1 /* 2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC 3 * 4 * PowerPC version 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Copyright (C) 2001 IBM 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 9 * 10 * Derived from "arch/i386/kernel/signal.c" 11 * Copyright (C) 1991, 1992 Linus Torvalds 12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 13 * 14 * This program is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU General Public License 16 * as published by the Free Software Foundation; either version 17 * 2 of the License, or (at your option) any later version. 18 */ 19 20 #include <linux/sched.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/kernel.h> 24 #include <linux/signal.h> 25 #include <linux/errno.h> 26 #include <linux/elf.h> 27 #include <linux/ptrace.h> 28 #include <linux/ratelimit.h> 29 #ifdef CONFIG_PPC64 30 #include <linux/syscalls.h> 31 #include <linux/compat.h> 32 #else 33 #include <linux/wait.h> 34 #include <linux/unistd.h> 35 #include <linux/stddef.h> 36 #include <linux/tty.h> 37 #include <linux/binfmts.h> 38 #endif 39 40 #include <asm/uaccess.h> 41 #include <asm/cacheflush.h> 42 #include <asm/syscalls.h> 43 #include <asm/sigcontext.h> 44 #include <asm/vdso.h> 45 #include <asm/switch_to.h> 46 #include <asm/tm.h> 47 #ifdef CONFIG_PPC64 48 #include "ppc32.h" 49 #include <asm/unistd.h> 50 #else 51 #include <asm/ucontext.h> 52 #include <asm/pgtable.h> 53 #endif 54 55 #include "signal.h" 56 57 58 #ifdef CONFIG_PPC64 59 #define sys_rt_sigreturn compat_sys_rt_sigreturn 60 #define sys_swapcontext compat_sys_swapcontext 61 #define sys_sigreturn compat_sys_sigreturn 62 63 #define old_sigaction old_sigaction32 64 #define sigcontext sigcontext32 65 #define mcontext mcontext32 66 #define ucontext ucontext32 67 68 #define __save_altstack __compat_save_altstack 69 70 /* 71 * Userspace code may pass a ucontext which doesn't include VSX added 72 * at the end. We need to check for this case. 73 */ 74 #define UCONTEXTSIZEWITHOUTVSX \ 75 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) 76 77 /* 78 * Returning 0 means we return to userspace via 79 * ret_from_except and thus restore all user 80 * registers from *regs. This is what we need 81 * to do when a signal has been delivered. 82 */ 83 84 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) 85 #undef __SIGNAL_FRAMESIZE 86 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 87 #undef ELF_NVRREG 88 #define ELF_NVRREG ELF_NVRREG32 89 90 /* 91 * Functions for flipping sigsets (thanks to brain dead generic 92 * implementation that makes things simple for little endian only) 93 */ 94 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) 95 { 96 compat_sigset_t cset; 97 98 switch (_NSIG_WORDS) { 99 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull; 100 cset.sig[7] = set->sig[3] >> 32; 101 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull; 102 cset.sig[5] = set->sig[2] >> 32; 103 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull; 104 cset.sig[3] = set->sig[1] >> 32; 105 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull; 106 cset.sig[1] = set->sig[0] >> 32; 107 } 108 return copy_to_user(uset, &cset, sizeof(*uset)); 109 } 110 111 static inline int get_sigset_t(sigset_t *set, 112 const compat_sigset_t __user *uset) 113 { 114 compat_sigset_t s32; 115 116 if (copy_from_user(&s32, uset, sizeof(*uset))) 117 return -EFAULT; 118 119 /* 120 * Swap the 2 words of the 64-bit sigset_t (they are stored 121 * in the "wrong" endian in 32-bit user storage). 122 */ 123 switch (_NSIG_WORDS) { 124 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32); 125 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32); 126 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32); 127 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32); 128 } 129 return 0; 130 } 131 132 #define to_user_ptr(p) ptr_to_compat(p) 133 #define from_user_ptr(p) compat_ptr(p) 134 135 static inline int save_general_regs(struct pt_regs *regs, 136 struct mcontext __user *frame) 137 { 138 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 139 int i; 140 141 WARN_ON(!FULL_REGS(regs)); 142 143 for (i = 0; i <= PT_RESULT; i ++) { 144 if (i == 14 && !FULL_REGS(regs)) 145 i = 32; 146 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) 147 return -EFAULT; 148 } 149 return 0; 150 } 151 152 static inline int restore_general_regs(struct pt_regs *regs, 153 struct mcontext __user *sr) 154 { 155 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 156 int i; 157 158 for (i = 0; i <= PT_RESULT; i++) { 159 if ((i == PT_MSR) || (i == PT_SOFTE)) 160 continue; 161 if (__get_user(gregs[i], &sr->mc_gregs[i])) 162 return -EFAULT; 163 } 164 return 0; 165 } 166 167 #else /* CONFIG_PPC64 */ 168 169 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) 170 171 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) 172 { 173 return copy_to_user(uset, set, sizeof(*uset)); 174 } 175 176 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) 177 { 178 return copy_from_user(set, uset, sizeof(*uset)); 179 } 180 181 #define to_user_ptr(p) ((unsigned long)(p)) 182 #define from_user_ptr(p) ((void __user *)(p)) 183 184 static inline int save_general_regs(struct pt_regs *regs, 185 struct mcontext __user *frame) 186 { 187 WARN_ON(!FULL_REGS(regs)); 188 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); 189 } 190 191 static inline int restore_general_regs(struct pt_regs *regs, 192 struct mcontext __user *sr) 193 { 194 /* copy up to but not including MSR */ 195 if (__copy_from_user(regs, &sr->mc_gregs, 196 PT_MSR * sizeof(elf_greg_t))) 197 return -EFAULT; 198 /* copy from orig_r3 (the word after the MSR) up to the end */ 199 if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], 200 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) 201 return -EFAULT; 202 return 0; 203 } 204 #endif 205 206 /* 207 * When we have signals to deliver, we set up on the 208 * user stack, going down from the original stack pointer: 209 * an ABI gap of 56 words 210 * an mcontext struct 211 * a sigcontext struct 