1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC 4 * 5 * PowerPC version 6 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 7 * Copyright (C) 2001 IBM 8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 9 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 10 * 11 * Derived from "arch/i386/kernel/signal.c" 12 * Copyright (C) 1991, 1992 Linus Torvalds 13 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 14 */ 15 16 #include <linux/sched.h> 17 #include <linux/mm.h> 18 #include <linux/smp.h> 19 #include <linux/kernel.h> 20 #include <linux/signal.h> 21 #include <linux/errno.h> 22 #include <linux/elf.h> 23 #include <linux/ptrace.h> 24 #include <linux/pagemap.h> 25 #include <linux/ratelimit.h> 26 #include <linux/syscalls.h> 27 #ifdef CONFIG_PPC64 28 #include <linux/compat.h> 29 #else 30 #include <linux/wait.h> 31 #include <linux/unistd.h> 32 #include <linux/stddef.h> 33 #include <linux/tty.h> 34 #include <linux/binfmts.h> 35 #endif 36 37 #include <linux/uaccess.h> 38 #include <asm/cacheflush.h> 39 #include <asm/syscalls.h> 40 #include <asm/sigcontext.h> 41 #include <asm/vdso.h> 42 #include <asm/switch_to.h> 43 #include <asm/tm.h> 44 #include <asm/asm-prototypes.h> 45 #ifdef CONFIG_PPC64 46 #include "ppc32.h" 47 #include <asm/unistd.h> 48 #else 49 #include <asm/ucontext.h> 50 #include <asm/pgtable.h> 51 #endif 52 53 #include "signal.h" 54 55 56 #ifdef CONFIG_PPC64 57 #define old_sigaction old_sigaction32 58 #define sigcontext sigcontext32 59 #define mcontext mcontext32 60 #define ucontext ucontext32 61 62 #define __save_altstack __compat_save_altstack 63 64 /* 65 * Userspace code may pass a ucontext which doesn't include VSX added 66 * at the end. We need to check for this case. 67 */ 68 #define UCONTEXTSIZEWITHOUTVSX \ 69 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) 70 71 /* 72 * Returning 0 means we return to userspace via 73 * ret_from_except and thus restore all user 74 * registers from *regs. This is what we need 75 * to do when a signal has been delivered. 76 */ 77 78 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) 79 #undef __SIGNAL_FRAMESIZE 80 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 81 #undef ELF_NVRREG 82 #define ELF_NVRREG ELF_NVRREG32 83 84 /* 85 * Functions for flipping sigsets (thanks to brain dead generic 86 * implementation that makes things simple for little endian only) 87 */ 88 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) 89 { 90 return put_compat_sigset(uset, set, sizeof(*uset)); 91 } 92 93 static inline int get_sigset_t(sigset_t *set, 94 const compat_sigset_t __user *uset) 95 { 96 return get_compat_sigset(set, uset); 97 } 98 99 #define to_user_ptr(p) ptr_to_compat(p) 100 #define from_user_ptr(p) compat_ptr(p) 101 102 static inline int save_general_regs(struct pt_regs *regs, 103 struct mcontext __user *frame) 104 { 105 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 106 int i; 107 /* Force usr to alway see softe as 1 (interrupts enabled) */ 108 elf_greg_t64 softe = 0x1; 109 110 WARN_ON(!FULL_REGS(regs)); 111 112 for (i = 0; i <= PT_RESULT; i ++) { 113 if (i == 14 && !FULL_REGS(regs)) 114 i = 32; 115 if ( i == PT_SOFTE) { 116 if(__put_user((unsigned int)softe, &frame->mc_gregs[i])) 117 return -EFAULT; 118 else 119 continue; 120 } 121 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) 122 return -EFAULT; 123 } 124 return 0; 125 } 126 127 static inline int restore_general_regs(struct pt_regs *regs, 128 struct mcontext __user *sr) 129 { 130 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 131 int i; 132 133 for (i = 0; i <= PT_RESULT; i++) { 134 if ((i == PT_MSR) || (i == PT_SOFTE)) 135 continue; 136 if (__get_user(gregs[i], &sr->mc_gregs[i])) 137 return -EFAULT; 138 } 139 return 0; 140 } 141 142 #else /* CONFIG_PPC64 */ 143 144 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) 145 146 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) 147 { 148 return copy_to_user(uset, set, sizeof(*uset)); 149 } 150 151 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) 152 { 153 return copy_from_user(set, uset, sizeof(*uset)); 154 } 155 156 #define to_user_ptr(p) ((unsigned long)(p)) 157 #define from_user_ptr(p) ((void __user *)(p)) 158 159 static inline int save_general_regs(struct pt_regs *regs, 160 struct mcontext __user *frame) 161 { 162 WARN_ON(!FULL_REGS(regs)); 163 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); 164 } 165 166 static inline int restore_general_regs(struct pt_regs *regs, 167 struct mcontext __user *sr) 168 { 169 /* copy up to but not including MSR */ 170 if (__copy_from_user(regs, &sr->mc_gregs, 171 PT_MSR * sizeof(elf_greg_t))) 172 return -EFAULT; 173 /* copy from orig_r3 (the word after the MSR) up to the end */ 174 if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], 175 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) 176 return -EFAULT; 177 return 0; 178 } 179 #endif 180 181 /* 182 * When we have signals to deliver, we set up on the 183 * user stack, going down from the original stack pointer: 184 * an ABI gap of 56 words 185 * an mcontext struct 186 * a sigcontext struct 187 * a gap of __SIGNAL_FRAMESIZE bytes 188 * 189 * Each of these things must be a multiple of 16 bytes in size. The following 190 * structure represent all of this except the __SIGNAL_FRAMESIZE gap 191 * 192 */ 193 struct sigframe { 194 struct sigcontext sctx; /* the sigcontext */ 195 struct mcontext mctx; /* all the register values */ 196 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 197 struct sigcontext sctx_transact; 198 struct mcontext mctx_transact; 199 #endif 200 /* 201 * Programs using the rs6000/xcoff abi can save up to 19 gp 202 * regs and 18 fp regs below sp before decrementing it. 203 */ 204 int abigap[56]; 205 }; 206 207 /* We use the mc_pad field for the signal return trampoline. */ 208 #define tramp mc_pad 209 210 /* 211 * When we have rt signals to deliver, we set up on the 212 * user stack, going down from the original stack pointer: 213 * one rt_sigframe struct (siginfo + ucontext + ABI gap) 214 * a gap of __SIGNAL_FRAMESIZE+16 bytes 215 * (the +16 is to get the siginfo and ucontext in the same 216 * positions as in older kernels). 