1 /* 2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC 3 * 4 * PowerPC version 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Copyright (C) 2001 IBM 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 9 * 10 * Derived from "arch/i386/kernel/signal.c" 11 * Copyright (C) 1991, 1992 Linus Torvalds 12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 13 * 14 * This program is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU General Public License 16 * as published by the Free Software Foundation; either version 17 * 2 of the License, or (at your option) any later version. 18 */ 19 20 #include <linux/sched.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/kernel.h> 24 #include <linux/signal.h> 25 #include <linux/errno.h> 26 #include <linux/elf.h> 27 #include <linux/ptrace.h> 28 #include <linux/pagemap.h> 29 #include <linux/ratelimit.h> 30 #include <linux/syscalls.h> 31 #ifdef CONFIG_PPC64 32 #include <linux/compat.h> 33 #else 34 #include <linux/wait.h> 35 #include <linux/unistd.h> 36 #include <linux/stddef.h> 37 #include <linux/tty.h> 38 #include <linux/binfmts.h> 39 #endif 40 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <asm/syscalls.h> 44 #include <asm/sigcontext.h> 45 #include <asm/vdso.h> 46 #include <asm/switch_to.h> 47 #include <asm/tm.h> 48 #include <asm/asm-prototypes.h> 49 #ifdef CONFIG_PPC64 50 #include "ppc32.h" 51 #include <asm/unistd.h> 52 #else 53 #include <asm/ucontext.h> 54 #include <asm/pgtable.h> 55 #endif 56 57 #include "signal.h" 58 59 60 #ifdef CONFIG_PPC64 61 #define old_sigaction old_sigaction32 62 #define sigcontext sigcontext32 63 #define mcontext mcontext32 64 #define ucontext ucontext32 65 66 #define __save_altstack __compat_save_altstack 67 68 /* 69 * Userspace code may pass a ucontext which doesn't include VSX added 70 * at the end. We need to check for this case. 71 */ 72 #define UCONTEXTSIZEWITHOUTVSX \ 73 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) 74 75 /* 76 * Returning 0 means we return to userspace via 77 * ret_from_except and thus restore all user 78 * registers from *regs. This is what we need 79 * to do when a signal has been delivered. 80 */ 81 82 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) 83 #undef __SIGNAL_FRAMESIZE 84 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 85 #undef ELF_NVRREG 86 #define ELF_NVRREG ELF_NVRREG32 87 88 /* 89 * Functions for flipping sigsets (thanks to brain dead generic 90 * implementation that makes things simple for little endian only) 91 */ 92 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) 93 { 94 return put_compat_sigset(uset, set, sizeof(*uset)); 95 } 96 97 static inline int get_sigset_t(sigset_t *set, 98 const compat_sigset_t __user *uset) 99 { 100 return get_compat_sigset(set, uset); 101 } 102 103 #define to_user_ptr(p) ptr_to_compat(p) 104 #define from_user_ptr(p) compat_ptr(p) 105 106 static inline int save_general_regs(struct pt_regs *regs, 107 struct mcontext __user *frame) 108 { 109 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 110 int i; 111 /* Force usr to alway see softe as 1 (interrupts enabled) */ 112 elf_greg_t64 softe = 0x1; 113 114 WARN_ON(!FULL_REGS(regs)); 115 116 for (i = 0; i <= PT_RESULT; i ++) { 117 if (i == 14 && !FULL_REGS(regs)) 118 i = 32; 119 if ( i == PT_SOFTE) { 120 if(__put_user((unsigned int)softe, &frame->mc_gregs[i])) 121 return -EFAULT; 122 else 123 continue; 124 } 125 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) 126 return -EFAULT; 127 } 128 return 0; 129 } 130 131 static inline int restore_general_regs(struct pt_regs *regs, 132 struct mcontext __user *sr) 133 { 134 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 135 int i; 136 137 for (i = 0; i <= PT_RESULT; i++) { 138 if ((i == PT_MSR) || (i == PT_SOFTE)) 139 continue; 140 if (__get_user(gregs[i], &sr->mc_gregs[i])) 141 return -EFAULT; 142 } 143 return 0; 144 } 145 146 #else /* CONFIG_PPC64 */ 147 148 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) 149 150 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) 151 { 152 return copy_to_user(uset, set, sizeof(*uset)); 153 } 154 155 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) 156 { 157 return copy_from_user(set, uset, sizeof(*uset)); 158 } 159 160 #define to_user_ptr(p) ((unsigned long)(p)) 161 #define from_user_ptr(p) ((void __user *)(p)) 162 163 static inline int save_general_regs(struct pt_regs *regs, 164 struct mcontext __user *frame) 165 { 166 WARN_ON(!FULL_REGS(regs)); 167 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); 168 } 169 170 static inline int restore_general_regs(struct pt_regs *regs, 171 struct mcontext __user *sr) 172 { 173 /* copy up to but not including MSR */ 174 if (__copy_from_user(regs, &sr->mc_gregs, 175 PT_MSR * sizeof(elf_greg_t))) 176 return -EFAULT; 177 /* copy from orig_r3 (the word after the MSR) up to the end */ 178 if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], 179 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) 180 return -EFAULT; 181 return 0; 182 } 183 #endif 184 185 /* 186 * When we have signals to deliver, we set up on the 187 * user stack, going down from the original stack pointer: 188 * an ABI gap of 56 words 189 * an mcontext struct 190 * a sigcontext struct 191 * a gap of __SIGNAL_FRAMESIZE bytes 192 * 193 * Each of these things must be a multiple of 16 bytes in size. The following 194 * structure represent all of this except the __SIGNAL_FRAMESIZE gap 195 * 196 */ 197 struct sigframe { 198 struct sigcontext sctx; /* the sigcontext */ 199 struct mcontext mctx; /* all the register values */ 200 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 201 struct sigcontext sctx_transact; 202 struct mcontext mctx_transact; 203 #endif 204 /* 205 * Programs using the rs6000/xcoff abi can save up to 19 gp 206 * regs and 18 fp regs below sp before decrementing it. 207 */ 208 int abigap[56]; 209 }; 210 211 /* We use the mc_pad field for the signal return trampoline. */ 212 #define tramp mc_pad 213 214 /* 215 * When we have rt signals to deliver, we set up on the 216 * user stack, going down from the original stack pointer: 217 * one rt_sigframe struct (siginfo + ucontext + ABI gap) 218 * a gap of __SIGNAL_FRAMESIZE+16 bytes 219 * (the +16 is to get the siginfo and ucontext in the same 220 * positions as in older kernels). 