212 * a gap of __SIGNAL_FRAMESIZE bytes 213 * 214 * Each of these things must be a multiple of 16 bytes in size. The following 215 * structure represent all of this except the __SIGNAL_FRAMESIZE gap 216 * 217 */ 218 struct sigframe { 219 struct sigcontext sctx; /* the sigcontext */ 220 struct mcontext mctx; /* all the register values */ 221 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 222 struct sigcontext sctx_transact; 223 struct mcontext mctx_transact; 224 #endif 225 /* 226 * Programs using the rs6000/xcoff abi can save up to 19 gp 227 * regs and 18 fp regs below sp before decrementing it. 228 */ 229 int abigap[56]; 230 }; 231 232 /* We use the mc_pad field for the signal return trampoline. */ 233 #define tramp mc_pad 234 235 /* 236 * When we have rt signals to deliver, we set up on the 237 * user stack, going down from the original stack pointer: 238 * one rt_sigframe struct (siginfo + ucontext + ABI gap) 239 * a gap of __SIGNAL_FRAMESIZE+16 bytes 240 * (the +16 is to get the siginfo and ucontext in the same 241 * positions as in older kernels). 242 * 243 * Each of these things must be a multiple of 16 bytes in size. 244 * 245 */ 246 struct rt_sigframe { 247 #ifdef CONFIG_PPC64 248 compat_siginfo_t info; 249 #else 250 struct siginfo info; 251 #endif 252 struct ucontext uc; 253 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 254 struct ucontext uc_transact; 255 #endif 256 /* 257 * Programs using the rs6000/xcoff abi can save up to 19 gp 258 * regs and 18 fp regs below sp before decrementing it. 259 */ 260 int abigap[56]; 261 }; 262 263 #ifdef CONFIG_VSX 264 unsigned long copy_fpr_to_user(void __user *to, 265 struct task_struct *task) 266 { 267 u64 buf[ELF_NFPREG]; 268 int i; 269 270 /* save FPR copy to local buffer then write to the thread_struct */ 271 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 272 buf[i] = task->thread.TS_FPR(i); 273 buf[i] = task->thread.fp_state.fpscr; 274 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 275 } 276 277 unsigned long copy_fpr_from_user(struct task_struct *task, 278 void __user *from) 279 { 280 u64 buf[ELF_NFPREG]; 281 int i; 282 283 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 284 return 1; 285 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 286 task->thread.TS_FPR(i) = buf[i]; 287 task->thread.fp_state.fpscr = buf[i]; 288 289 return 0; 290 } 291 292 unsigned long copy_vsx_to_user(void __user *to, 293 struct task_struct *task) 294 { 295 u64 buf[ELF_NVSRHALFREG]; 296 int i; 297 298 /* save FPR copy to local buffer then write to the thread_struct */ 299 for (i = 0; i < ELF_NVSRHALFREG; i++) 300 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; 301 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 302 } 303 304 unsigned long copy_vsx_from_user(struct task_struct *task, 305 void __user *from) 306 { 307 u64 buf[ELF_NVSRHALFREG]; 308 int i; 309 310 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 311 return 1; 312 for (i = 0; i < ELF_NVSRHALFREG ; i++) 313 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 314 return 0; 315 } 316 317 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 318 unsigned long copy_transact_fpr_to_user(void __user *to, 319 struct task_struct *task) 320 { 321 u64 buf[ELF_NFPREG]; 322 int i; 323 324 /* save FPR copy to local buffer then write to the thread_struct */ 325 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 326 buf[i] = task->thread.TS_TRANS_FPR(i); 327 buf[i] = task->thread.transact_fp.fpscr; 328 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 329 } 330 331 unsigned long copy_transact_fpr_from_user(struct task_struct *task, 332 void __user *from) 333 { 334 u64 buf[ELF_NFPREG]; 335 int i; 336 337 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 338 return 1; 339 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 340 task->thread.TS_TRANS_FPR(i) = buf[i]; 341 task->thread.transact_fp.fpscr = buf[i]; 342 343 return 0; 344 } 345 346 unsigned long copy_transact_vsx_to_user(void __user *to, 347 struct task_struct *task) 348 { 349 u64 buf[ELF_NVSRHALFREG]; 350 int i; 351 352 /* save FPR copy to local buffer then write to the thread_struct */ 353 for (i = 0; i < ELF_NVSRHALFREG; i++) 354 buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET]; 355 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 356 } 357 358 unsigned long copy_transact_vsx_from_user(struct task_struct *task, 359 void __user *from) 360 { 361 u64 buf[ELF_NVSRHALFREG]; 362 int i; 363 364 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 365 return 1; 366 for (i = 0; i < ELF_NVSRHALFREG ; i++) 367 task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 368 return 0; 369 } 370 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 371 #else 372 inline unsigned long copy_fpr_to_user(void __user *to, 373 struct task_struct *task) 374 { 375 return __copy_to_user(to, task->thread.fp_state.fpr, 376 ELF_NFPREG * sizeof(double)); 377 } 378 379 inline unsigned long copy_fpr_from_user(struct task_struct *task, 380 void __user *from) 381 { 382 return __copy_from_user(task->thread.fp_state.fpr, from, 383 ELF_NFPREG * sizeof(double)); 384 } 385 386 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 387 inline unsigned long copy_transact_fpr_to_user(void __user *to, 388 struct task_struct *task) 389 { 390 return __copy_to_user(to, task->thread.transact_fp.fpr, 391 ELF_NFPREG * sizeof(double)); 392 } 393 394 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task, 395 void __user *from) 396 { 397 return __copy_from_user(task->thread.transact_fp.fpr, from, 398 ELF_NFPREG * sizeof(double)); 399 } 400 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 401 #endif 402 403 /* 404 * Save the current user registers on the user stack. 405 * We only save the altivec/spe registers if the process has used 406 * altivec/spe instructions at some point. 