217 * 218 * Each of these things must be a multiple of 16 bytes in size. 219 * 220 */ 221 struct rt_sigframe { 222 #ifdef CONFIG_PPC64 223 compat_siginfo_t info; 224 #else 225 struct siginfo info; 226 #endif 227 struct ucontext uc; 228 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 229 struct ucontext uc_transact; 230 #endif 231 /* 232 * Programs using the rs6000/xcoff abi can save up to 19 gp 233 * regs and 18 fp regs below sp before decrementing it. 234 */ 235 int abigap[56]; 236 }; 237 238 #ifdef CONFIG_VSX 239 unsigned long copy_fpr_to_user(void __user *to, 240 struct task_struct *task) 241 { 242 u64 buf[ELF_NFPREG]; 243 int i; 244 245 /* save FPR copy to local buffer then write to the thread_struct */ 246 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 247 buf[i] = task->thread.TS_FPR(i); 248 buf[i] = task->thread.fp_state.fpscr; 249 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 250 } 251 252 unsigned long copy_fpr_from_user(struct task_struct *task, 253 void __user *from) 254 { 255 u64 buf[ELF_NFPREG]; 256 int i; 257 258 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 259 return 1; 260 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 261 task->thread.TS_FPR(i) = buf[i]; 262 task->thread.fp_state.fpscr = buf[i]; 263 264 return 0; 265 } 266 267 unsigned long copy_vsx_to_user(void __user *to, 268 struct task_struct *task) 269 { 270 u64 buf[ELF_NVSRHALFREG]; 271 int i; 272 273 /* save FPR copy to local buffer then write to the thread_struct */ 274 for (i = 0; i < ELF_NVSRHALFREG; i++) 275 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; 276 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 277 } 278 279 unsigned long copy_vsx_from_user(struct task_struct *task, 280 void __user *from) 281 { 282 u64 buf[ELF_NVSRHALFREG]; 283 int i; 284 285 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 286 return 1; 287 for (i = 0; i < ELF_NVSRHALFREG ; i++) 288 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 289 return 0; 290 } 291 292 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 293 unsigned long copy_ckfpr_to_user(void __user *to, 294 struct task_struct *task) 295 { 296 u64 buf[ELF_NFPREG]; 297 int i; 298 299 /* save FPR copy to local buffer then write to the thread_struct */ 300 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 301 buf[i] = task->thread.TS_CKFPR(i); 302 buf[i] = task->thread.ckfp_state.fpscr; 303 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 304 } 305 306 unsigned long copy_ckfpr_from_user(struct task_struct *task, 307 void __user *from) 308 { 309 u64 buf[ELF_NFPREG]; 310 int i; 311 312 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 313 return 1; 314 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 315 task->thread.TS_CKFPR(i) = buf[i]; 316 task->thread.ckfp_state.fpscr = buf[i]; 317 318 return 0; 319 } 320 321 unsigned long copy_ckvsx_to_user(void __user *to, 322 struct task_struct *task) 323 { 324 u64 buf[ELF_NVSRHALFREG]; 325 int i; 326 327 /* save FPR copy to local buffer then write to the thread_struct */ 328 for (i = 0; i < ELF_NVSRHALFREG; i++) 329 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET]; 330 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 331 } 332 333 unsigned long copy_ckvsx_from_user(struct task_struct *task, 334 void __user *from) 335 { 336 u64 buf[ELF_NVSRHALFREG]; 337 int i; 338 339 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 340 return 1; 341 for (i = 0; i < ELF_NVSRHALFREG ; i++) 342 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 343 return 0; 344 } 345 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 346 #else 347 inline unsigned long copy_fpr_to_user(void __user *to, 348 struct task_struct *task) 349 { 350 return __copy_to_user(to, task->thread.fp_state.fpr, 351 ELF_NFPREG * sizeof(double)); 352 } 353 354 inline unsigned long copy_fpr_from_user(struct task_struct *task, 355 void __user *from) 356 { 357 return __copy_from_user(task->thread.fp_state.fpr, from, 358 ELF_NFPREG * sizeof(double)); 359 } 360 361 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 362 inline unsigned long copy_ckfpr_to_user(void __user *to, 363 struct task_struct *task) 364 { 365 return __copy_to_user(to, task->thread.ckfp_state.fpr, 366 ELF_NFPREG * sizeof(double)); 367 } 368 369 inline unsigned long copy_ckfpr_from_user(struct task_struct *task, 370 void __user *from) 371 { 372 return __copy_from_user(task->thread.ckfp_state.fpr, from, 373 ELF_NFPREG * sizeof(double)); 374 } 375 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 376 #endif 377 378 /* 379 * Save the current user registers on the user stack. 380 * We only save the altivec/spe registers if the process has used 381 * altivec/spe instructions at some point. 382 */ 383 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, 384 struct mcontext __user *tm_frame, int sigret, 385 int ctx_has_vsx_region) 386 { 387 unsigned long msr = regs->msr; 388 389 /* Make sure floating point registers are stored in regs */ 390 flush_fp_to_thread(current); 391 392 /* save general registers */ 393 if (save_general_regs(regs, frame)) 394 return 1; 395 396 #ifdef CONFIG_ALTIVEC 397 /* save altivec registers */ 398 if (current->thread.used_vr) { 399 flush_altivec_to_thread(current); 400 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 401 ELF_NVRREG * sizeof(vector128))) 402 return 1; 403 /* set MSR_VEC in the saved MSR value to indicate that 404 frame->mc_vregs contains valid data */ 405 msr |= MSR_VEC; 406 } 407 /* else assert((regs->msr & MSR_VEC) == 0) */ 408 409 /* We always copy to/from vrsave, it's 0 if we don't have or don't 410 * use altivec. Since VSCR only contains 32 bits saved in the least 411 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 412 * most significant bits of that same vector. --BenH 413 * Note that the current VRSAVE value is in the SPR at this point. 