221 * 222 * Each of these things must be a multiple of 16 bytes in size. 223 * 224 */ 225 struct rt_sigframe { 226 #ifdef CONFIG_PPC64 227 compat_siginfo_t info; 228 #else 229 struct siginfo info; 230 #endif 231 struct ucontext uc; 232 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 233 struct ucontext uc_transact; 234 #endif 235 /* 236 * Programs using the rs6000/xcoff abi can save up to 19 gp 237 * regs and 18 fp regs below sp before decrementing it. 238 */ 239 int abigap[56]; 240 }; 241 242 #ifdef CONFIG_VSX 243 unsigned long copy_fpr_to_user(void __user *to, 244 struct task_struct *task) 245 { 246 u64 buf[ELF_NFPREG]; 247 int i; 248 249 /* save FPR copy to local buffer then write to the thread_struct */ 250 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 251 buf[i] = task->thread.TS_FPR(i); 252 buf[i] = task->thread.fp_state.fpscr; 253 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 254 } 255 256 unsigned long copy_fpr_from_user(struct task_struct *task, 257 void __user *from) 258 { 259 u64 buf[ELF_NFPREG]; 260 int i; 261 262 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 263 return 1; 264 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 265 task->thread.TS_FPR(i) = buf[i]; 266 task->thread.fp_state.fpscr = buf[i]; 267 268 return 0; 269 } 270 271 unsigned long copy_vsx_to_user(void __user *to, 272 struct task_struct *task) 273 { 274 u64 buf[ELF_NVSRHALFREG]; 275 int i; 276 277 /* save FPR copy to local buffer then write to the thread_struct */ 278 for (i = 0; i < ELF_NVSRHALFREG; i++) 279 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; 280 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 281 } 282 283 unsigned long copy_vsx_from_user(struct task_struct *task, 284 void __user *from) 285 { 286 u64 buf[ELF_NVSRHALFREG]; 287 int i; 288 289 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 290 return 1; 291 for (i = 0; i < ELF_NVSRHALFREG ; i++) 292 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 293 return 0; 294 } 295 296 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 297 unsigned long copy_ckfpr_to_user(void __user *to, 298 struct task_struct *task) 299 { 300 u64 buf[ELF_NFPREG]; 301 int i; 302 303 /* save FPR copy to local buffer then write to the thread_struct */ 304 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 305 buf[i] = task->thread.TS_CKFPR(i); 306 buf[i] = task->thread.ckfp_state.fpscr; 307 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 308 } 309 310 unsigned long copy_ckfpr_from_user(struct task_struct *task, 311 void __user *from) 312 { 313 u64 buf[ELF_NFPREG]; 314 int i; 315 316 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 317 return 1; 318 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 319 task->thread.TS_CKFPR(i) = buf[i]; 320 task->thread.ckfp_state.fpscr = buf[i]; 321 322 return 0; 323 } 324 325 unsigned long copy_ckvsx_to_user(void __user *to, 326 struct task_struct *task) 327 { 328 u64 buf[ELF_NVSRHALFREG]; 329 int i; 330 331 /* save FPR copy to local buffer then write to the thread_struct */ 332 for (i = 0; i < ELF_NVSRHALFREG; i++) 333 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET]; 334 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 335 } 336 337 unsigned long copy_ckvsx_from_user(struct task_struct *task, 338 void __user *from) 339 { 340 u64 buf[ELF_NVSRHALFREG]; 341 int i; 342 343 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 344 return 1; 345 for (i = 0; i < ELF_NVSRHALFREG ; i++) 346 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 347 return 0; 348 } 349 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 350 #else 351 inline unsigned long copy_fpr_to_user(void __user *to, 352 struct task_struct *task) 353 { 354 return __copy_to_user(to, task->thread.fp_state.fpr, 355 ELF_NFPREG * sizeof(double)); 356 } 357 358 inline unsigned long copy_fpr_from_user(struct task_struct *task, 359 void __user *from) 360 { 361 return __copy_from_user(task->thread.fp_state.fpr, from, 362 ELF_NFPREG * sizeof(double)); 363 } 364 365 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 366 inline unsigned long copy_ckfpr_to_user(void __user *to, 367 struct task_struct *task) 368 { 369 return __copy_to_user(to, task->thread.ckfp_state.fpr, 370 ELF_NFPREG * sizeof(double)); 371 } 372 373 inline unsigned long copy_ckfpr_from_user(struct task_struct *task, 374 void __user *from) 375 { 376 return __copy_from_user(task->thread.ckfp_state.fpr, from, 377 ELF_NFPREG * sizeof(double)); 378 } 379 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 380 #endif 381 382 /* 383 * Save the current user registers on the user stack. 384 * We only save the altivec/spe registers if the process has used 385 * altivec/spe instructions at some point. 386 */ 387 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, 388 struct mcontext __user *tm_frame, int sigret, 389 int ctx_has_vsx_region) 390 { 391 unsigned long msr = regs->msr; 392 393 /* Make sure floating point registers are stored in regs */ 394 flush_fp_to_thread(current); 395 396 /* save general registers */ 397 if (save_general_regs(regs, frame)) 398 return 1; 399 400 #ifdef CONFIG_ALTIVEC 401 /* save altivec registers */ 402 if (current->thread.used_vr) { 403 flush_altivec_to_thread(current); 404 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 405 ELF_NVRREG * sizeof(vector128))) 406 return 1; 407 /* set MSR_VEC in the saved MSR value to indicate that 408 frame->mc_vregs contains valid data */ 409 msr |= MSR_VEC; 410 } 411 /* else assert((regs->msr & MSR_VEC) == 0) */ 412 413 /* We always copy to/from vrsave, it's 0 if we don't have or don't 414 * use altivec. Since VSCR only contains 32 bits saved in the least 415 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 416 * most significant bits of that same vector. --BenH 417 * Note that the current VRSAVE value is in the SPR at this point. 