fd);
946 		break;
947 	case __SI_TIMER >> 16:
948 		err |= __put_user(s->si_tid, &d->si_tid);
949 		err |= __put_user(s->si_overrun, &d->si_overrun);
950 		err |= __put_user(s->si_int, &d->si_int);
951 		break;
952 	case __SI_SYS >> 16:
953 		err |= __put_user(ptr_to_compat(s->si_call_addr), &d->si_call_addr);
954 		err |= __put_user(s->si_syscall, &d->si_syscall);
955 		err |= __put_user(s->si_arch, &d->si_arch);
956 		break;
957 	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
958 	case __SI_MESGQ >> 16:
959 		err |= __put_user(s->si_int, &d->si_int);
960 		/* fallthrough */
961 	case __SI_KILL >> 16:
962 	default:
963 		err |= __put_user(s->si_pid, &d->si_pid);
964 		err |= __put_user(s->si_uid, &d->si_uid);
965 		break;
966 	}
967 	return err;
968 }
969 
970 #define copy_siginfo_to_user	copy_siginfo_to_user32
971 
972 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
973 {
974 	if (copy_from_user(to, from, 3*sizeof(int)) ||
975 	    copy_from_user(to->_sifields._pad,
976 			   from->_sifields._pad, SI_PAD_SIZE32))
977 		return -EFAULT;
978 
979 	return 0;
980 }
981 #endif /* CONFIG_PPC64 */
982 
983 /*
984  * Set up a signal frame for a "real-time" signal handler
985  * (one which gets siginfo).
986  */
987 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
988 		       struct pt_regs *regs)
989 {
990 	struct rt_sigframe __user *rt_sf;
991 	struct mcontext __user *frame;
992 	struct mcontext __user *tm_frame = NULL;
993 	void __user *addr;
994 	unsigned long newsp = 0;
995 	int sigret;
996 	unsigned long tramp;
997 
998 	/* Set up Signal Frame */
999 	/* Put a Real Time Context onto stack */
1000 	rt_sf = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
1001 	addr = rt_sf;
1002 	if (unlikely(rt_sf == NULL))
1003 		goto badframe;
1004 
1005 	/* Put the siginfo & fill in most of the ucontext */
1006 	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
1007 	    || __put_user(0, &rt_sf->uc.uc_flags)
1008 	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1009 	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1010 		    &rt_sf->uc.uc_regs)
1011 	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1012 		goto badframe;
1013 
1014 	/* Save user registers on the stack */
1015 	frame = &rt_sf->uc.uc_mcontext;
1016 	addr = frame;
1017 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1018 		sigret = 0;
1019 		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1020 	} else {
1021 		sigret = __NR_rt_sigreturn;
1022 		tramp = (unsigned long) frame->tramp;
1023 	}
1024 
1025 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1026 	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1027 	if (MSR_TM_ACTIVE(regs->msr)) {
1028 		if (__put_user((unsigned long)&rt_sf->uc_transact,
1029 			       &rt_sf->uc.uc_link) ||
1030 		    __put_user((unsigned long)tm_frame,
1031 			       &rt_sf->uc_transact.uc_regs))
1032 			goto badframe;
1033 		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1034 			goto badframe;
1035 	}
1036 	else
1037 #endif
1038 	{
1039 		if (__put_user(0, &rt_sf->uc.uc_link))
1040 			goto badframe;
1041 		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1042 			goto badframe;
1043 	}
1044 	regs->link = tramp;
1045 
1046 	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1047 
1048 	/* create a stack frame for the caller of the handler */
1049 	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1050 	addr = (void __user *)regs->gpr[1];
1051 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1052 		goto badframe;
1053 
1054 	/* Fill registers for signal handler */
1055 	regs->gpr[1] = newsp;
1056 	regs->gpr[3] = ksig->sig;
1057 	regs->gpr[4] = (unsigned long) &rt_sf->info;
1058 	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1059 	regs->gpr[6] = (unsigned long) rt_sf;
1060 	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