407 */ 408 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, 409 struct mcontext __user *tm_frame, int sigret, 410 int ctx_has_vsx_region) 411 { 412 unsigned long msr = regs->msr; 413 414 /* Make sure floating point registers are stored in regs */ 415 flush_fp_to_thread(current); 416 417 /* save general registers */ 418 if (save_general_regs(regs, frame)) 419 return 1; 420 421 #ifdef CONFIG_ALTIVEC 422 /* save altivec registers */ 423 if (current->thread.used_vr) { 424 flush_altivec_to_thread(current); 425 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 426 ELF_NVRREG * sizeof(vector128))) 427 return 1; 428 /* set MSR_VEC in the saved MSR value to indicate that 429 frame->mc_vregs contains valid data */ 430 msr |= MSR_VEC; 431 } 432 /* else assert((regs->msr & MSR_VEC) == 0) */ 433 434 /* We always copy to/from vrsave, it's 0 if we don't have or don't 435 * use altivec. Since VSCR only contains 32 bits saved in the least 436 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 437 * most significant bits of that same vector. --BenH 438 * Note that the current VRSAVE value is in the SPR at this point. 439 */ 440 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 441 current->thread.vrsave = mfspr(SPRN_VRSAVE); 442 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) 443 return 1; 444 #endif /* CONFIG_ALTIVEC */ 445 if (copy_fpr_to_user(&frame->mc_fregs, current)) 446 return 1; 447 448 /* 449 * Clear the MSR VSX bit to indicate there is no valid state attached 450 * to this context, except in the specific case below where we set it. 451 */ 452 msr &= ~MSR_VSX; 453 #ifdef CONFIG_VSX 454 /* 455 * Copy VSR 0-31 upper half from thread_struct to local 456 * buffer, then write that to userspace. Also set MSR_VSX in 457 * the saved MSR value to indicate that frame->mc_vregs 458 * contains valid data 459 */ 460 if (current->thread.used_vsr && ctx_has_vsx_region) { 461 __giveup_vsx(current); 462 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 463 return 1; 464 msr |= MSR_VSX; 465 } 466 #endif /* CONFIG_VSX */ 467 #ifdef CONFIG_SPE 468 /* save spe registers */ 469 if (current->thread.used_spe) { 470 flush_spe_to_thread(current); 471 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 472 ELF_NEVRREG * sizeof(u32))) 473 return 1; 474 /* set MSR_SPE in the saved MSR value to indicate that 475 frame->mc_vregs contains valid data */ 476 msr |= MSR_SPE; 477 } 478 /* else assert((regs->msr & MSR_SPE) == 0) */ 479 480 /* We always copy to/from spefscr */ 481 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 482 return 1; 483 #endif /* CONFIG_SPE */ 484 485 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 486 return 1; 487 /* We need to write 0 the MSR top 32 bits in the tm frame so that we 488 * can check it on the restore to see if TM is active 489 */ 490 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) 491 return 1; 492 493 if (sigret) { 494 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 495 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 496 || __put_user(0x44000002UL, &frame->tramp[1])) 497 return 1; 498 flush_icache_range((unsigned long) &frame->tramp[0], 499 (unsigned long) &frame->tramp[2]); 500 } 501 502 return 0; 503 } 504 505 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 506 /* 507 * Save the current user registers on the user stack. 508 * We only save the altivec/spe registers if the process has used 509 * altivec/spe instructions at some point. 510 * We also save the transactional registers to a second ucontext in the 511 * frame. 512 * 513 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). 514 */ 515 static int save_tm_user_regs(struct pt_regs *regs, 516 struct mcontext __user *frame, 517 struct mcontext __user *tm_frame, int sigret) 518 { 519 unsigned long msr = regs->msr; 520 521 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 522 * just indicates to userland that we were doing a transaction, but we 523 * don't want to return in transactional state. This also ensures 524 * that flush_fp_to_thread won't set TIF_RESTORE_TM again. 525 */ 526 regs->msr &= ~MSR_TS_MASK; 527 528 /* Make sure floating point registers are stored in regs */ 529 flush_fp_to_thread(current); 530 531 /* Save both sets of general registers */ 532 if (save_general_regs(¤t->thread.ckpt_regs, frame) 533 || save_general_regs(regs, tm_frame)) 534 return 1; 535 536 /* Stash the top half of the 64bit MSR into the 32bit MSR word 537 * of the transactional mcontext. This way we have a backward-compatible 538 * MSR in the 'normal' (checkpointed) mcontext and additionally one can 539 * also look at what type of transaction (T or S) was active at the 540 * time of the signal. 541 */ 542 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) 543 return 1; 544 545 #ifdef CONFIG_ALTIVEC 546 /* save altivec registers */ 547 if (current->thread.used_vr) { 548 flush_altivec_to_thread(current); 549 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 550 ELF_NVRREG * sizeof(vector128))) 551 return 1; 552 if (msr & MSR_VEC) { 553 if (__copy_to_user(&tm_frame->mc_vregs, 554 ¤t->thread.transact_vr, 555 ELF_NVRREG * sizeof(vector128))) 556 return 1; 557 } else { 558 if (__copy_to_user(&tm_frame->mc_vregs, 559 ¤t->thread.vr_state, 560 ELF_NVRREG * sizeof(vector128))) 561 return 1; 562 } 563 564 /* set MSR_VEC in the saved MSR value to indicate that 565 * frame->mc_vregs contains valid data 566 */ 567 msr |= MSR_VEC; 568 } 569 570 /* We always copy to/from vrsave, it's 0 if we don't have or don't 571 * use altivec. Since VSCR only contains 32 bits saved in the least 572 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 573 * most significant bits of that same vector. --BenH 574 */ 575 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 576 current->thread.vrsave = mfspr(SPRN_VRSAVE); 577 if (__put_user(current->thread.vrsave, 578 (u32 __user *)&frame->mc_vregs[32])) 579 return 1; 580 if (msr & MSR_VEC) { 581 if (__put_user(current->thread.transact_vrsave, 582 (u32 __user *)&tm_frame->mc_vregs[32])) 583 return 1; 584 } else { 585 if (__put_user(current->thread.vrsave, 586 (u32 __user *)&tm_frame->mc_vregs[32])) 587 return 1; 588 } 589 #endif /* CONFIG_ALTIVEC */ 590 591 if (copy_fpr_to_user(&frame->mc_fregs, current)) 