414 */ 415 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 416 current->thread.vrsave = mfspr(SPRN_VRSAVE); 417 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) 418 return 1; 419 #endif /* CONFIG_ALTIVEC */ 420 if (copy_fpr_to_user(&frame->mc_fregs, current)) 421 return 1; 422 423 /* 424 * Clear the MSR VSX bit to indicate there is no valid state attached 425 * to this context, except in the specific case below where we set it. 426 */ 427 msr &= ~MSR_VSX; 428 #ifdef CONFIG_VSX 429 /* 430 * Copy VSR 0-31 upper half from thread_struct to local 431 * buffer, then write that to userspace. Also set MSR_VSX in 432 * the saved MSR value to indicate that frame->mc_vregs 433 * contains valid data 434 */ 435 if (current->thread.used_vsr && ctx_has_vsx_region) { 436 flush_vsx_to_thread(current); 437 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 438 return 1; 439 msr |= MSR_VSX; 440 } 441 #endif /* CONFIG_VSX */ 442 #ifdef CONFIG_SPE 443 /* save spe registers */ 444 if (current->thread.used_spe) { 445 flush_spe_to_thread(current); 446 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 447 ELF_NEVRREG * sizeof(u32))) 448 return 1; 449 /* set MSR_SPE in the saved MSR value to indicate that 450 frame->mc_vregs contains valid data */ 451 msr |= MSR_SPE; 452 } 453 /* else assert((regs->msr & MSR_SPE) == 0) */ 454 455 /* We always copy to/from spefscr */ 456 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 457 return 1; 458 #endif /* CONFIG_SPE */ 459 460 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 461 return 1; 462 /* We need to write 0 the MSR top 32 bits in the tm frame so that we 463 * can check it on the restore to see if TM is active 464 */ 465 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) 466 return 1; 467 468 if (sigret) { 469 /* Set up the sigreturn trampoline: li 0,sigret; sc */ 470 if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0]) 471 || __put_user(PPC_INST_SC, &frame->tramp[1])) 472 return 1; 473 flush_icache_range((unsigned long) &frame->tramp[0], 474 (unsigned long) &frame->tramp[2]); 475 } 476 477 return 0; 478 } 479 480 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 481 /* 482 * Save the current user registers on the user stack. 483 * We only save the altivec/spe registers if the process has used 484 * altivec/spe instructions at some point. 485 * We also save the transactional registers to a second ucontext in the 486 * frame. 487 * 488 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). 489 */ 490 static int save_tm_user_regs(struct pt_regs *regs, 491 struct mcontext __user *frame, 492 struct mcontext __user *tm_frame, int sigret) 493 { 494 unsigned long msr = regs->msr; 495 496 WARN_ON(tm_suspend_disabled); 497 498 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 499 * just indicates to userland that we were doing a transaction, but we 500 * don't want to return in transactional state. This also ensures 501 * that flush_fp_to_thread won't set TIF_RESTORE_TM again. 502 */ 503 regs->msr &= ~MSR_TS_MASK; 504 505 /* Save both sets of general registers */ 506 if (save_general_regs(¤t->thread.ckpt_regs, frame) 507 || save_general_regs(regs, tm_frame)) 508 return 1; 509 510 /* Stash the top half of the 64bit MSR into the 32bit MSR word 511 * of the transactional mcontext. This way we have a backward-compatible 512 * MSR in the 'normal' (checkpointed) mcontext and additionally one can 513 * also look at what type of transaction (T or S) was active at the 514 * time of the signal. 515 */ 516 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) 517 return 1; 518 519 #ifdef CONFIG_ALTIVEC 520 /* save altivec registers */ 521 if (current->thread.used_vr) { 522 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.ckvr_state, 523 ELF_NVRREG * sizeof(vector128))) 524 return 1; 525 if (msr & MSR_VEC) { 526 if (__copy_to_user(&tm_frame->mc_vregs, 527 ¤t->thread.vr_state, 528 ELF_NVRREG * sizeof(vector128))) 529 return 1; 530 } else { 531 if (__copy_to_user(&tm_frame->mc_vregs, 532 ¤t->thread.ckvr_state, 533 ELF_NVRREG * sizeof(vector128))) 534 return 1; 535 } 536 537 /* set MSR_VEC in the saved MSR value to indicate that 538 * frame->mc_vregs contains valid data 539 */ 540 msr |= MSR_VEC; 541 } 542 543 /* We always copy to/from vrsave, it's 0 if we don't have or don't 544 * use altivec. Since VSCR only contains 32 bits saved in the least 545 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 546 * most significant bits of that same vector. --BenH 547 */ 548 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 549 current->thread.ckvrsave = mfspr(SPRN_VRSAVE); 550 if (__put_user(current->thread.ckvrsave, 551 (u32 __user *)&frame->mc_vregs[32])) 552 return 1; 553 if (msr & MSR_VEC) { 554 if (__put_user(current->thread.vrsave, 555 (u32 __user *)&tm_frame->mc_vregs[32])) 556 return 1; 557 } else { 558 if (__put_user(current->thread.ckvrsave, 559 (u32 __user *)&tm_frame->mc_vregs[32])) 560 return 1; 561 } 562 #endif /* CONFIG_ALTIVEC */ 563 564 if (copy_ckfpr_to_user(&frame->mc_fregs, current)) 565 return 1; 566 if (msr & MSR_FP) { 567 if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) 568 return 1; 569 } else { 570 if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current)) 571 return 1; 572 } 573 574 #ifdef CONFIG_VSX 575 /* 576 * Copy VSR 0-31 upper half from thread_struct to local 577 * buffer, then write that to userspace. Also set MSR_VSX in 578 * the saved MSR value to indicate that frame->mc_vregs 579 * contains valid data 580 */ 581 if (current->thread.used_vsr) { 582 if (copy_ckvsx_to_user(&frame->mc_vsregs, current)) 583 return 1; 584 if (msr & MSR_VSX) { 585 if (copy_vsx_to_user(&tm_frame->mc_vsregs, 586 current)) 587 return 1; 588 } else { 589 if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current)) 590 return 1; 591 } 592 593 msr |= MSR_VSX; 594 } 595 #endif /* CONFIG_VSX */ 596 #ifdef CONFIG_SPE 597 /* SPE regs are not checkpointed with TM, so this section is 598 * simply the same as in save_user_regs(). 