1061 	/* enter the signal handler in native-endian mode */
1062 	regs->msr &= ~MSR_LE;
1063 	regs->msr |= (MSR_KERNEL & MSR_LE);
1064 	return 0;
1065 
1066 badframe:
1067 	if (show_unhandled_signals)
1068 		printk_ratelimited(KERN_INFO
1069 				   "%s[%d]: bad frame in handle_rt_signal32: "
1070 				   "%p nip %08lx lr %08lx\n",
1071 				   current->comm, current->pid,
1072 				   addr, regs->nip, regs->link);
1073 
1074 	return 1;
1075 }
1076 
1077 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1078 {
1079 	sigset_t set;
1080 	struct mcontext __user *mcp;
1081 
1082 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1083 		return -EFAULT;
1084 #ifdef CONFIG_PPC64
1085 	{
1086 		u32 cmcp;
1087 
1088 		if (__get_user(cmcp, &ucp->uc_regs))
1089 			return -EFAULT;
1090 		mcp = (struct mcontext __user *)(u64)cmcp;
1091 		/* no need to check access_ok(mcp), since mcp < 4GB */
1092 	}
1093 #else
1094 	if (__get_user(mcp, &ucp->uc_regs))
1095 		return -EFAULT;
1096 	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1097 		return -EFAULT;
1098 #endif
1099 	set_current_blocked(&set);
1100 	if (restore_user_regs(regs, mcp, sig))
1101 		return -EFAULT;
1102 
1103 	return 0;
1104 }
1105 
1106 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1107 static int do_setcontext_tm(struct ucontext __user *ucp,
1108 			    struct ucontext __user *tm_ucp,
1109 			    struct pt_regs *regs)
1110 {
1111 	sigset_t set;
1112 	struct mcontext __user *mcp;
1113 	struct mcontext __user *tm_mcp;
1114 	u32 cmcp;
1115 	u32 tm_cmcp;
1116 
1117 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1118 		return -EFAULT;
1119 
1120 	if (__get_user(cmcp, &ucp->uc_regs) ||
1121 	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1122 		return -EFAULT;
1123 	mcp = (struct mcontext __user *)(u64)cmcp;
1124 	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1125 	/* no need to check access_ok(mcp), since mcp < 4GB */
1126 
1127 	set_current_blocked(&set);
1128 	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1129 		return -EFAULT;
1130 
1131 	return 0;
1132 }
1133 #endif
1134 
1135 long sys_swapcontext(struct ucontext __user *old_ctx,
1136 		     struct ucontext __user *new_ctx,
1137 		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1138 {
1139 	unsigned char tmp;
1140 	int ctx_has_vsx_region = 0;
1141 
1142 #ifdef CONFIG_PPC64
1143 	unsigned long new_msr = 0;
1144 
1145 	if (new_ctx) {
1146 		struct mcontext __user *mcp;
1147 		u32 cmcp;
1148 
1149 		/*
1150 		 * Get pointer to the real mcontext.  No need for
1151 		 * access_ok since we are dealing with compat
1152 		 * pointers.
1153 		 */
1154 		if (__get_user(cmcp, &new_ctx->uc_regs))
1155 			return -EFAULT;
1156 		mcp = (struct mcontext __user *)(u64)cmcp;
1157 		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1158 			return -EFAULT;
1159 	}
1160 	/*
1161 	 * Check that the context is not smaller than the original
1162 	 * size (with VMX but without VSX)
1163 	 */
1164 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1165 		return -EINVAL;
1166 	/*
1167 	 * If the new context state sets the MSR VSX bits but
1168 	 * it doesn't provide VSX state.
1169 	 */
1170 	if ((ctx_size < sizeof(struct ucontext)) &&
1171 	    (new_msr & MSR_VSX))
1172 		return -EINVAL;
1173 	/* Does the context have enough room to store VSX data? */
1174 	if (ctx_size >= sizeof(struct ucontext))
1175 		ctx_has_vsx_region = 1;
1176 #else
1177 	/* Context size is for future use. Right now, we only make sure
1178 	 * we are passed something we understand
1179 	 */
1180 	if (ctx_size < sizeof(struct ucontext))
1181 		return -EINVAL;
1182 #endif
1183 	if (old_ctx != NULL) {
1184 		struct mcontext __user *mctx;
1185 
1186 		/*
1187 		 * old_ctx might not be 16-byte aligned, in which
1188 		 * case old_ctx->uc_mcontext won't be either.