592 return 1; 593 if (msr & MSR_FP) { 594 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current)) 595 return 1; 596 } else { 597 if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) 598 return 1; 599 } 600 601 #ifdef CONFIG_VSX 602 /* 603 * Copy VSR 0-31 upper half from thread_struct to local 604 * buffer, then write that to userspace. Also set MSR_VSX in 605 * the saved MSR value to indicate that frame->mc_vregs 606 * contains valid data 607 */ 608 if (current->thread.used_vsr) { 609 __giveup_vsx(current); 610 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 611 return 1; 612 if (msr & MSR_VSX) { 613 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs, 614 current)) 615 return 1; 616 } else { 617 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current)) 618 return 1; 619 } 620 621 msr |= MSR_VSX; 622 } 623 #endif /* CONFIG_VSX */ 624 #ifdef CONFIG_SPE 625 /* SPE regs are not checkpointed with TM, so this section is 626 * simply the same as in save_user_regs(). 627 */ 628 if (current->thread.used_spe) { 629 flush_spe_to_thread(current); 630 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 631 ELF_NEVRREG * sizeof(u32))) 632 return 1; 633 /* set MSR_SPE in the saved MSR value to indicate that 634 * frame->mc_vregs contains valid data */ 635 msr |= MSR_SPE; 636 } 637 638 /* We always copy to/from spefscr */ 639 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 640 return 1; 641 #endif /* CONFIG_SPE */ 642 643 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 644 return 1; 645 if (sigret) { 646 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 647 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 648 || __put_user(0x44000002UL, &frame->tramp[1])) 649 return 1; 650 flush_icache_range((unsigned long) &frame->tramp[0], 651 (unsigned long) &frame->tramp[2]); 652 } 653 654 return 0; 655 } 656 #endif 657 658 /* 659 * Restore the current user register values from the user stack, 660 * (except for MSR). 661 */ 662 static long restore_user_regs(struct pt_regs *regs, 663 struct mcontext __user *sr, int sig) 664 { 665 long err; 666 unsigned int save_r2 = 0; 667 unsigned long msr; 668 #ifdef CONFIG_VSX 669 int i; 670 #endif 671 672 /* 673 * restore general registers but not including MSR or SOFTE. Also 674 * take care of keeping r2 (TLS) intact if not a signal 675 */ 676 if (!sig) 677 save_r2 = (unsigned int)regs->gpr[2]; 678 err = restore_general_regs(regs, sr); 679 regs->trap = 0; 680 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 681 if (!sig) 682 regs->gpr[2] = (unsigned long) save_r2; 683 if (err) 684 return 1; 685 686 /* if doing signal return, restore the previous little-endian mode */ 687 if (sig) 688 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 689 690 /* 691 * Do this before updating the thread state in 692 * current->thread.fpr/vr/evr. That way, if we get preempted 693 * and another task grabs the FPU/Altivec/SPE, it won't be 694 * tempted to save the current CPU state into the thread_struct 695 * and corrupt what we are writing there. 696 */ 697 discard_lazy_cpu_state(); 698 699 #ifdef CONFIG_ALTIVEC 700 /* 701 * Force the process to reload the altivec registers from 702 * current->thread when it next does altivec instructions 703 */ 704 regs->msr &= ~MSR_VEC; 705 if (msr & MSR_VEC) { 706 /* restore altivec registers from the stack */ 707 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 708 sizeof(sr->mc_vregs))) 709 return 1; 710 } else if (current->thread.used_vr) 711 memset(¤t->thread.vr_state, 0, 712 ELF_NVRREG * sizeof(vector128)); 713 714 /* Always get VRSAVE back */ 715 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) 716 return 1; 717 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 718 mtspr(SPRN_VRSAVE, current->thread.vrsave); 719 #endif /* CONFIG_ALTIVEC */ 720 if (copy_fpr_from_user(current, &sr->mc_fregs)) 721 return 1; 722 723 #ifdef CONFIG_VSX 724 /* 725 * Force the process to reload the VSX registers from 726 * current->thread when it next does VSX instruction. 727 */ 728 regs->msr &= ~MSR_VSX; 729 if (msr & MSR_VSX) { 730 /* 731 * Restore altivec registers from the stack to a local 732 * buffer, then write this out to the thread_struct 733 */ 734 if (copy_vsx_from_user(current, &sr->mc_vsregs)) 735 return 1; 736 } else if (current->thread.used_vsr) 737 for (i = 0; i < 32 ; i++) 738 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 739 #endif /* CONFIG_VSX */ 740 /* 741 * force the process to reload the FP registers from 742 * current->thread when it next does FP instructions 743 */ 744 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 745 746 #ifdef CONFIG_SPE 747 /* force the process to reload the spe registers from 748 current->thread when it next does spe instructions */ 749 regs->msr &= ~MSR_SPE; 750 if (msr & MSR_SPE) { 751 /* restore spe registers from the stack */ 752 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 753 ELF_NEVRREG * sizeof(u32))) 754 return 1; 755 } else if (current->thread.used_spe) 756 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 757 758 /* Always get SPEFSCR back */ 759 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) 760 return 1; 761 #endif /* CONFIG_SPE */ 762 763 return 0; 764 } 765 766 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 767 /* 768 * Restore the current user register values from the user stack, except for 769 * MSR, and recheckpoint the original checkpointed register state for processes 770 * in transactions. 771 */ 772 static long restore_tm_user_regs(struct pt_regs *regs, 773 struct mcontext __user *sr, 774 struct mcontext __user *tm_sr) 775 { 776 long err; 777 unsigned long msr, msr_hi; 778 #ifdef CONFIG_VSX 779 int i; 780 #endif 781 782 /* 783 * restore general registers but not including MSR or SOFTE. Also 784 * take care of keeping r2 (TLS) intact if not a signal. 785 * See comment in signal_64.c:restore_tm_sigcontexts(); 786 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR 787 * were set by the signal delivery. 