xref: /openbmc/linux/arch/powerpc/kernel/signal_32.c (revision aa1d19f1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
4  *
5  *  PowerPC version
6  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7  * Copyright (C) 2001 IBM
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
10  *
11  *  Derived from "arch/i386/kernel/signal.c"
12  *    Copyright (C) 1991, 1992 Linus Torvalds
13  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
14  */
15 
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/smp.h>
19 #include <linux/kernel.h>
20 #include <linux/signal.h>
21 #include <linux/errno.h>
22 #include <linux/elf.h>
23 #include <linux/ptrace.h>
24 #include <linux/pagemap.h>
25 #include <linux/ratelimit.h>
26 #include <linux/syscalls.h>
27 #ifdef CONFIG_PPC64
28 #include <linux/compat.h>
29 #else
30 #include <linux/wait.h>
31 #include <linux/unistd.h>
32 #include <linux/stddef.h>
33 #include <linux/tty.h>
34 #include <linux/binfmts.h>
35 #endif
36 
37 #include <linux/uaccess.h>
38 #include <asm/cacheflush.h>
39 #include <asm/syscalls.h>
40 #include <asm/sigcontext.h>
41 #include <asm/vdso.h>
42 #include <asm/switch_to.h>
43 #include <asm/tm.h>
44 #include <asm/asm-prototypes.h>
45 #ifdef CONFIG_PPC64
46 #include "ppc32.h"
47 #include <asm/unistd.h>
48 #else
49 #include <asm/ucontext.h>
50 #include <asm/pgtable.h>
51 #endif
52 
53 #include "signal.h"
54 
55 
56 #ifdef CONFIG_PPC64
57 #define old_sigaction	old_sigaction32
58 #define sigcontext	sigcontext32
59 #define mcontext	mcontext32
60 #define ucontext	ucontext32
61 
62 #define __save_altstack __compat_save_altstack
63 
64 /*
65  * Userspace code may pass a ucontext which doesn't include VSX added
66  * at the end.  We need to check for this case.
67  */
68 #define UCONTEXTSIZEWITHOUTVSX \
69 		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
70 
71 /*
72  * Returning 0 means we return to userspace via
73  * ret_from_except and thus restore all user
74  * registers from *regs.  This is what we need
75  * to do when a signal has been delivered.
76  */
77 
78 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
79 #undef __SIGNAL_FRAMESIZE
80 #define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
81 #undef ELF_NVRREG
82 #define ELF_NVRREG	ELF_NVRREG32
83 
84 /*
85  * Functions for flipping sigsets (thanks to brain dead generic
86  * implementation that makes things simple for little endian only)
87  */
88 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
89 {
90 	return put_compat_sigset(uset, set, sizeof(*uset));
91 }
92 
93 static inline int get_sigset_t(sigset_t *set,
94 			       const compat_sigset_t __user *uset)
95 {
96 	return get_compat_sigset(set, uset);
97 }
98 
99 #define to_user_ptr(p)		ptr_to_compat(p)
100 #define from_user_ptr(p)	compat_ptr(p)
101 
102 static inline int save_general_regs(struct pt_regs *regs,
103 		struct mcontext __user *frame)
104 {
105 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
106 	int i;
107 	/* Force usr to alway see softe as 1 (interrupts enabled) */
108 	elf_greg_t64 softe = 0x1;
109 
110 	WARN_ON(!FULL_REGS(regs));
111 
112 	for (i = 0; i <= PT_RESULT; i ++) {
113 		if (i == 14 && !FULL_REGS(regs))
114 			i = 32;
115 		if ( i == PT_SOFTE) {
116 			if(__put_user((unsigned int)softe, &frame->mc_gregs[i]))
117 				return -EFAULT;
118 			else
119 				continue;
120 		}
121 		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