418 */ 419 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 420 current->thread.vrsave = mfspr(SPRN_VRSAVE); 421 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) 422 return 1; 423 #endif /* CONFIG_ALTIVEC */ 424 if (copy_fpr_to_user(&frame->mc_fregs, current)) 425 return 1; 426 427 /* 428 * Clear the MSR VSX bit to indicate there is no valid state attached 429 * to this context, except in the specific case below where we set it. 430 */ 431 msr &= ~MSR_VSX; 432 #ifdef CONFIG_VSX 433 /* 434 * Copy VSR 0-31 upper half from thread_struct to local 435 * buffer, then write that to userspace. Also set MSR_VSX in 436 * the saved MSR value to indicate that frame->mc_vregs 437 * contains valid data 438 */ 439 if (current->thread.used_vsr && ctx_has_vsx_region) { 440 flush_vsx_to_thread(current); 441 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 442 return 1; 443 msr |= MSR_VSX; 444 } 445 #endif /* CONFIG_VSX */ 446 #ifdef CONFIG_SPE 447 /* save spe registers */ 448 if (current->thread.used_spe) { 449 flush_spe_to_thread(current); 450 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 451 ELF_NEVRREG * sizeof(u32))) 452 return 1; 453 /* set MSR_SPE in the saved MSR value to indicate that 454 frame->mc_vregs contains valid data */ 455 msr |= MSR_SPE; 456 } 457 /* else assert((regs->msr & MSR_SPE) == 0) */ 458 459 /* We always copy to/from spefscr */ 460 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 461 return 1; 462 #endif /* CONFIG_SPE */ 463 464 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 465 return 1; 466 /* We need to write 0 the MSR top 32 bits in the tm frame so that we 467 * can check it on the restore to see if TM is active 468 */ 469 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) 470 return 1; 471 472 if (sigret) { 473 /* Set up the sigreturn trampoline: li 0,sigret; sc */ 474 if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0]) 475 || __put_user(PPC_INST_SC, &frame->tramp[1])) 476 return 1; 477 flush_icache_range((unsigned long) &frame->tramp[0], 478 (unsigned long) &frame->tramp[2]); 479 } 480 481 return 0; 482 } 483 484 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 485 /* 486 * Save the current user registers on the user stack. 487 * We only save the altivec/spe registers if the process has used 488 * altivec/spe instructions at some point. 489 * We also save the transactional registers to a second ucontext in the 490 * frame. 491 * 492 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). 493 */ 494 static int save_tm_user_regs(struct pt_regs *regs, 495 struct mcontext __user *frame, 496 struct mcontext __user *tm_frame, int sigret) 497 { 498 unsigned long msr = regs->msr; 499 500 WARN_ON(tm_suspend_disabled); 501 502 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 503 * just indicates to userland that we were doing a transaction, but we 504 * don't want to return in transactional state. This also ensures 505 * that flush_fp_to_thread won't set TIF_RESTORE_TM again. 506 */ 507 regs->msr &= ~MSR_TS_MASK; 508 509 /* Save both sets of general registers */ 510 if (save_general_regs(¤t->thread.ckpt_regs, frame) 511 || save_general_regs(regs, tm_frame)) 512 return 1; 513 514 /* Stash the top half of the 64bit MSR into the 32bit MSR word 515 * of the transactional mcontext. This way we have a backward-compatible 516 * MSR in the 'normal' (checkpointed) mcontext and additionally one can 517 * also look at what type of transaction (T or S) was active at the 518 * time of the signal. 519 */ 520 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) 521 return 1; 522 523 #ifdef CONFIG_ALTIVEC 524 /* save altivec registers */ 525 if (current->thread.used_vr) { 526 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.ckvr_state, 527 ELF_NVRREG * sizeof(vector128))) 528 return 1; 529 if (msr & MSR_VEC) { 530 if (__copy_to_user(&tm_frame->mc_vregs, 531 ¤t->thread.vr_state, 532 ELF_NVRREG * sizeof(vector128))) 533 return 1; 534 } else { 535 if (__copy_to_user(&tm_frame->mc_vregs, 536 ¤t->thread.ckvr_state, 537 ELF_NVRREG * sizeof(vector128))) 538 return 1; 539 } 540 541 /* set MSR_VEC in the saved MSR value to indicate that 542 * frame->mc_vregs contains valid data 543 */ 544 msr |= MSR_VEC; 545 } 546 547 /* We always copy to/from vrsave, it's 0 if we don't have or don't 548 * use altivec. Since VSCR only contains 32 bits saved in the least 549 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 550 * most significant bits of that same vector. --BenH 551 */ 552 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 553 current->thread.ckvrsave = mfspr(SPRN_VRSAVE); 554 if (__put_user(current->thread.ckvrsave, 555 (u32 __user *)&frame->mc_vregs[32])) 556 return 1; 557 if (msr & MSR_VEC) { 558 if (__put_user(current->thread.vrsave, 559 (u32 __user *)&tm_frame->mc_vregs[32])) 560 return 1; 561 } else { 562 if (__put_user(current->thread.ckvrsave, 563 (u32 __user *)&tm_frame->mc_vregs[32])) 564 return 1; 565 } 566 #endif /* CONFIG_ALTIVEC */ 567 568 if (copy_ckfpr_to_user(&frame->mc_fregs, current)) 569 return 1; 570 if (msr & MSR_FP) { 571 if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) 572 return 1; 573 } else { 574 if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current)) 575 return 1; 576 } 577 578 #ifdef CONFIG_VSX 579 /* 580 * Copy VSR 0-31 upper half from thread_struct to local 581 * buffer, then write that to userspace. Also set MSR_VSX in 582 * the saved MSR value to indicate that frame->mc_vregs 583 * contains valid data 584 */ 585 if (current->thread.used_vsr) { 586 if (copy_ckvsx_to_user(&frame->mc_vsregs, current)) 587 return 1; 588 if (msr & MSR_VSX) { 589 if (copy_vsx_to_user(&tm_frame->mc_vsregs, 590 current)) 591 return 1; 592 } else { 593 if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current)) 594 return 1; 595 } 596 597 msr |= MSR_VSX; 598 } 599 #endif /* CONFIG_VSX */ 600 #ifdef CONFIG_SPE 601 /* SPE regs are not checkpointed with TM, so this section is 602 * simply the same as in save_user_regs(). 