788 */ 789 err = restore_general_regs(regs, tm_sr); 790 err |= restore_general_regs(¤t->thread.ckpt_regs, sr); 791 792 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); 793 794 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 795 if (err) 796 return 1; 797 798 /* Restore the previous little-endian mode */ 799 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 800 801 /* 802 * Do this before updating the thread state in 803 * current->thread.fpr/vr/evr. That way, if we get preempted 804 * and another task grabs the FPU/Altivec/SPE, it won't be 805 * tempted to save the current CPU state into the thread_struct 806 * and corrupt what we are writing there. 807 */ 808 discard_lazy_cpu_state(); 809 810 #ifdef CONFIG_ALTIVEC 811 regs->msr &= ~MSR_VEC; 812 if (msr & MSR_VEC) { 813 /* restore altivec registers from the stack */ 814 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 815 sizeof(sr->mc_vregs)) || 816 __copy_from_user(¤t->thread.transact_vr, 817 &tm_sr->mc_vregs, 818 sizeof(sr->mc_vregs))) 819 return 1; 820 } else if (current->thread.used_vr) { 821 memset(¤t->thread.vr_state, 0, 822 ELF_NVRREG * sizeof(vector128)); 823 memset(¤t->thread.transact_vr, 0, 824 ELF_NVRREG * sizeof(vector128)); 825 } 826 827 /* Always get VRSAVE back */ 828 if (__get_user(current->thread.vrsave, 829 (u32 __user *)&sr->mc_vregs[32]) || 830 __get_user(current->thread.transact_vrsave, 831 (u32 __user *)&tm_sr->mc_vregs[32])) 832 return 1; 833 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 834 mtspr(SPRN_VRSAVE, current->thread.vrsave); 835 #endif /* CONFIG_ALTIVEC */ 836 837 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 838 839 if (copy_fpr_from_user(current, &sr->mc_fregs) || 840 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs)) 841 return 1; 842 843 #ifdef CONFIG_VSX 844 regs->msr &= ~MSR_VSX; 845 if (msr & MSR_VSX) { 846 /* 847 * Restore altivec registers from the stack to a local 848 * buffer, then write this out to the thread_struct 849 */ 850 if (copy_vsx_from_user(current, &sr->mc_vsregs) || 851 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs)) 852 return 1; 853 } else if (current->thread.used_vsr) 854 for (i = 0; i < 32 ; i++) { 855 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 856 current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0; 857 } 858 #endif /* CONFIG_VSX */ 859 860 #ifdef CONFIG_SPE 861 /* SPE regs are not checkpointed with TM, so this section is 862 * simply the same as in restore_user_regs(). 863 */ 864 regs->msr &= ~MSR_SPE; 865 if (msr & MSR_SPE) { 866 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 867 ELF_NEVRREG * sizeof(u32))) 868 return 1; 869 } else if (current->thread.used_spe) 870 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 871 872 /* Always get SPEFSCR back */ 873 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs 874 + ELF_NEVRREG)) 875 return 1; 876 #endif /* CONFIG_SPE */ 877 878 /* Now, recheckpoint. This loads up all of the checkpointed (older) 879 * registers, including FP and V[S]Rs. After recheckpointing, the 880 * transactional versions should be loaded. 881 */ 882 tm_enable(); 883 /* Make sure the transaction is marked as failed */ 884 current->thread.tm_texasr |= TEXASR_FS; 885 /* This loads the checkpointed FP/VEC state, if used */ 886 tm_recheckpoint(¤t->thread, msr); 887 /* Get the top half of the MSR */ 888 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) 889 return 1; 890 /* Pull in MSR TM from user context */ 891 regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK); 892 893 /* This loads the speculative FP/VEC state, if used */ 894 if (msr & MSR_FP) { 895 do_load_up_transact_fpu(¤t->thread); 896 regs->msr |= (MSR_FP | current->thread.fpexc_mode); 897 } 898 #ifdef CONFIG_ALTIVEC 899 if (msr & MSR_VEC) { 900 do_load_up_transact_altivec(¤t->thread); 901 regs->msr |= MSR_VEC; 902 } 903 #endif 904 905 return 0; 906 } 907 #endif 908 909 #ifdef CONFIG_PPC64 910 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s) 911 { 912 int err; 913 914 if (!access_ok (VERIFY_WRITE, d, sizeof(*d))) 915 return -EFAULT; 916 917 /* If you change siginfo_t structure, please be sure 918 * this code is fixed accordingly. 919 * It should never copy any pad contained in the structure 920 * to avoid security leaks, but must copy the generic 921 * 3 ints plus the relevant union member. 922 * This routine must convert siginfo from 64bit to 32bit as well 923 * at the same time. 924 */ 925 err = __put_user(s->si_signo, &d->si_signo); 926 err |= __put_user(s->si_errno, &d->si_errno); 927 err |= __put_user((short)s->si_code, &d->si_code); 928 if (s->si_code < 0) 929 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad, 930 SI_PAD_SIZE32); 931 else switch(s->si_code >> 16) { 932 case __SI_CHLD >> 16: 933 err |= __put_user(s->si_pid, &d->si_pid); 934 err |= __put_user(s->si_uid, &d->si_uid); 935 err |= __put_user(s->si_utime, &d->si_utime); 936 err |= __put_user(s->si_stime, &d->si_stime); 937 err |= __put_user(s->si_status, &d->si_status); 938 break; 939 case __SI_FAULT >> 16: 940 err |= __put_user((unsigned int)(unsigned long)s->si_addr, 941 &d->si_addr); 942 break; 943 case __SI_POLL >> 16: 944 err |= __put_user(s->si_band, &d->si_band); 945 err |= __put_user(s->si_fd, &d->si_fd); 946 break; 947 case __SI_TIMER >> 16: 948 err |= __put_user(s->si_tid, &d->si_tid); 949 err |= __put_user(s->si_overrun, &d->si_overrun); 950 err |= __put_user(s->si_int, &d->si_int); 951 break; 952 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */ 953 case __SI_MESGQ >> 16: 954 err |= __put_user(s->si_int, &d->si_int); 955 /* fallthrough */ 956 case __SI_KILL >> 16: 957 default: 958 err |= __put_user(s->si_pid, &d->si_pid); 959 err |= __put_user(s->si_uid, &d->si_uid); 960 break; 961 } 962 return err; 963 } 964 965 #define copy_siginfo_to_user copy_siginfo_to_user32 966 967 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from) 968 { 969 if (copy_from_user(to, from, 3*sizeof(int)) || 970 copy_from_user(to->_sifields._pad, 971 from->_sifields._pad, SI_PAD_SIZE32)) 972 return -EFAULT; 973 974 return 0; 975 } 976 #endif /* CONFIG_PPC64 */ 977 978 /* 979 * Set up a signal frame for a "real-time" signal handler 980 * (one which gets siginfo). 