122 			return -EFAULT;
123 	}
124 	return 0;
125 }
126 
127 static inline int restore_general_regs(struct pt_regs *regs,
128 		struct mcontext __user *sr)
129 {
130 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
131 	int i;
132 
133 	for (i = 0; i <= PT_RESULT; i++) {
134 		if ((i == PT_MSR) || (i == PT_SOFTE))
135 			continue;
136 		if (__get_user(gregs[i], &sr->mc_gregs[i]))
137 			return -EFAULT;
138 	}
139 	return 0;
140 }
141 
142 #else /* CONFIG_PPC64 */
143 
144 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
145 
146 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
147 {
148 	return copy_to_user(uset, set, sizeof(*uset));
149 }
150 
151 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
152 {
153 	return copy_from_user(set, uset, sizeof(*uset));
154 }
155 
156 #define to_user_ptr(p)		((unsigned long)(p))
157 #define from_user_ptr(p)	((void __user *)(p))
158 
159 static inline int save_general_regs(struct pt_regs *regs,
160 		struct mcontext __user *frame)
161 {
162 	WARN_ON(!FULL_REGS(regs));
163 	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
164 }
165 
166 static inline int restore_general_regs(struct pt_regs *regs,
167 		struct mcontext __user *sr)
168 {
169 	/* copy up to but not including MSR */
170 	if (__copy_from_user(regs, &sr->mc_gregs,
171 				PT_MSR * sizeof(elf_greg_t)))
172 		return -EFAULT;
173 	/* copy from orig_r3 (the word after the MSR) up to the end */
174 	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
175 				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
176 		return -EFAULT;
177 	return 0;
178 }
179 #endif
180 
181 /*
182  * When we have signals to deliver, we set up on the
183  * user stack, going down from the original stack pointer:
184  *	an ABI gap of 56 words
185  *	an mcontext struct
186  *	a sigcontext struct
187  *	a gap of __SIGNAL_FRAMESIZE bytes
188  *
189  * Each of these things must be a multiple of 16 bytes in size. The following
190  * structure represent all of this except the __SIGNAL_FRAMESIZE gap
191  *
192  */
193 struct sigframe {
194 	struct sigcontext sctx;		/* the sigcontext */
195 	struct mcontext	mctx;		/* all the register values */
196 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
197 	struct sigcontext sctx_transact;
198 	struct mcontext	mctx_transact;
199 #endif
200 	/*
201 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
202 	 * regs and 18 fp regs below sp before decrementing it.
203 	 */
204 	int			abigap[56];
205 };
206 
207 /* We use the mc_pad field for the signal return trampoline. */
208 #define tramp	mc_pad
209 
210 /*
211  *  When we have rt signals to deliver, we set up on the
212  *  user stack, going down from the original stack pointer:
213  *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
214  *	a gap of __SIGNAL_FRAMESIZE+16 bytes
215  *  (the +16 is to get the siginfo and ucontext in the same
216  *  positions as in older kernels).
217  *
218  *  Each of these things must be a multiple of 16 bytes in size.
219  *
220  */
221 struct rt_sigframe {
222 #ifdef CONFIG_PPC64
223 	compat_siginfo_t info;
224 #else
225 	struct siginfo info;
226 #endif
227 	struct ucontext	uc;
228 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
229 	struct ucontext	uc_transact;
230 #endif
231 	/*
232 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
233 	 * regs and 18 fp regs below sp before decrementing it.