603 */ 604 if (current->thread.used_spe) { 605 flush_spe_to_thread(current); 606 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 607 ELF_NEVRREG * sizeof(u32))) 608 return 1; 609 /* set MSR_SPE in the saved MSR value to indicate that 610 * frame->mc_vregs contains valid data */ 611 msr |= MSR_SPE; 612 } 613 614 /* We always copy to/from spefscr */ 615 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 616 return 1; 617 #endif /* CONFIG_SPE */ 618 619 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 620 return 1; 621 if (sigret) { 622 /* Set up the sigreturn trampoline: li 0,sigret; sc */ 623 if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0]) 624 || __put_user(PPC_INST_SC, &frame->tramp[1])) 625 return 1; 626 flush_icache_range((unsigned long) &frame->tramp[0], 627 (unsigned long) &frame->tramp[2]); 628 } 629 630 return 0; 631 } 632 #endif 633 634 /* 635 * Restore the current user register values from the user stack, 636 * (except for MSR). 637 */ 638 static long restore_user_regs(struct pt_regs *regs, 639 struct mcontext __user *sr, int sig) 640 { 641 long err; 642 unsigned int save_r2 = 0; 643 unsigned long msr; 644 #ifdef CONFIG_VSX 645 int i; 646 #endif 647 648 /* 649 * restore general registers but not including MSR or SOFTE. Also 650 * take care of keeping r2 (TLS) intact if not a signal 651 */ 652 if (!sig) 653 save_r2 = (unsigned int)regs->gpr[2]; 654 err = restore_general_regs(regs, sr); 655 regs->trap = 0; 656 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 657 if (!sig) 658 regs->gpr[2] = (unsigned long) save_r2; 659 if (err) 660 return 1; 661 662 /* if doing signal return, restore the previous little-endian mode */ 663 if (sig) 664 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 665 666 #ifdef CONFIG_ALTIVEC 667 /* 668 * Force the process to reload the altivec registers from 669 * current->thread when it next does altivec instructions 670 */ 671 regs->msr &= ~MSR_VEC; 672 if (msr & MSR_VEC) { 673 /* restore altivec registers from the stack */ 674 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 675 sizeof(sr->mc_vregs))) 676 return 1; 677 current->thread.used_vr = true; 678 } else if (current->thread.used_vr) 679 memset(¤t->thread.vr_state, 0, 680 ELF_NVRREG * sizeof(vector128)); 681 682 /* Always get VRSAVE back */ 683 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) 684 return 1; 685 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 686 mtspr(SPRN_VRSAVE, current->thread.vrsave); 687 #endif /* CONFIG_ALTIVEC */ 688 if (copy_fpr_from_user(current, &sr->mc_fregs)) 689 return 1; 690 691 #ifdef CONFIG_VSX 692 /* 693 * Force the process to reload the VSX registers from 694 * current->thread when it next does VSX instruction. 695 */ 696 regs->msr &= ~MSR_VSX; 697 if (msr & MSR_VSX) { 698 /* 699 * Restore altivec registers from the stack to a local 700 * buffer, then write this out to the thread_struct 701 */ 702 if (copy_vsx_from_user(current, &sr->mc_vsregs)) 703 return 1; 704 current->thread.used_vsr = true; 705 } else if (current->thread.used_vsr) 706 for (i = 0; i < 32 ; i++) 707 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 708 #endif /* CONFIG_VSX */ 709 /* 710 * force the process to reload the FP registers from 711 * current->thread when it next does FP instructions 712 */ 713 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 714 715 #ifdef CONFIG_SPE 716 /* force the process to reload the spe registers from 717 current->thread when it next does spe instructions */ 718 regs->msr &= ~MSR_SPE; 719 if (msr & MSR_SPE) { 720 /* restore spe registers from the stack */ 721 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 722 ELF_NEVRREG * sizeof(u32))) 723 return 1; 724 current->thread.used_spe = true; 725 } else if (current->thread.used_spe) 726 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 727 728 /* Always get SPEFSCR back */ 729 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) 730 return 1; 731 #endif /* CONFIG_SPE */ 732 733 return 0; 734 } 735 736 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 737 /* 738 * Restore the current user register values from the user stack, except for 739 * MSR, and recheckpoint the original checkpointed register state for processes 740 * in transactions. 741 */ 742 static long restore_tm_user_regs(struct pt_regs *regs, 743 struct mcontext __user *sr, 744 struct mcontext __user *tm_sr) 745 { 746 long err; 747 unsigned long msr, msr_hi; 748 #ifdef CONFIG_VSX 749 int i; 750 #endif 751 752 if (tm_suspend_disabled) 753 return 1; 754 /* 755 * restore general registers but not including MSR or SOFTE. Also 756 * take care of keeping r2 (TLS) intact if not a signal. 757 * See comment in signal_64.c:restore_tm_sigcontexts(); 758 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR 759 * were set by the signal delivery. 