981 */ 982 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset, 983 struct pt_regs *regs) 984 { 985 struct rt_sigframe __user *rt_sf; 986 struct mcontext __user *frame; 987 struct mcontext __user *tm_frame = NULL; 988 void __user *addr; 989 unsigned long newsp = 0; 990 int sigret; 991 unsigned long tramp; 992 993 /* Set up Signal Frame */ 994 /* Put a Real Time Context onto stack */ 995 rt_sf = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*rt_sf), 1); 996 addr = rt_sf; 997 if (unlikely(rt_sf == NULL)) 998 goto badframe; 999 1000 /* Put the siginfo & fill in most of the ucontext */ 1001 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info) 1002 || __put_user(0, &rt_sf->uc.uc_flags) 1003 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) 1004 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), 1005 &rt_sf->uc.uc_regs) 1006 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) 1007 goto badframe; 1008 1009 /* Save user registers on the stack */ 1010 frame = &rt_sf->uc.uc_mcontext; 1011 addr = frame; 1012 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) { 1013 sigret = 0; 1014 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp; 1015 } else { 1016 sigret = __NR_rt_sigreturn; 1017 tramp = (unsigned long) frame->tramp; 1018 } 1019 1020 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1021 tm_frame = &rt_sf->uc_transact.uc_mcontext; 1022 if (MSR_TM_ACTIVE(regs->msr)) { 1023 if (__put_user((unsigned long)&rt_sf->uc_transact, 1024 &rt_sf->uc.uc_link) || 1025 __put_user((unsigned long)tm_frame, 1026 &rt_sf->uc_transact.uc_regs)) 1027 goto badframe; 1028 if (save_tm_user_regs(regs, frame, tm_frame, sigret)) 1029 goto badframe; 1030 } 1031 else 1032 #endif 1033 { 1034 if (__put_user(0, &rt_sf->uc.uc_link)) 1035 goto badframe; 1036 if (save_user_regs(regs, frame, tm_frame, sigret, 1)) 1037 goto badframe; 1038 } 1039 regs->link = tramp; 1040 1041 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1042 1043 /* create a stack frame for the caller of the handler */ 1044 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); 1045 addr = (void __user *)regs->gpr[1]; 1046 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1047 goto badframe; 1048 1049 /* Fill registers for signal handler */ 1050 regs->gpr[1] = newsp; 1051 regs->gpr[3] = ksig->sig; 1052 regs->gpr[4] = (unsigned long) &rt_sf->info; 1053 regs->gpr[5] = (unsigned long) &rt_sf->uc; 1054 regs->gpr[6] = (unsigned long) rt_sf; 1055 regs->nip = (unsigned long) ksig->ka.sa.sa_handler; 1056 /* enter the signal handler in native-endian mode */ 1057 regs->msr &= ~MSR_LE; 1058 regs->msr |= (MSR_KERNEL & MSR_LE); 1059 return 0; 1060 1061 badframe: 1062 if (show_unhandled_signals) 1063 printk_ratelimited(KERN_INFO 1064 "%s[%d]: bad frame in handle_rt_signal32: " 1065 "%p nip %08lx lr %08lx\n", 1066 current->comm, current->pid, 1067 addr, regs->nip, regs->link); 1068 1069 return 1; 1070 } 1071 1072 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) 1073 { 1074 sigset_t set; 1075 struct mcontext __user *mcp; 1076 1077 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1078 return -EFAULT; 1079 #ifdef CONFIG_PPC64 1080 { 1081 u32 cmcp; 1082 1083 if (__get_user(cmcp, &ucp->uc_regs)) 1084 return -EFAULT; 1085 mcp = (struct mcontext __user *)(u64)cmcp; 1086 /* no need to check access_ok(mcp), since mcp < 4GB */ 1087 } 1088 #else 1089 if (__get_user(mcp, &ucp->uc_regs)) 1090 return -EFAULT; 1091 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp))) 1092 return -EFAULT; 1093 #endif 1094 set_current_blocked(&set); 1095 if (restore_user_regs(regs, mcp, sig)) 1096 return -EFAULT; 1097 1098 return 0; 1099 } 1100 1101 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1102 static int do_setcontext_tm(struct ucontext __user *ucp, 1103 struct ucontext __user *tm_ucp, 1104 struct pt_regs *regs) 1105 { 1106 sigset_t set; 1107 struct mcontext __user *mcp; 1108 struct mcontext __user *tm_mcp; 1109 u32 cmcp; 1110 u32 tm_cmcp; 1111 1112 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1113 return -EFAULT; 1114 1115 if (__get_user(cmcp, &ucp->uc_regs) || 1116 __get_user(tm_cmcp, &tm_ucp->uc_regs)) 1117 return -EFAULT; 1118 mcp = (struct mcontext __user *)(u64)cmcp; 1119 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; 1120 /* no need to check access_ok(mcp), since mcp < 4GB */ 1121 1122 set_current_blocked(&set); 1123 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1124 return -EFAULT; 1125 1126 return 0; 1127 } 1128 #endif 1129 1130 long sys_swapcontext(struct ucontext __user *old_ctx, 1131 struct ucontext __user *new_ctx, 1132 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs) 1133 { 1134 unsigned char tmp; 1135 int ctx_has_vsx_region = 0; 1136 1137 #ifdef CONFIG_PPC64 1138 unsigned long new_msr = 0; 1139 1140 if (new_ctx) { 1141 struct mcontext __user *mcp; 1142 u32 cmcp; 1143 1144 /* 1145 * Get pointer to the real mcontext. No need for 1146 * access_ok since we are dealing with compat 1147 * pointers. 1148 */ 1149 if (__get_user(cmcp, &new_ctx->uc_regs)) 1150 return -EFAULT; 1151 mcp = (struct mcontext __user *)(u64)cmcp; 1152 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) 1153 return -EFAULT; 1154 } 1155 /* 1156 * Check that the context is not smaller than the original 1157 * size (with VMX but without VSX) 1158 */ 1159 if (ctx_size < UCONTEXTSIZEWITHOUTVSX) 1160 return -EINVAL; 1161 /* 1162 * If the new context state sets the MSR VSX bits but 1163 * it doesn't provide VSX state. 1164 */ 1165 if ((ctx_size < sizeof(struct ucontext)) && 1166 (new_msr & MSR_VSX)) 1167 return -EINVAL; 1168 /* Does the context have enough room to store VSX data? */ 1169 if (ctx_size >= sizeof(struct ucontext)) 1170 ctx_has_vsx_region = 1; 1171 #else 1172 /* Context size is for future use. Right now, we only make sure 1173 * we are passed something we understand 1174 */ 1175 if (ctx_size < sizeof(struct ucontext)) 1176 return -EINVAL; 1177 #endif 1178 if (old_ctx != NULL) { 1179 struct mcontext __user *mctx; 1180 1181 /* 1182 * old_ctx might not be 16-byte aligned, in which 1183 * case old_ctx->uc_mcontext won't be either. 