234 	 */
235 	int			abigap[56];
236 };
237 
238 #ifdef CONFIG_VSX
239 unsigned long copy_fpr_to_user(void __user *to,
240 			       struct task_struct *task)
241 {
242 	u64 buf[ELF_NFPREG];
243 	int i;
244 
245 	/* save FPR copy to local buffer then write to the thread_struct */
246 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
247 		buf[i] = task->thread.TS_FPR(i);
248 	buf[i] = task->thread.fp_state.fpscr;
249 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
250 }
251 
252 unsigned long copy_fpr_from_user(struct task_struct *task,
253 				 void __user *from)
254 {
255 	u64 buf[ELF_NFPREG];
256 	int i;
257 
258 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
259 		return 1;
260 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
261 		task->thread.TS_FPR(i) = buf[i];
262 	task->thread.fp_state.fpscr = buf[i];
263 
264 	return 0;
265 }
266 
267 unsigned long copy_vsx_to_user(void __user *to,
268 			       struct task_struct *task)
269 {
270 	u64 buf[ELF_NVSRHALFREG];
271 	int i;
272 
273 	/* save FPR copy to local buffer then write to the thread_struct */
274 	for (i = 0; i < ELF_NVSRHALFREG; i++)
275 		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
276 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
277 }
278 
279 unsigned long copy_vsx_from_user(struct task_struct *task,
280 				 void __user *from)
281 {
282 	u64 buf[ELF_NVSRHALFREG];
283 	int i;
284 
285 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
286 		return 1;
287 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
288 		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
289 	return 0;
290 }
291 
292 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
293 unsigned long copy_ckfpr_to_user(void __user *to,
294 				  struct task_struct *task)
295 {
296 	u64 buf[ELF_NFPREG];
297 	int i;
298 
299 	/* save FPR copy to local buffer then write to the thread_struct */
300 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
301 		buf[i] = task->thread.TS_CKFPR(i);
302 	buf[i] = task->thread.ckfp_state.fpscr;
303 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
304 }
305 
306 unsigned long copy_ckfpr_from_user(struct task_struct *task,
307 					  void __user *from)
308 {
309 	u64 buf[ELF_NFPREG];
310 	int i;
311 
312 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
313 		return 1;
314 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
315 		task->thread.TS_CKFPR(i) = buf[i];
316 	task->thread.ckfp_state.fpscr = buf[i];
317 
318 	return 0;
319 }
320 
321 unsigned long copy_ckvsx_to_user(void __user *to,
322 				  struct task_struct *task)
323 {
324 	u64 buf[ELF_NVSRHALFREG];
325 	int i;
326 
327 	/* save FPR copy to local buffer then write to the thread_struct */
328 	for (i = 0; i < ELF_NVSRHALFREG; i++)
329 		buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
330 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
331 }
332 
333 unsigned long copy_ckvsx_from_user(struct task_struct *task,
334 					  void __user *from)
335 {
336 	u64 buf[ELF_NVSRHALFREG];
337 	int i;
338 
339 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
340 		return 1;
341 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
342 		task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
343 	return 0;
344 }
345 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
346 #else
347 inline unsigned long copy_fpr_to_user(void __user *to,
348 				      struct task_struct *task)
349 {
350 	return __copy_to_user(to, task->thread.fp_state.fpr,
351 			      ELF_NFPREG * sizeof(double));
352 }
353 
354 inline unsigned long copy_fpr_from_user(struct task_struct *task,
355 					void __user *from)
356 {
357 	return __copy_from_user(task->thread.fp_state.fpr, from,
358 			      ELF_NFPREG * sizeof(double));
359 }
360 
361 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
362 inline unsigned long copy_ckfpr_to_user(void __user *to,
363 					 struct task_struct *task)
364 {
365 	return __copy_to_user(to, task->thread.ckfp_state.fpr,
366 			      ELF_NFPREG * sizeof(double));
367 }
368 
369 inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
370 						 void __user *from)
371 {
372 	return __copy_from_user(task->thread.ckfp_state.fpr, from,
373 				ELF_NFPREG * sizeof(double));
374 }
375 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
376 #endif
377 
378 /*
379  * Save the current user registers on the user stack.
380  * We only save the altivec/spe registers if the process has used
381  * altivec/spe instructions at some point.