760 */ 761 err = restore_general_regs(regs, tm_sr); 762 err |= restore_general_regs(¤t->thread.ckpt_regs, sr); 763 764 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); 765 766 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 767 if (err) 768 return 1; 769 770 /* Restore the previous little-endian mode */ 771 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 772 773 #ifdef CONFIG_ALTIVEC 774 regs->msr &= ~MSR_VEC; 775 if (msr & MSR_VEC) { 776 /* restore altivec registers from the stack */ 777 if (__copy_from_user(¤t->thread.ckvr_state, &sr->mc_vregs, 778 sizeof(sr->mc_vregs)) || 779 __copy_from_user(¤t->thread.vr_state, 780 &tm_sr->mc_vregs, 781 sizeof(sr->mc_vregs))) 782 return 1; 783 current->thread.used_vr = true; 784 } else if (current->thread.used_vr) { 785 memset(¤t->thread.vr_state, 0, 786 ELF_NVRREG * sizeof(vector128)); 787 memset(¤t->thread.ckvr_state, 0, 788 ELF_NVRREG * sizeof(vector128)); 789 } 790 791 /* Always get VRSAVE back */ 792 if (__get_user(current->thread.ckvrsave, 793 (u32 __user *)&sr->mc_vregs[32]) || 794 __get_user(current->thread.vrsave, 795 (u32 __user *)&tm_sr->mc_vregs[32])) 796 return 1; 797 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 798 mtspr(SPRN_VRSAVE, current->thread.ckvrsave); 799 #endif /* CONFIG_ALTIVEC */ 800 801 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 802 803 if (copy_fpr_from_user(current, &sr->mc_fregs) || 804 copy_ckfpr_from_user(current, &tm_sr->mc_fregs)) 805 return 1; 806 807 #ifdef CONFIG_VSX 808 regs->msr &= ~MSR_VSX; 809 if (msr & MSR_VSX) { 810 /* 811 * Restore altivec registers from the stack to a local 812 * buffer, then write this out to the thread_struct 813 */ 814 if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) || 815 copy_ckvsx_from_user(current, &sr->mc_vsregs)) 816 return 1; 817 current->thread.used_vsr = true; 818 } else if (current->thread.used_vsr) 819 for (i = 0; i < 32 ; i++) { 820 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 821 current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 822 } 823 #endif /* CONFIG_VSX */ 824 825 #ifdef CONFIG_SPE 826 /* SPE regs are not checkpointed with TM, so this section is 827 * simply the same as in restore_user_regs(). 828 */ 829 regs->msr &= ~MSR_SPE; 830 if (msr & MSR_SPE) { 831 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 832 ELF_NEVRREG * sizeof(u32))) 833 return 1; 834 current->thread.used_spe = true; 835 } else if (current->thread.used_spe) 836 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 837 838 /* Always get SPEFSCR back */ 839 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs 840 + ELF_NEVRREG)) 841 return 1; 842 #endif /* CONFIG_SPE */ 843 844 /* Get the top half of the MSR from the user context */ 845 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) 846 return 1; 847 msr_hi <<= 32; 848 /* If TM bits are set to the reserved value, it's an invalid context */ 849 if (MSR_TM_RESV(msr_hi)) 850 return 1; 851 852 /* 853 * Disabling preemption, since it is unsafe to be preempted 854 * with MSR[TS] set without recheckpointing. 855 */ 856 preempt_disable(); 857 858 /* 859 * CAUTION: 860 * After regs->MSR[TS] being updated, make sure that get_user(), 861 * put_user() or similar functions are *not* called. These 862 * functions can generate page faults which will cause the process 863 * to be de-scheduled with MSR[TS] set but without calling 864 * tm_recheckpoint(). This can cause a bug. 865 * 866 * Pull in the MSR TM bits from the user context 867 */ 868 regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK); 869 /* Now, recheckpoint. This loads up all of the checkpointed (older) 870 * registers, including FP and V[S]Rs. After recheckpointing, the 871 * transactional versions should be loaded. 872 */ 873 tm_enable(); 874 /* Make sure the transaction is marked as failed */ 875 current->thread.tm_texasr |= TEXASR_FS; 876 /* This loads the checkpointed FP/VEC state, if used */ 877 tm_recheckpoint(¤t->thread); 878 879 /* This loads the speculative FP/VEC state, if used */ 880 msr_check_and_set(msr & (MSR_FP | MSR_VEC)); 881 if (msr & MSR_FP) { 882 load_fp_state(¤t->thread.fp_state); 883 regs->msr |= (MSR_FP | current->thread.fpexc_mode); 884 } 885 #ifdef CONFIG_ALTIVEC 886 if (msr & MSR_VEC) { 887 load_vr_state(¤t->thread.vr_state); 888 regs->msr |= MSR_VEC; 889 } 890 #endif 891 892 preempt_enable(); 893 894 return 0; 895 } 896 #endif 897 898 #ifdef CONFIG_PPC64 899 900 #define copy_siginfo_to_user copy_siginfo_to_user32 901 902 #endif /* CONFIG_PPC64 */ 903 904 /* 905 * Set up a signal frame for a "real-time" signal handler 906 * (one which gets siginfo). 907 */ 908 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset, 909 struct task_struct *tsk) 910 { 911 struct rt_sigframe __user *rt_sf; 912 struct mcontext __user *frame; 913 struct mcontext __user *tm_frame = NULL; 914 void __user *addr; 915 unsigned long newsp = 0; 916 int sigret; 917 unsigned long tramp; 918 struct pt_regs *regs = tsk->thread.regs; 919 920 BUG_ON(tsk != current); 921 922 /* Set up Signal Frame */ 923 /* Put a Real Time Context onto stack */ 924 rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1); 925 addr = rt_sf; 926 if (unlikely(rt_sf == NULL)) 927 goto badframe; 928 929 /* Put the siginfo & fill in most of the ucontext */ 930 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info) 931 || __put_user(0, &rt_sf->uc.uc_flags) 932 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) 933 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), 934 &rt_sf->uc.uc_regs) 935 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) 936 goto badframe; 937 938 /* Save user registers on the stack */ 939 frame = &rt_sf->uc.uc_mcontext; 940 addr = frame; 941 if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) { 942 sigret = 0; 943 tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp; 944 } else { 945 sigret = __NR_rt_sigreturn; 946 tramp = (unsigned long) frame->tramp; 947 } 948 949 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 950 tm_frame = &rt_sf->uc_transact.uc_mcontext; 951 if (MSR_TM_ACTIVE(regs->msr)) { 952 if (__put_user((unsigned long)&rt_sf->uc_transact, 953 &rt_sf->uc.uc_link) || 954 __put_user((unsigned long)tm_frame, 955 &rt_sf->uc_transact.uc_regs)) 956 goto badframe; 957 if (save_tm_user_regs(regs, frame, tm_frame, sigret)) 958 goto badframe; 959 } 960 else 961 #endif 962 { 963 if (__put_user(0, &rt_sf->uc.uc_link)) 964 goto badframe; 965 if (save_user_regs(regs, frame, tm_frame, sigret, 1)) 966 goto badframe; 967 } 968 regs->link = tramp; 969 970 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 971 972 /* create a stack frame for the caller of the handler */ 973 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); 974 addr = (void __user *)regs->gpr[1]; 975 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 976 goto badframe; 977 978 /* Fill registers for signal handler */ 979 regs->gpr[1] = newsp; 980 regs->gpr[3] = ksig->sig; 981 regs->gpr[4] = (unsigned long) &rt_sf->info; 982 regs->gpr[5] = (unsigned long) &rt_sf->uc; 983 regs->gpr[6] = (unsigned long) rt_sf; 984 regs->nip = (unsigned long) ksig->ka.sa.sa_handler; 985 /* enter the signal handler in native-endian mode */ 986 regs->msr &= ~MSR_LE; 987 regs->msr |= (MSR_KERNEL & MSR_LE); 988 return 0; 989 990 badframe: 991 if (show_unhandled_signals) 992 printk_ratelimited(KERN_INFO 993 "%s[%d]: bad frame in handle_rt_signal32: " 994 "%p nip %08lx lr %08lx\n", 995 tsk->comm, tsk->pid, 996 addr, regs->nip, regs->link); 997 998 return 1; 999 } 1000 1001 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) 1002 { 1003 sigset_t set; 1004 struct mcontext __user *mcp; 1005 1006 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1007 return -EFAULT; 1008 #ifdef CONFIG_PPC64 1009 { 1010 u32 cmcp; 1011 1012 if (__get_user(cmcp, &ucp->uc_regs)) 1013 return -EFAULT; 1014 mcp = (struct mcontext __user *)(u64)cmcp; 1015 /* no need to check access_ok(mcp), since mcp < 4GB */ 1016 } 1017 #else 1018 if (__get_user(mcp, &ucp->uc_regs)) 1019 return -EFAULT; 1020 if (!access_ok(mcp, sizeof(*mcp))) 1021 return -EFAULT; 1022 #endif 1023 set_current_blocked(&set); 1024 if (restore_user_regs(regs, mcp, sig)) 1025 return -EFAULT; 1026 1027 return 0; 1028 } 1029 1030 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1031 static int do_setcontext_tm(struct ucontext __user *ucp, 1032 struct ucontext __user *tm_ucp, 1033 struct pt_regs *regs) 1034 { 1035 sigset_t set; 1036 struct mcontext __user *mcp; 1037 struct mcontext __user *tm_mcp; 1038 u32 cmcp; 1039 u32 tm_cmcp; 1040 1041 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1042 return -EFAULT; 1043 1044 if (__get_user(cmcp, &ucp->uc_regs) || 1045 __get_user(tm_cmcp, &tm_ucp->uc_regs)) 1046 return -EFAULT; 1047 mcp = (struct mcontext __user *)(u64)cmcp; 1048 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; 1049 /* no need to check access_ok(mcp), since mcp < 4GB */ 1050 1051 set_current_blocked(&set); 1052 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1053 return -EFAULT; 1054 1055 return 0; 1056 } 1057 #endif 1058 1059 #ifdef CONFIG_PPC64 1060 COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx, 1061 struct ucontext __user *, new_ctx, int, ctx_size) 1062 #else 1063 SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx, 1064 struct ucontext __user *, new_ctx, long, ctx_size) 1065 #endif 1066 { 1067 struct pt_regs *regs = current_pt_regs(); 1068 int ctx_has_vsx_region = 0; 1069 1070 #ifdef CONFIG_PPC64 1071 unsigned long new_msr = 0; 1072 1073 if (new_ctx) { 1074 struct mcontext __user *mcp; 1075 u32 cmcp; 1076 1077 /* 1078 * Get pointer to the real mcontext. No need for 1079 * access_ok since we are dealing with compat 1080 * pointers. 1081 */ 1082 if (__get_user(cmcp, &new_ctx->uc_regs)) 1083 return -EFAULT; 1084 mcp = (struct mcontext __user *)(u64)cmcp; 1085 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) 1086 return -EFAULT; 1087 } 1088 /* 1089 * Check that the context is not smaller than the original 1090 * size (with VMX but without VSX) 1091 */ 1092 if (ctx_size < UCONTEXTSIZEWITHOUTVSX) 1093 return -EINVAL; 1094 /* 1095 * If the new context state sets the MSR VSX bits but 1096 * it doesn't provide VSX state. 1097 */ 1098 if ((ctx_size < sizeof(struct ucontext)) && 1099 (new_msr & MSR_VSX)) 1100 return -EINVAL; 1101 /* Does the context have enough room to store VSX data? */ 1102 if (ctx_size >= sizeof(struct ucontext)) 1103 ctx_has_vsx_region = 1; 1104 #else 1105 /* Context size is for future use. Right now, we only make sure 1106 * we are passed something we understand 1107 */ 1108 if (ctx_size < sizeof(struct ucontext)) 1109 return -EINVAL; 1110 #endif 1111 if (old_ctx != NULL) { 1112 struct mcontext __user *mctx; 1113 1114 /* 1115 * old_ctx might not be 16-byte aligned, in which 1116 * case old_ctx->uc_mcontext won't be either. 1117 * Because we have the old_ctx->uc_pad2 field 1118 * before old_ctx->uc_mcontext, we need to round down 1119 * from &old_ctx->uc_mcontext to a 16-byte boundary. 1120 */ 1121 mctx = (struct mcontext __user *) 1122 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); 1123 if (!access_ok(old_ctx, ctx_size) 1124 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) 1125 || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) 1126 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) 1127 return -EFAULT; 1128 } 1129 if (new_ctx == NULL) 1130 return 0; 1131 if (!access_ok(new_ctx, ctx_size) || 1132 fault_in_pages_readable((u8 __user *)new_ctx, ctx_size)) 1133 return -EFAULT; 1134 1135 /* 1136 * If we get a fault copying the context into the kernel's 1137 * image of the user's registers, we can't just return -EFAULT 1138 * because the user's registers will be corrupted. For instance 1139 * the NIP value may have been updated but not some of the 1140 * other registers. Given that we have done the access_ok 1141 * and successfully read the first and last bytes of the region 1142 * above, this should only happen in an out-of-memory situation 1143 * or if another thread unmaps the region containing the context. 