1184 * Because we have the old_ctx->uc_pad2 field 1185 * before old_ctx->uc_mcontext, we need to round down 1186 * from &old_ctx->uc_mcontext to a 16-byte boundary. 1187 */ 1188 mctx = (struct mcontext __user *) 1189 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); 1190 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size) 1191 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) 1192 || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) 1193 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) 1194 return -EFAULT; 1195 } 1196 if (new_ctx == NULL) 1197 return 0; 1198 if (!access_ok(VERIFY_READ, new_ctx, ctx_size) 1199 || __get_user(tmp, (u8 __user *) new_ctx) 1200 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1)) 1201 return -EFAULT; 1202 1203 /* 1204 * If we get a fault copying the context into the kernel's 1205 * image of the user's registers, we can't just return -EFAULT 1206 * because the user's registers will be corrupted. For instance 1207 * the NIP value may have been updated but not some of the 1208 * other registers. Given that we have done the access_ok 1209 * and successfully read the first and last bytes of the region 1210 * above, this should only happen in an out-of-memory situation 1211 * or if another thread unmaps the region containing the context. 1212 * We kill the task with a SIGSEGV in this situation. 1213 */ 1214 if (do_setcontext(new_ctx, regs, 0)) 1215 do_exit(SIGSEGV); 1216 1217 set_thread_flag(TIF_RESTOREALL); 1218 return 0; 1219 } 1220 1221 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1222 struct pt_regs *regs) 1223 { 1224 struct rt_sigframe __user *rt_sf; 1225 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1226 struct ucontext __user *uc_transact; 1227 unsigned long msr_hi; 1228 unsigned long tmp; 1229 int tm_restore = 0; 1230 #endif 1231 /* Always make any pending restarted system calls return -EINTR */ 1232 current->restart_block.fn = do_no_restart_syscall; 1233 1234 rt_sf = (struct rt_sigframe __user *) 1235 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); 1236 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf))) 1237 goto bad; 1238 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1239 if (__get_user(tmp, &rt_sf->uc.uc_link)) 1240 goto bad; 1241 uc_transact = (struct ucontext __user *)(uintptr_t)tmp; 1242 if (uc_transact) { 1243 u32 cmcp; 1244 struct mcontext __user *mcp; 1245 1246 if (__get_user(cmcp, &uc_transact->uc_regs)) 1247 return -EFAULT; 1248 mcp = (struct mcontext __user *)(u64)cmcp; 1249 /* The top 32 bits of the MSR are stashed in the transactional 1250 * ucontext. */ 1251 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) 1252 goto bad; 1253 1254 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1255 /* We only recheckpoint on return if we're 1256 * transaction. 1257 */ 1258 tm_restore = 1; 1259 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) 1260 goto bad; 1261 } 1262 } 1263 if (!tm_restore) 1264 /* Fall through, for non-TM restore */ 1265 #endif 1266 if (do_setcontext(&rt_sf->uc, regs, 1)) 1267 goto bad; 1268 1269 /* 1270 * It's not clear whether or why it is desirable to save the 1271 * sigaltstack setting on signal delivery and restore it on 1272 * signal return. But other architectures do this and we have 1273 * always done it up until now so it is probably better not to 1274 * change it. -- paulus 1275 */ 1276 #ifdef CONFIG_PPC64 1277 if (compat_restore_altstack(&rt_sf->uc.uc_stack)) 1278 goto bad; 1279 #else 1280 if (restore_altstack(&rt_sf->uc.uc_stack)) 1281 goto bad; 1282 #endif 1283 set_thread_flag(TIF_RESTOREALL); 1284 return 0; 1285 1286 bad: 1287 if (show_unhandled_signals) 1288 printk_ratelimited(KERN_INFO 1289 "%s[%d]: bad frame in sys_rt_sigreturn: " 1290 "%p nip %08lx lr %08lx\n", 1291 current->comm, current->pid, 1292 rt_sf, regs->nip, regs->link); 1293 1294 force_sig(SIGSEGV, current); 1295 return 0; 1296 } 1297 1298 #ifdef CONFIG_PPC32 1299 int sys_debug_setcontext(struct ucontext __user *ctx, 1300 int ndbg, struct sig_dbg_op __user *dbg, 1301 int r6, int r7, int r8, 1302 struct pt_regs *regs) 1303 { 1304 struct sig_dbg_op op; 1305 int i; 1306 unsigned char tmp; 1307 unsigned long new_msr = regs->msr; 1308 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1309 unsigned long new_dbcr0 = current->thread.debug.dbcr0; 1310 #endif 1311 1312 for (i=0; i<ndbg; i++) { 1313 if (copy_from_user(&op, dbg + i, sizeof(op))) 1314 return -EFAULT; 1315 switch (op.dbg_type) { 1316 case SIG_DBG_SINGLE_STEPPING: 1317 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1318 if (op.dbg_value) { 1319 new_msr |= MSR_DE; 1320 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); 1321 } else { 1322 new_dbcr0 &= ~DBCR0_IC; 1323 if (!DBCR_ACTIVE_EVENTS(new_dbcr0, 1324 current->thread.debug.dbcr1)) { 1325 new_msr &= ~MSR_DE; 1326 new_dbcr0 &= ~DBCR0_IDM; 1327 } 1328 } 1329 #else 1330 if (op.dbg_value) 1331 new_msr |= MSR_SE; 1332 else 1333 new_msr &= ~MSR_SE; 1334 #endif 1335 break; 1336 case SIG_DBG_BRANCH_TRACING: 1337 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1338 return -EINVAL; 1339 #else 1340 if (op.dbg_value) 1341 new_msr |= MSR_BE; 1342 else 1343 new_msr &= ~MSR_BE; 1344 #endif 1345 break; 1346 1347 default: 1348 return -EINVAL; 1349 } 1350 } 1351 1352 /* We wait until here to actually install the values in the 1353 registers so if we fail in the above loop, it will not 1354 affect the contents of these registers. After this point, 1355 failure is a problem, anyway, and it's very unlikely unless 1356 the user is really doing something wrong. */ 1357 regs->msr = new_msr; 1358 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1359 current->thread.debug.dbcr0 = new_dbcr0; 1360 #endif 1361 1362 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx)) 1363 || __get_user(tmp, (u8 __user *) ctx) 1364 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1)) 1365 return -EFAULT; 1366 1367 /* 1368 * If we get a fault copying the context into the kernel's 1369 * image of the user's registers, we can't just return -EFAULT 1370 * because the user's registers will be corrupted. For instance 1371 * the NIP value may have been updated but not some of the 1372 * other registers. Given that we have done the access_ok 1373 * and successfully read the first and last bytes of the region 1374 * above, this should only happen in an out-of-memory situation 1375 * or if another thread unmaps the region containing the context. 