382  */
383 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
384 			  struct mcontext __user *tm_frame, int sigret,
385 			  int ctx_has_vsx_region)
386 {
387 	unsigned long msr = regs->msr;
388 
389 	/* Make sure floating point registers are stored in regs */
390 	flush_fp_to_thread(current);
391 
392 	/* save general registers */
393 	if (save_general_regs(regs, frame))
394 		return 1;
395 
396 #ifdef CONFIG_ALTIVEC
397 	/* save altivec registers */
398 	if (current->thread.used_vr) {
399 		flush_altivec_to_thread(current);
400 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
401 				   ELF_NVRREG * sizeof(vector128)))
402 			return 1;
403 		/* set MSR_VEC in the saved MSR value to indicate that
404 		   frame->mc_vregs contains valid data */
405 		msr |= MSR_VEC;
406 	}
407 	/* else assert((regs->msr & MSR_VEC) == 0) */
408 
409 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
410 	 * use altivec. Since VSCR only contains 32 bits saved in the least
411 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
412 	 * most significant bits of that same vector. --BenH
413 	 * Note that the current VRSAVE value is in the SPR at this point.
414 	 */
415 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
416 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
417 	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
418 		return 1;
419 #endif /* CONFIG_ALTIVEC */
420 	if (copy_fpr_to_user(&frame->mc_fregs, current))
421 		return 1;
422 
423 	/*
424 	 * Clear the MSR VSX bit to indicate there is no valid state attached
425 	 * to this context, except in the specific case below where we set it.
426 	 */
427 	msr &= ~MSR_VSX;
428 #ifdef CONFIG_VSX
429 	/*
430 	 * Copy VSR 0-31 upper half from thread_struct to local
431 	 * buffer, then write that to userspace.  Also set MSR_VSX in
432 	 * the saved MSR value to indicate that frame->mc_vregs
433 	 * contains valid data
434 	 */
435 	if (current->thread.used_vsr && ctx_has_vsx_region) {
436 		flush_vsx_to_thread(current);
437 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
438 			return 1;
439 		msr |= MSR_VSX;
440 	}
441 #endif /* CONFIG_VSX */
442 #ifdef CONFIG_SPE
443 	/* save spe registers */
444 	if (current->thread.used_spe) {
445 		flush_spe_to_thread(current);
446 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
447 				   ELF_NEVRREG * sizeof(u32)))
448 			return 1;
449 		/* set MSR_SPE in the saved MSR value to indicate that
450 		   frame->mc_vregs contains valid data */
451 		msr |= MSR_SPE;
452 	}
453 	/* else assert((regs->msr & MSR_SPE) == 0) */
454 
455 	/* We always copy to/from spefscr */
456 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
457 		return 1;
458 #endif /* CONFIG_SPE */
459 
460 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
461 		return 1;
462 	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
463 	 * can check it on the restore to see if TM is active
464 	 */
465 	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
466 		return 1;
467 
468 	if (sigret) {
469 		/* Set up the sigreturn trampoline: li 0,sigret; sc */
470 		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
471 		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
472 			return 1;
473 		flush_icache_range((unsigned long) &frame->tramp[0],
474 				   (unsigned long) &frame->tramp[2]);
475 	}
476 
477 	return 0;
478 }
479 
480 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
481 /*
482  * Save the current user registers on the user stack.
483  * We only save the altivec/spe registers if the process has used
484  * altivec/spe instructions at some point.
485  * We also save the transactional registers to a second ucontext in the
486  * frame.
487  *
488  * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
489  */
490 static int save_tm_user_regs(struct pt_regs *regs,
491 			     struct mcontext __user *frame,
492 			     struct mcontext __user *tm_frame, int sigret)
493 {
494 	unsigned long msr = regs->msr;
495 
496 	WARN_ON(tm_suspend_disabled);
497 
498 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
499 	 * just indicates to userland that we were doing a transaction, but we
500 	 * don't want to return in transactional state.  This also ensures
501 	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
502 	 */
503 	regs->msr &= ~MSR_TS_MASK;
504 
505 	/* Save both sets of general registers */
506 	if (save_general_regs(&current->thread.ckpt_regs, frame)
507 	    || save_general_regs(regs, tm_frame))
508 		return 1;
509 
510 	/* Stash the top half of the 64bit MSR into the 32bit MSR word
511 	 * of the transactional mcontext.  This way we have a backward-compatible
512 	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
513 	 * also look at what type of transaction (T or S) was active at the
514 	 * time of the signal.