599 */ 600 if (current->thread.used_spe) { 601 flush_spe_to_thread(current); 602 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 603 ELF_NEVRREG * sizeof(u32))) 604 return 1; 605 /* set MSR_SPE in the saved MSR value to indicate that 606 * frame->mc_vregs contains valid data */ 607 msr |= MSR_SPE; 608 } 609 610 /* We always copy to/from spefscr */ 611 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 612 return 1; 613 #endif /* CONFIG_SPE */ 614 615 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 616 return 1; 617 if (sigret) { 618 /* Set up the sigreturn trampoline: li 0,sigret; sc */ 619 if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0]) 620 || __put_user(PPC_INST_SC, &frame->tramp[1])) 621 return 1; 622 flush_icache_range((unsigned long) &frame->tramp[0], 623 (unsigned long) &frame->tramp[2]); 624 } 625 626 return 0; 627 } 628 #endif 629 630 /* 631 * Restore the current user register values from the user stack, 632 * (except for MSR). 633 */ 634 static long restore_user_regs(struct pt_regs *regs, 635 struct mcontext __user *sr, int sig) 636 { 637 long err; 638 unsigned int save_r2 = 0; 639 unsigned long msr; 640 #ifdef CONFIG_VSX 641 int i; 642 #endif 643 644 /* 645 * restore general registers but not including MSR or SOFTE. Also 646 * take care of keeping r2 (TLS) intact if not a signal 647 */ 648 if (!sig) 649 save_r2 = (unsigned int)regs->gpr[2]; 650 err = restore_general_regs(regs, sr); 651 regs->trap = 0; 652 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 653 if (!sig) 654 regs->gpr[2] = (unsigned long) save_r2; 655 if (err) 656 return 1; 657 658 /* if doing signal return, restore the previous little-endian mode */ 659 if (sig) 660 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 661 662 #ifdef CONFIG_ALTIVEC 663 /* 664 * Force the process to reload the altivec registers from 665 * current->thread when it next does altivec instructions 666 */ 667 regs->msr &= ~MSR_VEC; 668 if (msr & MSR_VEC) { 669 /* restore altivec registers from the stack */ 670 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 671 sizeof(sr->mc_vregs))) 672 return 1; 673 current->thread.used_vr = true; 674 } else if (current->thread.used_vr) 675 memset(¤t->thread.vr_state, 0, 676 ELF_NVRREG * sizeof(vector128)); 677 678 /* Always get VRSAVE back */ 679 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) 680 return 1; 681 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 682 mtspr(SPRN_VRSAVE, current->thread.vrsave); 683 #endif /* CONFIG_ALTIVEC */ 684 if (copy_fpr_from_user(current, &sr->mc_fregs)) 685 return 1; 686 687 #ifdef CONFIG_VSX 688 /* 689 * Force the process to reload the VSX registers from 690 * current->thread when it next does VSX instruction. 691 */ 692 regs->msr &= ~MSR_VSX; 693 if (msr & MSR_VSX) { 694 /* 695 * Restore altivec registers from the stack to a local 696 * buffer, then write this out to the thread_struct 697 */ 698 if (copy_vsx_from_user(current, &sr->mc_vsregs)) 699 return 1; 700 current->thread.used_vsr = true; 701 } else if (current->thread.used_vsr) 702 for (i = 0; i < 32 ; i++) 703 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 704 #endif /* CONFIG_VSX */ 705 /* 706 * force the process to reload the FP registers from 707 * current->thread when it next does FP instructions 708 */ 709 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 710 711 #ifdef CONFIG_SPE 712 /* force the process to reload the spe registers from 713 current->thread when it next does spe instructions */ 714 regs->msr &= ~MSR_SPE; 715 if (msr & MSR_SPE) { 716 /* restore spe registers from the stack */ 717 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 718 ELF_NEVRREG * sizeof(u32))) 719 return 1; 720 current->thread.used_spe = true; 721 } else if (current->thread.used_spe) 722 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 723 724 /* Always get SPEFSCR back */ 725 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) 726 return 1; 727 #endif /* CONFIG_SPE */ 728 729 return 0; 730 } 731 732 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 733 /* 734 * Restore the current user register values from the user stack, except for 735 * MSR, and recheckpoint the original checkpointed register state for processes 736 * in transactions. 737 */ 738 static long restore_tm_user_regs(struct pt_regs *regs, 739 struct mcontext __user *sr, 740 struct mcontext __user *tm_sr) 741 { 742 long err; 743 unsigned long msr, msr_hi; 744 #ifdef CONFIG_VSX 745 int i; 746 #endif 747 748 if (tm_suspend_disabled) 749 return 1; 750 /* 751 * restore general registers but not including MSR or SOFTE. Also 752 * take care of keeping r2 (TLS) intact if not a signal. 753 * See comment in signal_64.c:restore_tm_sigcontexts(); 754 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR 755 * were set by the signal delivery. 