1189 		 * Because we have the old_ctx->uc_pad2 field
1190 		 * before old_ctx->uc_mcontext, we need to round down
1191 		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1192 		 */
1193 		mctx = (struct mcontext __user *)
1194 			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1195 		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1196 		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1197 		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1198 		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1199 			return -EFAULT;
1200 	}
1201 	if (new_ctx == NULL)
1202 		return 0;
1203 	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1204 	    || __get_user(tmp, (u8 __user *) new_ctx)
1205 	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1206 		return -EFAULT;
1207 
1208 	/*
1209 	 * If we get a fault copying the context into the kernel's
1210 	 * image of the user's registers, we can't just return -EFAULT
1211 	 * because the user's registers will be corrupted.  For instance
1212 	 * the NIP value may have been updated but not some of the
1213 	 * other registers.  Given that we have done the access_ok
1214 	 * and successfully read the first and last bytes of the region
1215 	 * above, this should only happen in an out-of-memory situation
1216 	 * or if another thread unmaps the region containing the context.
1217 	 * We kill the task with a SIGSEGV in this situation.
1218 	 */
1219 	if (do_setcontext(new_ctx, regs, 0))
1220 		do_exit(SIGSEGV);
1221 
1222 	set_thread_flag(TIF_RESTOREALL);
1223 	return 0;
1224 }
1225 
1226 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1227 		     struct pt_regs *regs)
1228 {
1229 	struct rt_sigframe __user *rt_sf;
1230 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1231 	struct ucontext __user *uc_transact;
1232 	unsigned long msr_hi;
1233 	unsigned long tmp;
1234 	int tm_restore = 0;
1235 #endif
1236 	/* Always make any pending restarted system calls return -EINTR */
1237 	current->restart_block.fn = do_no_restart_syscall;
1238 
1239 	rt_sf = (struct rt_sigframe __user *)
1240 		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1241 	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1242 		goto bad;
1243 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1244 	if (__get_user(tmp, &rt_sf->uc.uc_link))
1245 		goto bad;
1246 	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1247 	if (uc_transact) {
1248 		u32 cmcp;
1249 		struct mcontext __user *mcp;
1250 
1251 		if (__get_user(cmcp, &uc_transact->uc_regs))
1252 			return -EFAULT;
1253 		mcp = (struct mcontext __user *)(u64)cmcp;
1254 		/* The top 32 bits of the MSR are stashed in the transactional
1255 		 * ucontext. */
1256 		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1257 			goto bad;
1258 
1259 		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1260 			/* We only recheckpoint on return if we're
1261 			 * transaction.
1262 			 */
1263 			tm_restore = 1;
1264 			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1265 				goto bad;
1266 		}
1267 	}
1268 	if (!tm_restore)
1269 		/* Fall through, for non-TM restore */
1270 #endif
1271 	if (do_setcontext(&rt_sf->uc, regs, 1))
1272 		goto bad;
1273 
1274 	/*
1275 	 * It's not clear whether or why it is desirable to save the
1276 	 * sigaltstack setting on signal delivery and restore it on
1277 	 * signal return.  But other architectures do this and we have
1278 	 * always done it up until now so it is probably better not to
1279 	 * change it.  -- paulus
1280 	 */
1281 #ifdef CONFIG_PPC64
1282 	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1283 		goto bad;
1284 #else
1285 	if (restore_altstack(&rt_sf->uc.uc_stack))
1286 		goto bad;
1287 #endif
1288 	set_thread_flag(TIF_RESTOREALL);
1289 	return 0;
1290 
1291  bad:
1292 	if (show_unhandled_signals)
1293 		printk_ratelimited(KERN_INFO
1294 				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1295 				   "%p nip %08lx lr %08lx\n",
1296 				   current->comm, current->pid,
1297 				   rt_sf, regs->nip, regs->link);
1298 
1299 	force_sig(SIGSEGV, current);
1300 	return 0;
1301 }
1302 
1303 #ifdef CONFIG_PPC32
1304 int sys_debug_setcontext(struct ucontext __user *ctx,