515 	 */
516 	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
517 		return 1;
518 
519 #ifdef CONFIG_ALTIVEC
520 	/* save altivec registers */
521 	if (current->thread.used_vr) {
522 		if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
523 				   ELF_NVRREG * sizeof(vector128)))
524 			return 1;
525 		if (msr & MSR_VEC) {
526 			if (__copy_to_user(&tm_frame->mc_vregs,
527 					   &current->thread.vr_state,
528 					   ELF_NVRREG * sizeof(vector128)))
529 				return 1;
530 		} else {
531 			if (__copy_to_user(&tm_frame->mc_vregs,
532 					   &current->thread.ckvr_state,
533 					   ELF_NVRREG * sizeof(vector128)))
534 				return 1;
535 		}
536 
537 		/* set MSR_VEC in the saved MSR value to indicate that
538 		 * frame->mc_vregs contains valid data
539 		 */
540 		msr |= MSR_VEC;
541 	}
542 
543 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
544 	 * use altivec. Since VSCR only contains 32 bits saved in the least
545 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
546 	 * most significant bits of that same vector. --BenH
547 	 */
548 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
549 		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
550 	if (__put_user(current->thread.ckvrsave,
551 		       (u32 __user *)&frame->mc_vregs[32]))
552 		return 1;
553 	if (msr & MSR_VEC) {
554 		if (__put_user(current->thread.vrsave,
555 			       (u32 __user *)&tm_frame->mc_vregs[32]))
556 			return 1;
557 	} else {
558 		if (__put_user(current->thread.ckvrsave,
559 			       (u32 __user *)&tm_frame->mc_vregs[32]))
560 			return 1;
561 	}
562 #endif /* CONFIG_ALTIVEC */
563 
564 	if (copy_ckfpr_to_user(&frame->mc_fregs, current))
565 		return 1;
566 	if (msr & MSR_FP) {
567 		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
568 			return 1;
569 	} else {
570 		if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
571 			return 1;
572 	}
573 
574 #ifdef CONFIG_VSX
575 	/*
576 	 * Copy VSR 0-31 upper half from thread_struct to local
577 	 * buffer, then write that to userspace.  Also set MSR_VSX in
578 	 * the saved MSR value to indicate that frame->mc_vregs
579 	 * contains valid data
580 	 */
581 	if (current->thread.used_vsr) {
582 		if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
583 			return 1;
584 		if (msr & MSR_VSX) {
585 			if (copy_vsx_to_user(&tm_frame->mc_vsregs,
586 						      current))
587 				return 1;
588 		} else {
589 			if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
590 				return 1;
591 		}
592 
593 		msr |= MSR_VSX;
594 	}
595 #endif /* CONFIG_VSX */
596 #ifdef CONFIG_SPE
597 	/* SPE regs are not checkpointed with TM, so this section is
598 	 * simply the same as in save_user_regs().
599 	 */
600 	if (current->thread.used_spe) {
601 		flush_spe_to_thread(current);
602 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
603 				   ELF_NEVRREG * sizeof(u32)))
604 			return 1;
605 		/* set MSR_SPE in the saved MSR value to indicate that
606 		 * frame->mc_vregs contains valid data */
607 		msr |= MSR_SPE;
608 	}
609 
610 	/* We always copy to/from spefscr */
611 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
612 		return 1;
613 #endif /* CONFIG_SPE */
614 
615 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
616 		return 1;
617 	if (sigret) {
618 		/* Set up the sigreturn trampoline: li 0,sigret; sc */
619 		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
620 		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
621 			return 1;
622 		flush_icache_range((unsigned long) &frame->tramp[0],
623 				   (unsigned long) &frame->tramp[2]);
624 	}
625 
626 	return 0;
627 }
628 #endif
629 
630 /*
631  * Restore the current user register values from the user stack,
632  * (except for MSR).