756 */ 757 err = restore_general_regs(regs, tm_sr); 758 err |= restore_general_regs(¤t->thread.ckpt_regs, sr); 759 760 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); 761 762 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 763 if (err) 764 return 1; 765 766 /* Restore the previous little-endian mode */ 767 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 768 769 #ifdef CONFIG_ALTIVEC 770 regs->msr &= ~MSR_VEC; 771 if (msr & MSR_VEC) { 772 /* restore altivec registers from the stack */ 773 if (__copy_from_user(¤t->thread.ckvr_state, &sr->mc_vregs, 774 sizeof(sr->mc_vregs)) || 775 __copy_from_user(¤t->thread.vr_state, 776 &tm_sr->mc_vregs, 777 sizeof(sr->mc_vregs))) 778 return 1; 779 current->thread.used_vr = true; 780 } else if (current->thread.used_vr) { 781 memset(¤t->thread.vr_state, 0, 782 ELF_NVRREG * sizeof(vector128)); 783 memset(¤t->thread.ckvr_state, 0, 784 ELF_NVRREG * sizeof(vector128)); 785 } 786 787 /* Always get VRSAVE back */ 788 if (__get_user(current->thread.ckvrsave, 789 (u32 __user *)&sr->mc_vregs[32]) || 790 __get_user(current->thread.vrsave, 791 (u32 __user *)&tm_sr->mc_vregs[32])) 792 return 1; 793 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 794 mtspr(SPRN_VRSAVE, current->thread.ckvrsave); 795 #endif /* CONFIG_ALTIVEC */ 796 797 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 798 799 if (copy_fpr_from_user(current, &sr->mc_fregs) || 800 copy_ckfpr_from_user(current, &tm_sr->mc_fregs)) 801 return 1; 802 803 #ifdef CONFIG_VSX 804 regs->msr &= ~MSR_VSX; 805 if (msr & MSR_VSX) { 806 /* 807 * Restore altivec registers from the stack to a local 808 * buffer, then write this out to the thread_struct 809 */ 810 if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) || 811 copy_ckvsx_from_user(current, &sr->mc_vsregs)) 812 return 1; 813 current->thread.used_vsr = true; 814 } else if (current->thread.used_vsr) 815 for (i = 0; i < 32 ; i++) { 816 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 817 current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 818 } 819 #endif /* CONFIG_VSX */ 820 821 #ifdef CONFIG_SPE 822 /* SPE regs are not checkpointed with TM, so this section is 823 * simply the same as in restore_user_regs(). 824 */ 825 regs->msr &= ~MSR_SPE; 826 if (msr & MSR_SPE) { 827 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 828 ELF_NEVRREG * sizeof(u32))) 829 return 1; 830 current->thread.used_spe = true; 831 } else if (current->thread.used_spe) 832 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 833 834 /* Always get SPEFSCR back */ 835 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs 836 + ELF_NEVRREG)) 837 return 1; 838 #endif /* CONFIG_SPE */ 839 840 /* Get the top half of the MSR from the user context */ 841 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) 842 return 1; 843 msr_hi <<= 32; 844 /* If TM bits are set to the reserved value, it's an invalid context */ 845 if (MSR_TM_RESV(msr_hi)) 846 return 1; 847 848 /* 849 * Disabling preemption, since it is unsafe to be preempted 850 * with MSR[TS] set without recheckpointing. 851 */ 852 preempt_disable(); 853 854 /* 855 * CAUTION: 856 * After regs->MSR[TS] being updated, make sure that get_user(), 857 * put_user() or similar functions are *not* called. These 858 * functions can generate page faults which will cause the process 859 * to be de-scheduled with MSR[TS] set but without calling 860 * tm_recheckpoint(). This can cause a bug. 861 * 862 * Pull in the MSR TM bits from the user context 863 */ 864 regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK); 865 /* Now, recheckpoint. This loads up all of the checkpointed (older) 866 * registers, including FP and V[S]Rs. After recheckpointing, the 867 * transactional versions should be loaded. 868 */ 869 tm_enable(); 870 /* Make sure the transaction is marked as failed */ 871 current->thread.tm_texasr |= TEXASR_FS; 872 /* This loads the checkpointed FP/VEC state, if used */ 873 tm_recheckpoint(¤t->thread); 874 875 /* This loads the speculative FP/VEC state, if used */ 876 msr_check_and_set(msr & (MSR_FP | MSR_VEC)); 877 if (msr & MSR_FP) { 878 load_fp_state(¤t->thread.fp_state); 879 regs->msr |= (MSR_FP | current->thread.fpexc_mode); 880 } 881 #ifdef CONFIG_ALTIVEC 882 if (msr & MSR_VEC) { 883 load_vr_state(¤t->thread.vr_state); 884 regs->msr |= MSR_VEC; 885 } 886 #endif 887 888 preempt_enable(); 889 890 return 0; 891 } 892 #endif 893 894 #ifdef CONFIG_PPC64 895 896 #define copy_siginfo_to_user copy_siginfo_to_user32 897 898 #endif /* CONFIG_PPC64 */ 899 900 /* 901 * Set up a signal frame for a "real-time" signal handler 902 * (one which gets siginfo). 903 */ 904 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset, 905 struct task_struct *tsk) 906 { 907 struct rt_sigframe __user *rt_sf; 908 struct mcontext __user *frame; 909 struct mcontext __user *tm_frame = NULL; 910 void __user *addr; 911 unsigned long newsp = 0; 912 int sigret; 913 unsigned long tramp; 914 struct pt_regs *regs = tsk->thread.regs; 915 916 BUG_ON(tsk != current); 917 918 /* Set up Signal Frame */ 919 /* Put a Real Time Context onto stack */ 920 rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1); 921 addr = rt_sf; 922 if (unlikely(rt_sf == NULL)) 923 goto badframe; 924 925 /* Put the siginfo & fill in most of the ucontext */ 926 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info) 927 || __put_user(0, &rt_sf->uc.uc_flags) 928 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) 929 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), 930 &rt_sf->uc.uc_regs) 931 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) 932 goto badframe; 933 934 /* Save user registers on the stack */ 935 frame = &rt_sf->uc.uc_mcontext; 936 addr = frame; 937 if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) { 938 sigret = 0; 939 tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp; 940 } else { 941 sigret = __NR_rt_sigreturn; 942 tramp = (unsigned long) frame->tramp; 943 } 944 945 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 946 tm_frame = &rt_sf->uc_transact.uc_mcontext; 947 if (MSR_TM_ACTIVE(regs->msr)) { 948 if (__put_user((unsigned long)&rt_sf->uc_transact, 949 &rt_sf->uc.uc_link) || 950 __put_user((unsigned