1305 			 int ndbg, struct sig_dbg_op __user *dbg,
1306 			 int r6, int r7, int r8,
1307 			 struct pt_regs *regs)
1308 {
1309 	struct sig_dbg_op op;
1310 	int i;
1311 	unsigned char tmp;
1312 	unsigned long new_msr = regs->msr;
1313 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1314 	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1315 #endif
1316 
1317 	for (i=0; i<ndbg; i++) {
1318 		if (copy_from_user(&op, dbg + i, sizeof(op)))
1319 			return -EFAULT;
1320 		switch (op.dbg_type) {
1321 		case SIG_DBG_SINGLE_STEPPING:
1322 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1323 			if (op.dbg_value) {
1324 				new_msr |= MSR_DE;
1325 				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1326 			} else {
1327 				new_dbcr0 &= ~DBCR0_IC;
1328 				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1329 						current->thread.debug.dbcr1)) {
1330 					new_msr &= ~MSR_DE;
1331 					new_dbcr0 &= ~DBCR0_IDM;
1332 				}
1333 			}
1334 #else
1335 			if (op.dbg_value)
1336 				new_msr |= MSR_SE;
1337 			else
1338 				new_msr &= ~MSR_SE;
1339 #endif
1340 			break;
1341 		case SIG_DBG_BRANCH_TRACING:
1342 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1343 			return -EINVAL;
1344 #else
1345 			if (op.dbg_value)
1346 				new_msr |= MSR_BE;
1347 			else
1348 				new_msr &= ~MSR_BE;
1349 #endif
1350 			break;
1351 
1352 		default:
1353 			return -EINVAL;
1354 		}
1355 	}
1356 
1357 	/* We wait until here to actually install the values in the
1358 	   registers so if we fail in the above loop, it will not
1359 	   affect the contents of these registers.  After this point,
1360 	   failure is a problem, anyway, and it's very unlikely unless
1361 	   the user is really doing something wrong. */
1362 	regs->msr = new_msr;
1363 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1364 	current->thread.debug.dbcr0 = new_dbcr0;
1365 #endif
1366 
1367 	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1368 	    || __get_user(tmp, (u8 __user *) ctx)
1369 	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1370 		return -EFAULT;
1371 
1372 	/*
1373 	 * If we get a fault copying the context into the kernel's
1374 	 * image of the user's registers, we can't just return -EFAULT
1375 	 * because the user's registers will be corrupted.  For instance
1376 	 * the NIP value may have been updated but not some of the
1377 	 * other registers.  Given that we have done the access_ok
1378 	 * and successfully read the first and last bytes of the region
1379 	 * above, this should only happen in an out-of-memory situation
1380 	 * or if another thread unmaps the region containing the context.
1381 	 * We kill the task with a SIGSEGV in this situation.
1382 	 */
1383 	if (do_setcontext(ctx, regs, 1)) {
1384 		if (show_unhandled_signals)
1385 			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1386 					   "sys_debug_setcontext: %p nip %08lx "
1387 					   "lr %08lx\n",
1388 					   current->comm, current->pid,
1389 					   ctx, regs->nip, regs->link);
1390 
1391 		force_sig(SIGSEGV, current);
1392 		goto out;
1393 	}
1394 
1395 	/*
1396 	 * It's not clear whether or why it is desirable to save the
1397 	 * sigaltstack setting on signal delivery and restore it on
1398 	 * signal return.  But other architectures do this and we have
1399 	 * always done it up until now so it is probably better not to
1400 	 * change it.  -- paulus
1401 	 */
1402 	restore_altstack(&ctx->uc_stack);
1403 
1404 	set_thread_flag(TIF_RESTOREALL);
1405  out:
1406 	return 0;
1407 }
1408 #endif
1409 
1410 /*
1411  * OK, we're invoking a handler
1412  */
1413 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, struct pt_regs *regs)
1414 {
1415 	struct sigcontext __user *sc;
1416 	struct sigframe __user *frame;
1417 	struct mcontext __user *tm_mctx = NULL;
1418 	unsigned long newsp = 0;
1419 	int sigret;
1420 	unsigned long tramp;
1421 
1422 	/* Set up Signal Frame */
1423 	frame = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*frame), 1);
1424 	if (unlikely(frame == NULL))
1425 		goto badframe;
1426 	sc = (struct sigcontext __user *) &frame->sctx;
1427 
1428 #if _NSIG != 64
1429 #error "Please adjust handle_signal()"