633  */
634 static long restore_user_regs(struct pt_regs *regs,
635 			      struct mcontext __user *sr, int sig)
636 {
637 	long err;
638 	unsigned int save_r2 = 0;
639 	unsigned long msr;
640 #ifdef CONFIG_VSX
641 	int i;
642 #endif
643 
644 	/*
645 	 * restore general registers but not including MSR or SOFTE. Also
646 	 * take care of keeping r2 (TLS) intact if not a signal
647 	 */
648 	if (!sig)
649 		save_r2 = (unsigned int)regs->gpr[2];
650 	err = restore_general_regs(regs, sr);
651 	regs->trap = 0;
652 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
653 	if (!sig)
654 		regs->gpr[2] = (unsigned long) save_r2;
655 	if (err)
656 		return 1;
657 
658 	/* if doing signal return, restore the previous little-endian mode */
659 	if (sig)
660 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
661 
662 #ifdef CONFIG_ALTIVEC
663 	/*
664 	 * Force the process to reload the altivec registers from
665 	 * current->thread when it next does altivec instructions
666 	 */
667 	regs->msr &= ~MSR_VEC;
668 	if (msr & MSR_VEC) {
669 		/* restore altivec registers from the stack */
670 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
671 				     sizeof(sr->mc_vregs)))
672 			return 1;
673 		current->thread.used_vr = true;
674 	} else if (current->thread.used_vr)
675 		memset(&current->thread.vr_state, 0,
676 		       ELF_NVRREG * sizeof(vector128));
677 
678 	/* Always get VRSAVE back */
679 	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
680 		return 1;
681 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
682 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
683 #endif /* CONFIG_ALTIVEC */
684 	if (copy_fpr_from_user(current, &sr->mc_fregs))
685 		return 1;
686 
687 #ifdef CONFIG_VSX
688 	/*
689 	 * Force the process to reload the VSX registers from
690 	 * current->thread when it next does VSX instruction.
691 	 */
692 	regs->msr &= ~MSR_VSX;
693 	if (msr & MSR_VSX) {
694 		/*
695 		 * Restore altivec registers from the stack to a local
696 		 * buffer, then write this out to the thread_struct
697 		 */
698 		if (copy_vsx_from_user(current, &sr->mc_vsregs))
699 			return 1;
700 		current->thread.used_vsr = true;
701 	} else if (current->thread.used_vsr)
702 		for (i = 0; i < 32 ; i++)
703 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
704 #endif /* CONFIG_VSX */
705 	/*
706 	 * force the process to reload the FP registers from
707 	 * current->thread when it next does FP instructions
708 	 */
709 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
710 
711 #ifdef CONFIG_SPE
712 	/* force the process to reload the spe registers from
713 	   current->thread when it next does spe instructions */
714 	regs->msr &= ~MSR_SPE;
715 	if (msr & MSR_SPE) {
716 		/* restore spe registers from the stack */
717 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
718 				     ELF_NEVRREG * sizeof(u32)))
719 			return 1;
720 		current->thread.used_spe = true;
721 	} else if (current->thread.used_spe)
722 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
723 
724 	/* Always get SPEFSCR back */
725 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
726 		return 1;
727 #endif /* CONFIG_SPE */
728 
729 	return 0;
730 }
731 
732 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
733 /*
734  * Restore the current user register values from the user stack, except for
735  * MSR, and recheckpoint the original checkpointed register state for processes
736  * in transactions.