long)tm_frame, 951 &rt_sf->uc_transact.uc_regs)) 952 goto badframe; 953 if (save_tm_user_regs(regs, frame, tm_frame, sigret)) 954 goto badframe; 955 } 956 else 957 #endif 958 { 959 if (__put_user(0, &rt_sf->uc.uc_link)) 960 goto badframe; 961 if (save_user_regs(regs, frame, tm_frame, sigret, 1)) 962 goto badframe; 963 } 964 regs->link = tramp; 965 966 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 967 968 /* create a stack frame for the caller of the handler */ 969 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); 970 addr = (void __user *)regs->gpr[1]; 971 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 972 goto badframe; 973 974 /* Fill registers for signal handler */ 975 regs->gpr[1] = newsp; 976 regs->gpr[3] = ksig->sig; 977 regs->gpr[4] = (unsigned long) &rt_sf->info; 978 regs->gpr[5] = (unsigned long) &rt_sf->uc; 979 regs->gpr[6] = (unsigned long) rt_sf; 980 regs->nip = (unsigned long) ksig->ka.sa.sa_handler; 981 /* enter the signal handler in native-endian mode */ 982 regs->msr &= ~MSR_LE; 983 regs->msr |= (MSR_KERNEL & MSR_LE); 984 return 0; 985 986 badframe: 987 if (show_unhandled_signals) 988 printk_ratelimited(KERN_INFO 989 "%s[%d]: bad frame in handle_rt_signal32: " 990 "%p nip %08lx lr %08lx\n", 991 tsk->comm, tsk->pid, 992 addr, regs->nip, regs->link); 993 994 return 1; 995 } 996 997 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) 998 { 999 sigset_t set; 1000 struct mcontext __user *mcp; 1001 1002 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1003 return -EFAULT; 1004 #ifdef CONFIG_PPC64 1005 { 1006 u32 cmcp; 1007 1008 if (__get_user(cmcp, &ucp->uc_regs)) 1009 return -EFAULT; 1010 mcp = (struct mcontext __user *)(u64)cmcp; 1011 /* no need to check access_ok(mcp), since mcp < 4GB */ 1012 } 1013 #else 1014 if (__get_user(mcp, &ucp->uc_regs)) 1015 return -EFAULT; 1016 if (!access_ok(mcp, sizeof(*mcp))) 1017 return -EFAULT; 1018 #endif 1019 set_current_blocked(&set); 1020 if (restore_user_regs(regs, mcp, sig)) 1021 return -EFAULT; 1022 1023 return 0; 1024 } 1025 1026 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1027 static int do_setcontext_tm(struct ucontext __user *ucp, 1028 struct ucontext __user *tm_ucp, 1029 struct pt_regs *regs) 1030 { 1031 sigset_t set; 1032 struct mcontext __user *mcp; 1033 struct mcontext __user *tm_mcp; 1034 u32 cmcp; 1035 u32 tm_cmcp; 1036 1037 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1038 return -EFAULT; 1039 1040 if (__get_user(cmcp, &ucp->uc_regs) || 1041 __get_user(tm_cmcp, &tm_ucp->uc_regs)) 1042 return -EFAULT; 1043 mcp = (struct mcontext __user *)(u64)cmcp; 1044 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; 1045 /* no need to check access_ok(mcp), since mcp < 4GB */ 1046 1047 set_current_blocked(&set); 1048 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1049 return -EFAULT; 1050 1051 return 0; 1052 } 1053 #endif 1054 1055 #ifdef CONFIG_PPC64 1056 COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx, 1057 struct ucontext __user *, new_ctx, int, ctx_size) 1058 #else 1059 SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx, 1060 struct ucontext __user *, new_ctx, long, ctx_size) 1061 #endif 1062 { 1063 struct pt_regs *regs = current_pt_regs(); 1064 int ctx_has_vsx_region = 0; 1065 1066 #ifdef CONFIG_PPC64 1067 unsigned long new_msr = 0; 1068 1069 if (new_ctx) { 1070 struct mcontext __user *mcp; 1071 u32 cmcp; 1072 1073 /* 1074 * Get pointer to the real mcontext. No need for 1075 * access_ok since we are dealing with compat 1076 * pointers. 1077 */ 1078 if (__get_user(cmcp, &new_ctx->uc_regs)) 1079 return -EFAULT; 1080 mcp = (struct mcontext __user *)(u64)cmcp; 1081 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) 1082 return -EFAULT; 1083 } 1084 /* 1085 * Check that the context is not smaller than the original 1086 * size (with VMX but without VSX) 1087 */ 1088 if (ctx_size < UCONTEXTSIZEWITHOUTVSX) 1089 return -EINVAL; 1090 /* 1091 * If the new context state sets the MSR VSX bits but 1092 * it doesn't provide VSX state. 1093 */ 1094 if ((ctx_size < sizeof(struct ucontext)) && 1095 (new_msr & MSR_VSX)) 1096 return -EINVAL; 1097 /* Does the context have enough room to store VSX data? */ 1098 if (ctx_size >= sizeof(struct ucontext)) 1099 ctx_has_vsx_region = 1; 1100 #else 1101 /* Context size is for future use. Right now, we only make sure 1102 * we are passed something we understand 1103 */ 1104 if (ctx_size < sizeof(struct ucontext)) 1105 return -EINVAL; 1106 #endif 1107 if (old_ctx != NULL) { 1108 struct mcontext __user *mctx; 1109 1110 /* 1111 * old_ctx might not be 16-byte aligned, in which 1112 * case old_ctx->uc_mcontext won't be either. 1113 * Because we have the old_ctx->uc_pad2 field 1114 * before old_ctx->uc_mcontext, we need to round down 1115 * from &old_ctx->uc_mcontext to a 16-byte boundary. 1116 */ 1117 mctx = (struct mcontext __user *) 1118 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); 1119 if (!access_ok(old_ctx, ctx_size) 1120 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) 1121 || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) 1122 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) 1123 return -EFAULT; 1124 } 1125 if (new_ctx == NULL) 1126 return 0; 1127 if (!access_ok(new_ctx, ctx_size) || 1128 fault_in_pages_readable((u8 __user *)new_ctx, ctx_size)) 1129 return -EFAULT; 1130 1131 /* 1132 * If we get a fault copying the context into the kernel's 1133 * image of the user's registers, we can't just return -EFAULT 1134 * because the user's registers will be corrupted. For instance 1135 * the NIP value may have been updated but not some of the 1136 * other registers. Given that we have done the access_ok 1137 * and successfully read the first and last bytes of the region 1138 * above, this should only happen in an out-of-memory situation 1139 * or if another thread unmaps the region containing the context. 