1376 * We kill the task with a SIGSEGV in this situation. 1377 */ 1378 if (do_setcontext(ctx, regs, 1)) { 1379 if (show_unhandled_signals) 1380 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " 1381 "sys_debug_setcontext: %p nip %08lx " 1382 "lr %08lx\n", 1383 current->comm, current->pid, 1384 ctx, regs->nip, regs->link); 1385 1386 force_sig(SIGSEGV, current); 1387 goto out; 1388 } 1389 1390 /* 1391 * It's not clear whether or why it is desirable to save the 1392 * sigaltstack setting on signal delivery and restore it on 1393 * signal return. But other architectures do this and we have 1394 * always done it up until now so it is probably better not to 1395 * change it. -- paulus 1396 */ 1397 restore_altstack(&ctx->uc_stack); 1398 1399 set_thread_flag(TIF_RESTOREALL); 1400 out: 1401 return 0; 1402 } 1403 #endif 1404 1405 /* 1406 * OK, we're invoking a handler 1407 */ 1408 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, struct pt_regs *regs) 1409 { 1410 struct sigcontext __user *sc; 1411 struct sigframe __user *frame; 1412 struct mcontext __user *tm_mctx = NULL; 1413 unsigned long newsp = 0; 1414 int sigret; 1415 unsigned long tramp; 1416 1417 /* Set up Signal Frame */ 1418 frame = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*frame), 1); 1419 if (unlikely(frame == NULL)) 1420 goto badframe; 1421 sc = (struct sigcontext __user *) &frame->sctx; 1422 1423 #if _NSIG != 64 1424 #error "Please adjust handle_signal()" 1425 #endif 1426 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler) 1427 || __put_user(oldset->sig[0], &sc->oldmask) 1428 #ifdef CONFIG_PPC64 1429 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) 1430 #else 1431 || __put_user(oldset->sig[1], &sc->_unused[3]) 1432 #endif 1433 || __put_user(to_user_ptr(&frame->mctx), &sc->regs) 1434 || __put_user(ksig->sig, &sc->signal)) 1435 goto badframe; 1436 1437 if (vdso32_sigtramp && current->mm->context.vdso_base) { 1438 sigret = 0; 1439 tramp = current->mm->context.vdso_base + vdso32_sigtramp; 1440 } else { 1441 sigret = __NR_sigreturn; 1442 tramp = (unsigned long) frame->mctx.tramp; 1443 } 1444 1445 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1446 tm_mctx = &frame->mctx_transact; 1447 if (MSR_TM_ACTIVE(regs->msr)) { 1448 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, 1449 sigret)) 1450 goto badframe; 1451 } 1452 else 1453 #endif 1454 { 1455 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) 1456 goto badframe; 1457 } 1458 1459 regs->link = tramp; 1460 1461 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1462 1463 /* create a stack frame for the caller of the handler */ 1464 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; 1465 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1466 goto badframe; 1467 1468 regs->gpr[1] = newsp; 1469 regs->gpr[3] = ksig->sig; 1470 regs->gpr[4] = (unsigned long) sc; 1471 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler; 1472 /* enter the signal handler in big-endian mode */ 1473 regs->msr &= ~MSR_LE; 1474 return 0; 1475 1476 badframe: 1477 if (show_unhandled_signals) 1478 printk_ratelimited(KERN_INFO 1479 "%s[%d]: bad frame in handle_signal32: " 1480 "%p nip %08lx lr %08lx\n", 1481 current->comm, current->pid, 1482 frame, regs->nip, regs->link); 1483 1484 return 1; 1485 } 1486 1487 /* 1488 * Do a signal return; undo the signal stack. 1489 */ 1490 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1491 struct pt_regs *regs) 1492 { 1493 struct sigframe __user *sf; 1494 struct sigcontext __user *sc; 1495 struct sigcontext sigctx; 1496 struct mcontext __user *sr; 1497 void __user *addr; 1498 sigset_t set; 1499 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1500 struct mcontext __user *mcp, *tm_mcp; 1501 unsigned long msr_hi; 1502 #endif 1503 1504 /* Always make any pending restarted system calls return -EINTR */ 1505 current->restart_block.fn = do_no_restart_syscall; 1506 1507 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); 1508 sc = &sf->sctx; 1509 addr = sc; 1510 if (copy_from_user(&sigctx, sc, sizeof(sigctx))) 1511 goto badframe; 1512 1513 #ifdef CONFIG_PPC64 1514 /* 1515 * Note that PPC32 puts the upper 32 bits of the sigmask in the 1516 * unused part of the signal stackframe 1517 */ 1518 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); 1519 #else 1520 set.sig[0] = sigctx.oldmask; 1521 set.sig[1] = sigctx._unused[3]; 1522 #endif 1523 set_current_blocked(&set); 1524 1525 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1526 mcp = (struct mcontext __user *)&sf->mctx; 1527 tm_mcp = (struct mcontext __user *)&sf->mctx_transact; 1528 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) 1529 goto badframe; 1530 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1531 if (!cpu_has_feature(CPU_FTR_TM)) 1532 goto badframe; 1533 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1534 goto badframe; 1535 } else 1536 #endif 1537 { 1538 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); 1539 addr = sr; 1540 if (!access_ok(VERIFY_READ, sr, sizeof(*sr)) 1541 || restore_user_regs(regs, sr, 1)) 1542 goto badframe; 1543 } 1544 1545 set_thread_flag(TIF_RESTOREALL); 1546 return 0; 1547 1548 badframe: 1549 if (show_unhandled_signals) 1550 printk_ratelimited(KERN_INFO 1551 "%s[%d]: bad frame in sys_sigreturn: " 1552 "%p nip %08lx lr %08lx\n", 1553 current->comm, current->pid, 1554 addr, regs->nip, regs->link); 1555 1556 force_sig(SIGSEGV, current); 1557 return 0; 1558 } 1559