737  */
738 static long restore_tm_user_regs(struct pt_regs *regs,
739 				 struct mcontext __user *sr,
740 				 struct mcontext __user *tm_sr)
741 {
742 	long err;
743 	unsigned long msr, msr_hi;
744 #ifdef CONFIG_VSX
745 	int i;
746 #endif
747 
748 	if (tm_suspend_disabled)
749 		return 1;
750 	/*
751 	 * restore general registers but not including MSR or SOFTE. Also
752 	 * take care of keeping r2 (TLS) intact if not a signal.
753 	 * See comment in signal_64.c:restore_tm_sigcontexts();
754 	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
755 	 * were set by the signal delivery.
756 	 */
757 	err = restore_general_regs(regs, tm_sr);
758 	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
759 
760 	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
761 
762 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
763 	if (err)
764 		return 1;
765 
766 	/* Restore the previous little-endian mode */
767 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
768 
769 #ifdef CONFIG_ALTIVEC
770 	regs->msr &= ~MSR_VEC;
771 	if (msr & MSR_VEC) {
772 		/* restore altivec registers from the stack */
773 		if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
774 				     sizeof(sr->mc_vregs)) ||
775 		    __copy_from_user(&current->thread.vr_state,
776 				     &tm_sr->mc_vregs,
777 				     sizeof(sr->mc_vregs)))
778 			return 1;
779 		current->thread.used_vr = true;
780 	} else if (current->thread.used_vr) {
781 		memset(&current->thread.vr_state, 0,
782 		       ELF_NVRREG * sizeof(vector128));
783 		memset(&current->thread.ckvr_state, 0,
784 		       ELF_NVRREG * sizeof(vector128));
785 	}
786 
787 	/* Always get VRSAVE back */
788 	if (__get_user(current->thread.ckvrsave,
789 		       (u32 __user *)&sr->mc_vregs[32]) ||
790 	    __get_user(current->thread.vrsave,
791 		       (u32 __user *)&tm_sr->mc_vregs[32]))
792 		return 1;
793 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
794 		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
795 #endif /* CONFIG_ALTIVEC */
796 
797 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
798 
799 	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
800 	    copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
801 		return 1;
802 
803 #ifdef CONFIG_VSX
804 	regs->msr &= ~MSR_VSX;
805 	if (msr & MSR_VSX) {
806 		/*
807 		 * Restore altivec registers from the stack to a local
808 		 * buffer, then write this out to the thread_struct
809 		 */
810 		if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
811 		    copy_ckvsx_from_user(current, &sr->mc_vsregs))
812 			return 1;
813 		current->thread.used_vsr = true;
814 	} else if (current->thread.used_vsr)
815 		for (i = 0; i < 32 ; i++) {
816 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
817 			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
818 		}
819 #endif /* CONFIG_VSX */
820 
821 #ifdef CONFIG_SPE
822 	/* SPE regs are not checkpointed with TM, so this section is
823 	 * simply the same as in restore_user_regs().
824 	 */
825 	regs->msr &= ~MSR_SPE;
826 	if (msr & MSR_SPE) {
827 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
828 				     ELF_NEVRREG * sizeof(u32)))
829 			return 1;
830 		current->thread.used_spe = true;
831 	} else if (current->thread.used_spe)
832 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
833 
834 	/* Always get SPEFSCR back */
835 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
836 		       + ELF_NEVRREG))
837 		return 1;
838 #endif /* CONFIG_SPE */
839 
840 	/* Get the top half of the MSR from the user context */
841 	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
842 		return 1;
843 	msr_hi <<= 32;
844 	/* If TM bits are set to the reserved value, it's an invalid context */
845 	if (MSR_TM_RESV(msr_hi))
846 		return 1;
847 
848 	/*
849 	 * Disabling preemption, since it is unsafe to be preempted
850 	 * with MSR[TS] set without recheckpointing.
851 	 */
852 	preempt_disable();
853 
854 	/*
855 	 * CAUTION:
856 	 * After regs->MSR[TS] being updated, make sure that get_user(),
857 	 * put_user() or similar functions are *not* called. These
858 	 * functions can generate page faults which will cause the process
859 	 * to be de-scheduled with MSR[TS] set but without calling
860 	 * tm_recheckpoint(). This can cause a bug.