1144 * We kill the task with a SIGSEGV in this situation. 1145 */ 1146 if (do_setcontext(new_ctx, regs, 0)) 1147 do_exit(SIGSEGV); 1148 1149 set_thread_flag(TIF_RESTOREALL); 1150 return 0; 1151 } 1152 1153 #ifdef CONFIG_PPC64 1154 COMPAT_SYSCALL_DEFINE0(rt_sigreturn) 1155 #else 1156 SYSCALL_DEFINE0(rt_sigreturn) 1157 #endif 1158 { 1159 struct rt_sigframe __user *rt_sf; 1160 struct pt_regs *regs = current_pt_regs(); 1161 int tm_restore = 0; 1162 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1163 struct ucontext __user *uc_transact; 1164 unsigned long msr_hi; 1165 unsigned long tmp; 1166 #endif 1167 /* Always make any pending restarted system calls return -EINTR */ 1168 current->restart_block.fn = do_no_restart_syscall; 1169 1170 rt_sf = (struct rt_sigframe __user *) 1171 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); 1172 if (!access_ok(rt_sf, sizeof(*rt_sf))) 1173 goto bad; 1174 1175 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1176 /* 1177 * If there is a transactional state then throw it away. 1178 * The purpose of a sigreturn is to destroy all traces of the 1179 * signal frame, this includes any transactional state created 1180 * within in. We only check for suspended as we can never be 1181 * active in the kernel, we are active, there is nothing better to 1182 * do than go ahead and Bad Thing later. 1183 * The cause is not important as there will never be a 1184 * recheckpoint so it's not user visible. 1185 */ 1186 if (MSR_TM_SUSPENDED(mfmsr())) 1187 tm_reclaim_current(0); 1188 1189 if (__get_user(tmp, &rt_sf->uc.uc_link)) 1190 goto bad; 1191 uc_transact = (struct ucontext __user *)(uintptr_t)tmp; 1192 if (uc_transact) { 1193 u32 cmcp; 1194 struct mcontext __user *mcp; 1195 1196 if (__get_user(cmcp, &uc_transact->uc_regs)) 1197 return -EFAULT; 1198 mcp = (struct mcontext __user *)(u64)cmcp; 1199 /* The top 32 bits of the MSR are stashed in the transactional 1200 * ucontext. */ 1201 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) 1202 goto bad; 1203 1204 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1205 /* We only recheckpoint on return if we're 1206 * transaction. 1207 */ 1208 tm_restore = 1; 1209 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) 1210 goto bad; 1211 } 1212 } 1213 if (!tm_restore) { 1214 /* 1215 * Unset regs->msr because ucontext MSR TS is not 1216 * set, and recheckpoint was not called. This avoid 1217 * hitting a TM Bad thing at RFID 1218 */ 1219 regs->msr &= ~MSR_TS_MASK; 1220 } 1221 /* Fall through, for non-TM restore */ 1222 #endif 1223 if (!tm_restore) 1224 if (do_setcontext(&rt_sf->uc, regs, 1)) 1225 goto bad; 1226 1227 /* 1228 * It's not clear whether or why it is desirable to save the 1229 * sigaltstack setting on signal delivery and restore it on 1230 * signal return. But other architectures do this and we have 1231 * always done it up until now so it is probably better not to 1232 * change it. -- paulus 1233 */ 1234 #ifdef CONFIG_PPC64 1235 if (compat_restore_altstack(&rt_sf->uc.uc_stack)) 1236 goto bad; 1237 #else 1238 if (restore_altstack(&rt_sf->uc.uc_stack)) 1239 goto bad; 1240 #endif 1241 set_thread_flag(TIF_RESTOREALL); 1242 return 0; 1243 1244 bad: 1245 if (show_unhandled_signals) 1246 printk_ratelimited(KERN_INFO 1247 "%s[%d]: bad frame in sys_rt_sigreturn: " 1248 "%p nip %08lx lr %08lx\n", 1249 current->comm, current->pid, 1250 rt_sf, regs->nip, regs->link); 1251 1252 force_sig(SIGSEGV, current); 1253 return 0; 1254 } 1255 1256 #ifdef CONFIG_PPC32 1257 SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx, 1258 int, ndbg, struct sig_dbg_op __user *, dbg) 1259 { 1260 struct pt_regs *regs = current_pt_regs(); 1261 struct sig_dbg_op op; 1262 int i; 1263 unsigned long new_msr = regs->msr; 1264 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1265 unsigned long new_dbcr0 = current->thread.debug.dbcr0; 1266 #endif 1267 1268 for (i=0; i<ndbg; i++) { 1269 if (copy_from_user(&op, dbg + i, sizeof(op))) 1270 return -EFAULT; 1271 switch (op.dbg_type) { 1272 case SIG_DBG_SINGLE_STEPPING: 1273 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1274 if (op.dbg_value) { 1275 new_msr |= MSR_DE; 1276 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); 1277 } else { 1278 new_dbcr0 &= ~DBCR0_IC; 1279 if (!DBCR_ACTIVE_EVENTS(new_dbcr0, 1280 current->thread.debug.dbcr1)) { 1281 new_msr &= ~MSR_DE; 1282 new_dbcr0 &= ~DBCR0_IDM; 1283 } 1284 } 1285 #else 1286 if (op.dbg_value) 1287 new_msr |= MSR_SE; 1288 else 1289 new_msr &= ~MSR_SE; 1290 #endif 1291 break; 1292 case SIG_DBG_BRANCH_TRACING: 1293 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1294 return -EINVAL; 1295 #else 1296 if (op.dbg_value) 1297 new_msr |= MSR_BE; 1298 else 1299 new_msr &= ~MSR_BE; 1300 #endif 1301 break; 1302 1303 default: 1304 return -EINVAL; 1305 } 1306 } 1307 1308 /* We wait until here to actually install the values in the 1309 registers so if we fail in the above loop, it will not 1310 affect the contents of these registers. After this point, 1311 failure is a problem, anyway, and it's very unlikely unless 1312 the user is really doing something wrong. */ 1313 regs->msr = new_msr; 1314 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1315 current->thread.debug.dbcr0 = new_dbcr0; 1316 #endif 1317 1318 if (!access_ok(ctx, sizeof(*ctx)) || 1319 fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx))) 1320 return -EFAULT; 1321 1322 /* 1323 * If we get a fault copying the context into the kernel's 1324 * image of the user's registers, we can't just return -EFAULT 1325 * because the user's registers will be corrupted. For instance 1326 * the NIP value may have been updated but not some of the 1327 * other registers. Given that we have done the access_ok 1328 * and successfully read the first and last bytes of the region 1329 * above, this should only happen in an out-of-memory situation 1330 * or if another thread unmaps the region containing the context. 