1430 #endif
1431 	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1432 	    || __put_user(oldset->sig[0], &sc->oldmask)
1433 #ifdef CONFIG_PPC64
1434 	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1435 #else
1436 	    || __put_user(oldset->sig[1], &sc->_unused[3])
1437 #endif
1438 	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1439 	    || __put_user(ksig->sig, &sc->signal))
1440 		goto badframe;
1441 
1442 	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1443 		sigret = 0;
1444 		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1445 	} else {
1446 		sigret = __NR_sigreturn;
1447 		tramp = (unsigned long) frame->mctx.tramp;
1448 	}
1449 
1450 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1451 	tm_mctx = &frame->mctx_transact;
1452 	if (MSR_TM_ACTIVE(regs->msr)) {
1453 		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1454 				      sigret))
1455 			goto badframe;
1456 	}
1457 	else
1458 #endif
1459 	{
1460 		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1461 			goto badframe;
1462 	}
1463 
1464 	regs->link = tramp;
1465 
1466 	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1467 
1468 	/* create a stack frame for the caller of the handler */
1469 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1470 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1471 		goto badframe;
1472 
1473 	regs->gpr[1] = newsp;
1474 	regs->gpr[3] = ksig->sig;
1475 	regs->gpr[4] = (unsigned long) sc;
1476 	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1477 	/* enter the signal handler in big-endian mode */
1478 	regs->msr &= ~MSR_LE;
1479 	return 0;
1480 
1481 badframe:
1482 	if (show_unhandled_signals)
1483 		printk_ratelimited(KERN_INFO
1484 				   "%s[%d]: bad frame in handle_signal32: "
1485 				   "%p nip %08lx lr %08lx\n",
1486 				   current->comm, current->pid,
1487 				   frame, regs->nip, regs->link);
1488 
1489 	return 1;
1490 }
1491 
1492 /*
1493  * Do a signal return; undo the signal stack.
1494  */
1495 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1496 		       struct pt_regs *regs)
1497 {
1498 	struct sigframe __user *sf;
1499 	struct sigcontext __user *sc;
1500 	struct sigcontext sigctx;
1501 	struct mcontext __user *sr;
1502 	void __user *addr;
1503 	sigset_t set;
1504 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1505 	struct mcontext __user *mcp, *tm_mcp;
1506 	unsigned long msr_hi;
1507 #endif
1508 
1509 	/* Always make any pending restarted system calls return -EINTR */
1510 	current->restart_block.fn = do_no_restart_syscall;
1511 
1512 	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1513 	sc = &sf->sctx;
1514 	addr = sc;
1515 	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1516 		goto badframe;
1517 
1518 #ifdef CONFIG_PPC64
1519 	/*
1520 	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1521 	 * unused part of the signal stackframe
1522 	 */
1523 	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1524 #else
1525 	set.sig[0] = sigctx.oldmask;
1526 	set.sig[1] = sigctx._unused[3];
1527 #endif
1528 	set_current_blocked(&set);
1529 
1530 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1531 	mcp = (struct mcontext __user *)&sf->mctx;
1532 	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1533 	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1534 		goto badframe;
1535 	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1536 		if (!cpu_has_feature(CPU_FTR_TM))
1537 			goto badframe;
1538 		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1539 			goto badframe;
1540 	} else
1541 #endif
1542 	{
1543 		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1544 		addr = sr;
1545 		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1546 		    || restore_user_regs(regs, sr, 1))
1547 			goto badframe;
1548 	}
1549 
1550 	set_thread_flag(TIF_RESTOREALL);
1551 	return 0;
1552 
1553 badframe:
1554 	if (show_unhandled_signals)
1555 		printk_ratelimited(KERN_INFO
1556 				   "%s[%d]: bad frame in sys_sigreturn: "
1557 				   "%p nip %08lx lr %08lx\n",
1558 				   current->comm, current->pid,
1559 				   addr, regs->nip, regs->link);
1560 
1561 	force_sig(SIGSEGV, current);
1562 	return 0;
1563 }
1564