1140 * We kill the task with a SIGSEGV in this situation. 1141 */ 1142 if (do_setcontext(new_ctx, regs, 0)) 1143 do_exit(SIGSEGV); 1144 1145 set_thread_flag(TIF_RESTOREALL); 1146 return 0; 1147 } 1148 1149 #ifdef CONFIG_PPC64 1150 COMPAT_SYSCALL_DEFINE0(rt_sigreturn) 1151 #else 1152 SYSCALL_DEFINE0(rt_sigreturn) 1153 #endif 1154 { 1155 struct rt_sigframe __user *rt_sf; 1156 struct pt_regs *regs = current_pt_regs(); 1157 int tm_restore = 0; 1158 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1159 struct ucontext __user *uc_transact; 1160 unsigned long msr_hi; 1161 unsigned long tmp; 1162 #endif 1163 /* Always make any pending restarted system calls return -EINTR */ 1164 current->restart_block.fn = do_no_restart_syscall; 1165 1166 rt_sf = (struct rt_sigframe __user *) 1167 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); 1168 if (!access_ok(rt_sf, sizeof(*rt_sf))) 1169 goto bad; 1170 1171 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1172 /* 1173 * If there is a transactional state then throw it away. 1174 * The purpose of a sigreturn is to destroy all traces of the 1175 * signal frame, this includes any transactional state created 1176 * within in. We only check for suspended as we can never be 1177 * active in the kernel, we are active, there is nothing better to 1178 * do than go ahead and Bad Thing later. 1179 * The cause is not important as there will never be a 1180 * recheckpoint so it's not user visible. 1181 */ 1182 if (MSR_TM_SUSPENDED(mfmsr())) 1183 tm_reclaim_current(0); 1184 1185 if (__get_user(tmp, &rt_sf->uc.uc_link)) 1186 goto bad; 1187 uc_transact = (struct ucontext __user *)(uintptr_t)tmp; 1188 if (uc_transact) { 1189 u32 cmcp; 1190 struct mcontext __user *mcp; 1191 1192 if (__get_user(cmcp, &uc_transact->uc_regs)) 1193 return -EFAULT; 1194 mcp = (struct mcontext __user *)(u64)cmcp; 1195 /* The top 32 bits of the MSR are stashed in the transactional 1196 * ucontext. */ 1197 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) 1198 goto bad; 1199 1200 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1201 /* Trying to start TM on non TM system */ 1202 if (!cpu_has_feature(CPU_FTR_TM)) 1203 goto bad; 1204 /* We only recheckpoint on return if we're 1205 * transaction. 1206 */ 1207 tm_restore = 1; 1208 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) 1209 goto bad; 1210 } 1211 } 1212 if (!tm_restore) { 1213 /* 1214 * Unset regs->msr because ucontext MSR TS is not 1215 * set, and recheckpoint was not called. This avoid 1216 * hitting a TM Bad thing at RFID 1217 */ 1218 regs->msr &= ~MSR_TS_MASK; 1219 } 1220 /* Fall through, for non-TM restore */ 1221 #endif 1222 if (!tm_restore) 1223 if (do_setcontext(&rt_sf->uc, regs, 1)) 1224 goto bad; 1225 1226 /* 1227 * It's not clear whether or why it is desirable to save the 1228 * sigaltstack setting on signal delivery and restore it on 1229 * signal return. But other architectures do this and we have 1230 * always done it up until now so it is probably better not to 1231 * change it. -- paulus 1232 */ 1233 #ifdef CONFIG_PPC64 1234 if (compat_restore_altstack(&rt_sf->uc.uc_stack)) 1235 goto bad; 1236 #else 1237 if (restore_altstack(&rt_sf->uc.uc_stack)) 1238 goto bad; 1239 #endif 1240 set_thread_flag(TIF_RESTOREALL); 1241 return 0; 1242 1243 bad: 1244 if (show_unhandled_signals) 1245 printk_ratelimited(KERN_INFO 1246 "%s[%d]: bad frame in sys_rt_sigreturn: " 1247 "%p nip %08lx lr %08lx\n", 1248 current->comm, current->pid, 1249 rt_sf, regs->nip, regs->link); 1250 1251 force_sig(SIGSEGV); 1252 return 0; 1253 } 1254 1255 #ifdef CONFIG_PPC32 1256 SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx, 1257 int, ndbg, struct sig_dbg_op __user *, dbg) 1258 { 1259 struct pt_regs *regs = current_pt_regs(); 1260 struct sig_dbg_op op; 1261 int i; 1262 unsigned long new_msr = regs->msr; 1263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1264 unsigned long new_dbcr0 = current->thread.debug.dbcr0; 1265 #endif 1266 1267 for (i=0; i<ndbg; i++) { 1268 if (copy_from_user(&op, dbg + i, sizeof(op))) 1269 return -EFAULT; 1270 switch (op.dbg_type) { 1271 case SIG_DBG_SINGLE_STEPPING: 1272 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1273 if (op.dbg_value) { 1274 new_msr |= MSR_DE; 1275 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); 1276 } else { 1277 new_dbcr0 &= ~DBCR0_IC; 1278 if (!DBCR_ACTIVE_EVENTS(new_dbcr0, 1279 current->thread.debug.dbcr1)) { 1280 new_msr &= ~MSR_DE; 1281 new_dbcr0 &= ~DBCR0_IDM; 1282 } 1283 } 1284 #else 1285 if (op.dbg_value) 1286 new_msr |= MSR_SE; 1287 else 1288 new_msr &= ~MSR_SE; 1289 #endif 1290 break; 1291 case SIG_DBG_BRANCH_TRACING: 1292 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1293 return -EINVAL; 1294 #else 1295 if (op.dbg_value) 1296 new_msr |= MSR_BE; 1297 else 1298 new_msr &= ~MSR_BE; 1299 #endif 1300 break; 1301 1302 default: 1303 return -EINVAL; 1304 } 1305 } 1306 1307 /* We wait until here to actually install the values in the 1308 registers so if we fail in the above loop, it will not 1309 affect the contents of these registers. After this point, 1310 failure is a problem, anyway, and it's very unlikely unless 1311 the user is really doing something wrong. */ 1312 regs->msr = new_msr; 1313 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1314 current->thread.debug.dbcr0 = new_dbcr0; 1315 #endif 1316 1317 if (!access_ok(ctx, sizeof(*ctx)) || 1318 fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx))) 1319 return -EFAULT; 1320 1321 /* 1322 * If we get a fault copying the context into the kernel's 1323 * image of the user's registers, we can't just return -EFAULT 1324 * because the user's registers will be corrupted. For instance 1325 * the NIP value may have been updated but not some of the 1326 * other registers. Given that we have done the access_ok 1327 * and successfully read the first and last bytes of the region 1328 * above, this should only happen in an out-of-memory situation 1329 * or if another thread unmaps the region containing the context. 