1331 * We kill the task with a SIGSEGV in this situation. 1332 */ 1333 if (do_setcontext(ctx, regs, 1)) { 1334 if (show_unhandled_signals) 1335 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " 1336 "sys_debug_setcontext: %p nip %08lx " 1337 "lr %08lx\n", 1338 current->comm, current->pid, 1339 ctx, regs->nip, regs->link); 1340 1341 force_sig(SIGSEGV, current); 1342 goto out; 1343 } 1344 1345 /* 1346 * It's not clear whether or why it is desirable to save the 1347 * sigaltstack setting on signal delivery and restore it on 1348 * signal return. But other architectures do this and we have 1349 * always done it up until now so it is probably better not to 1350 * change it. -- paulus 1351 */ 1352 restore_altstack(&ctx->uc_stack); 1353 1354 set_thread_flag(TIF_RESTOREALL); 1355 out: 1356 return 0; 1357 } 1358 #endif 1359 1360 /* 1361 * OK, we're invoking a handler 1362 */ 1363 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, 1364 struct task_struct *tsk) 1365 { 1366 struct sigcontext __user *sc; 1367 struct sigframe __user *frame; 1368 struct mcontext __user *tm_mctx = NULL; 1369 unsigned long newsp = 0; 1370 int sigret; 1371 unsigned long tramp; 1372 struct pt_regs *regs = tsk->thread.regs; 1373 1374 BUG_ON(tsk != current); 1375 1376 /* Set up Signal Frame */ 1377 frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1); 1378 if (unlikely(frame == NULL)) 1379 goto badframe; 1380 sc = (struct sigcontext __user *) &frame->sctx; 1381 1382 #if _NSIG != 64 1383 #error "Please adjust handle_signal()" 1384 #endif 1385 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler) 1386 || __put_user(oldset->sig[0], &sc->oldmask) 1387 #ifdef CONFIG_PPC64 1388 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) 1389 #else 1390 || __put_user(oldset->sig[1], &sc->_unused[3]) 1391 #endif 1392 || __put_user(to_user_ptr(&frame->mctx), &sc->regs) 1393 || __put_user(ksig->sig, &sc->signal)) 1394 goto badframe; 1395 1396 if (vdso32_sigtramp && tsk->mm->context.vdso_base) { 1397 sigret = 0; 1398 tramp = tsk->mm->context.vdso_base + vdso32_sigtramp; 1399 } else { 1400 sigret = __NR_sigreturn; 1401 tramp = (unsigned long) frame->mctx.tramp; 1402 } 1403 1404 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1405 tm_mctx = &frame->mctx_transact; 1406 if (MSR_TM_ACTIVE(regs->msr)) { 1407 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, 1408 sigret)) 1409 goto badframe; 1410 } 1411 else 1412 #endif 1413 { 1414 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) 1415 goto badframe; 1416 } 1417 1418 regs->link = tramp; 1419 1420 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1421 1422 /* create a stack frame for the caller of the handler */ 1423 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; 1424 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1425 goto badframe; 1426 1427 regs->gpr[1] = newsp; 1428 regs->gpr[3] = ksig->sig; 1429 regs->gpr[4] = (unsigned long) sc; 1430 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler; 1431 /* enter the signal handler in big-endian mode */ 1432 regs->msr &= ~MSR_LE; 1433 return 0; 1434 1435 badframe: 1436 if (show_unhandled_signals) 1437 printk_ratelimited(KERN_INFO 1438 "%s[%d]: bad frame in handle_signal32: " 1439 "%p nip %08lx lr %08lx\n", 1440 tsk->comm, tsk->pid, 1441 frame, regs->nip, regs->link); 1442 1443 return 1; 1444 } 1445 1446 /* 1447 * Do a signal return; undo the signal stack. 1448 */ 1449 #ifdef CONFIG_PPC64 1450 COMPAT_SYSCALL_DEFINE0(sigreturn) 1451 #else 1452 SYSCALL_DEFINE0(sigreturn) 1453 #endif 1454 { 1455 struct pt_regs *regs = current_pt_regs(); 1456 struct sigframe __user *sf; 1457 struct sigcontext __user *sc; 1458 struct sigcontext sigctx; 1459 struct mcontext __user *sr; 1460 void __user *addr; 1461 sigset_t set; 1462 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1463 struct mcontext __user *mcp, *tm_mcp; 1464 unsigned long msr_hi; 1465 #endif 1466 1467 /* Always make any pending restarted system calls return -EINTR */ 1468 current->restart_block.fn = do_no_restart_syscall; 1469 1470 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); 1471 sc = &sf->sctx; 1472 addr = sc; 1473 if (copy_from_user(&sigctx, sc, sizeof(sigctx))) 1474 goto badframe; 1475 1476 #ifdef CONFIG_PPC64 1477 /* 1478 * Note that PPC32 puts the upper 32 bits of the sigmask in the 1479 * unused part of the signal stackframe 1480 */ 1481 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); 1482 #else 1483 set.sig[0] = sigctx.oldmask; 1484 set.sig[1] = sigctx._unused[3]; 1485 #endif 1486 set_current_blocked(&set); 1487 1488 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1489 mcp = (struct mcontext __user *)&sf->mctx; 1490 tm_mcp = (struct mcontext __user *)&sf->mctx_transact; 1491 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) 1492 goto badframe; 1493 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1494 if (!cpu_has_feature(CPU_FTR_TM)) 1495 goto badframe; 1496 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1497 goto badframe; 1498 } else 1499 #endif 1500 { 1501 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); 1502 addr = sr; 1503 if (!access_ok(sr, sizeof(*sr)) 1504 || restore_user_regs(regs, sr, 1)) 1505 goto badframe; 1506 } 1507 1508 set_thread_flag(TIF_RESTOREALL); 1509 return 0; 1510 1511 badframe: 1512 if (show_unhandled_signals) 1513 printk_ratelimited(KERN_INFO 1514 "%s[%d]: bad frame in sys_sigreturn: " 1515 "%p nip %08lx lr %08lx\n", 1516 current->comm, current->pid, 1517 addr, regs->nip, regs->link); 1518 1519 force_sig(SIGSEGV, current); 1520 return 0; 1521 } 1522