1330 * We kill the task with a SIGSEGV in this situation. 1331 */ 1332 if (do_setcontext(ctx, regs, 1)) { 1333 if (show_unhandled_signals) 1334 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " 1335 "sys_debug_setcontext: %p nip %08lx " 1336 "lr %08lx\n", 1337 current->comm, current->pid, 1338 ctx, regs->nip, regs->link); 1339 1340 force_sig(SIGSEGV); 1341 goto out; 1342 } 1343 1344 /* 1345 * It's not clear whether or why it is desirable to save the 1346 * sigaltstack setting on signal delivery and restore it on 1347 * signal return. But other architectures do this and we have 1348 * always done it up until now so it is probably better not to 1349 * change it. -- paulus 1350 */ 1351 restore_altstack(&ctx->uc_stack); 1352 1353 set_thread_flag(TIF_RESTOREALL); 1354 out: 1355 return 0; 1356 } 1357 #endif 1358 1359 /* 1360 * OK, we're invoking a handler 1361 */ 1362 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, 1363 struct task_struct *tsk) 1364 { 1365 struct sigcontext __user *sc; 1366 struct sigframe __user *frame; 1367 struct mcontext __user *tm_mctx = NULL; 1368 unsigned long newsp = 0; 1369 int sigret; 1370 unsigned long tramp; 1371 struct pt_regs *regs = tsk->thread.regs; 1372 1373 BUG_ON(tsk != current); 1374 1375 /* Set up Signal Frame */ 1376 frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1); 1377 if (unlikely(frame == NULL)) 1378 goto badframe; 1379 sc = (struct sigcontext __user *) &frame->sctx; 1380 1381 #if _NSIG != 64 1382 #error "Please adjust handle_signal()" 1383 #endif 1384 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler) 1385 || __put_user(oldset->sig[0], &sc->oldmask) 1386 #ifdef CONFIG_PPC64 1387 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) 1388 #else 1389 || __put_user(oldset->sig[1], &sc->_unused[3]) 1390 #endif 1391 || __put_user(to_user_ptr(&frame->mctx), &sc->regs) 1392 || __put_user(ksig->sig, &sc->signal)) 1393 goto badframe; 1394 1395 if (vdso32_sigtramp && tsk->mm->context.vdso_base) { 1396 sigret = 0; 1397 tramp = tsk->mm->context.vdso_base + vdso32_sigtramp; 1398 } else { 1399 sigret = __NR_sigreturn; 1400 tramp = (unsigned long) frame->mctx.tramp; 1401 } 1402 1403 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1404 tm_mctx = &frame->mctx_transact; 1405 if (MSR_TM_ACTIVE(regs->msr)) { 1406 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, 1407 sigret)) 1408 goto badframe; 1409 } 1410 else 1411 #endif 1412 { 1413 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) 1414 goto badframe; 1415 } 1416 1417 regs->link = tramp; 1418 1419 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1420 1421 /* create a stack frame for the caller of the handler */ 1422 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; 1423 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1424 goto badframe; 1425 1426 regs->gpr[1] = newsp; 1427 regs->gpr[3] = ksig->sig; 1428 regs->gpr[4] = (unsigned long) sc; 1429 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler; 1430 /* enter the signal handler in big-endian mode */ 1431 regs->msr &= ~MSR_LE; 1432 return 0; 1433 1434 badframe: 1435 if (show_unhandled_signals) 1436 printk_ratelimited(KERN_INFO 1437 "%s[%d]: bad frame in handle_signal32: " 1438 "%p nip %08lx lr %08lx\n", 1439 tsk->comm, tsk->pid, 1440 frame, regs->nip, regs->link); 1441 1442 return 1; 1443 } 1444 1445 /* 1446 * Do a signal return; undo the signal stack. 1447 */ 1448 #ifdef CONFIG_PPC64 1449 COMPAT_SYSCALL_DEFINE0(sigreturn) 1450 #else 1451 SYSCALL_DEFINE0(sigreturn) 1452 #endif 1453 { 1454 struct pt_regs *regs = current_pt_regs(); 1455 struct sigframe __user *sf; 1456 struct sigcontext __user *sc; 1457 struct sigcontext sigctx; 1458 struct mcontext __user *sr; 1459 void __user *addr; 1460 sigset_t set; 1461 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1462 struct mcontext __user *mcp, *tm_mcp; 1463 unsigned long msr_hi; 1464 #endif 1465 1466 /* Always make any pending restarted system calls return -EINTR */ 1467 current->restart_block.fn = do_no_restart_syscall; 1468 1469 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); 1470 sc = &sf->sctx; 1471 addr = sc; 1472 if (copy_from_user(&sigctx, sc, sizeof(sigctx))) 1473 goto badframe; 1474 1475 #ifdef CONFIG_PPC64 1476 /* 1477 * Note that PPC32 puts the upper 32 bits of the sigmask in the 1478 * unused part of the signal stackframe 1479 */ 1480 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); 1481 #else 1482 set.sig[0] = sigctx.oldmask; 1483 set.sig[1] = sigctx._unused[3]; 1484 #endif 1485 set_current_blocked(&set); 1486 1487 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1488 mcp = (struct mcontext __user *)&sf->mctx; 1489 tm_mcp = (struct mcontext __user *)&sf->mctx_transact; 1490 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) 1491 goto badframe; 1492 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1493 if (!cpu_has_feature(CPU_FTR_TM)) 1494 goto badframe; 1495 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1496 goto badframe; 1497 } else 1498 #endif 1499 { 1500 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); 1501 addr = sr; 1502 if (!access_ok(sr, sizeof(*sr)) 1503 || restore_user_regs(regs, sr, 1)) 1504 goto badframe; 1505 } 1506 1507 set_thread_flag(TIF_RESTOREALL); 1508 return 0; 1509 1510 badframe: 1511 if (show_unhandled_signals) 1512 printk_ratelimited(KERN_INFO 1513 "%s[%d]: bad frame in sys_sigreturn: " 1514 "%p nip %08lx lr %08lx\n", 1515 current->comm, current->pid, 1516 addr, regs->nip, regs->link); 1517 1518 force_sig(SIGSEGV); 1519 return 0; 1520 } 1521