861 	 *
862 	 * Pull in the MSR TM bits from the user context
863 	 */
864 	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
865 	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
866 	 * registers, including FP and V[S]Rs.  After recheckpointing, the
867 	 * transactional versions should be loaded.
868 	 */
869 	tm_enable();
870 	/* Make sure the transaction is marked as failed */
871 	current->thread.tm_texasr |= TEXASR_FS;
872 	/* This loads the checkpointed FP/VEC state, if used */
873 	tm_recheckpoint(&current->thread);
874 
875 	/* This loads the speculative FP/VEC state, if used */
876 	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
877 	if (msr & MSR_FP) {
878 		load_fp_state(&current->thread.fp_state);
879 		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
880 	}
881 #ifdef CONFIG_ALTIVEC
882 	if (msr & MSR_VEC) {
883 		load_vr_state(&current->thread.vr_state);
884 		regs->msr |= MSR_VEC;
885 	}
886 #endif
887 
888 	preempt_enable();
889 
890 	return 0;
891 }
892 #endif
893 
894 #ifdef CONFIG_PPC64
895 
896 #define copy_siginfo_to_user	copy_siginfo_to_user32
897 
898 #endif /* CONFIG_PPC64 */
899 
900 /*
901  * Set up a signal frame for a "real-time" signal handler
902  * (one which gets siginfo).
903  */
904 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
905 		       struct task_struct *tsk)
906 {
907 	struct rt_sigframe __user *rt_sf;
908 	struct mcontext __user *frame;
909 	struct mcontext __user *tm_frame = NULL;
910 	void __user *addr;
911 	unsigned long newsp = 0;
912 	int sigret;
913 	unsigned long tramp;
914 	struct pt_regs *regs = tsk->thread.regs;
915 
916 	BUG_ON(tsk != current);
917 
918 	/* Set up Signal Frame */
919 	/* Put a Real Time Context onto stack */
920 	rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
921 	addr = rt_sf;
922 	if (unlikely(rt_sf == NULL))
923 		goto badframe;
924 
925 	/* Put the siginfo & fill in most of the ucontext */
926 	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
927 	    || __put_user(0, &rt_sf->uc.uc_flags)
928 	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
929 	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
930 		    &rt_sf->uc.uc_regs)
931 	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
932 		goto badframe;
933 
934 	/* Save user registers on the stack */
935 	frame = &rt_sf->uc.uc_mcontext;
936 	addr = frame;
937 	if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
938 		sigret = 0;
939 		tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
940 	} else {
941 		sigret = __NR_rt_sigreturn;
942 		tramp = (unsigned long) frame->tramp;
943 	}
944 
945 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
946 	tm_frame = &rt_sf->uc_transact.uc_mcontext;
947 	if (MSR_TM_ACTIVE(regs->msr)) {
948 		if (__put_user((unsigned long)&rt_sf->uc_transact,
949 			       &rt_sf->uc.uc_link) ||
950 		    __put_user((unsigned long)tm_frame,
951 			       &rt_sf->uc_transact.uc_regs))
952 			goto badframe;
953 		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
954 			goto badframe;
955 	}
956 	else
957 #endif
958 	{
959 		if (__put_user(0, &rt_sf->uc.uc_link))
960 			goto badframe;
961 		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
962 			goto badframe;
963 	}
964 	regs->link = tramp;
965 
966 	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
967 
968 	/* create a stack frame for the caller of the handler */
969 	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
970 	addr = (void __user *)regs->gpr[1];
971 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
972 		goto badframe;
973 
974 	/* Fill registers for signal handler */
975 	regs->gpr[1] = newsp;
976 	regs->gpr[3] = ksig->sig;
977 	regs->gpr[4] = (unsigned long) &rt_sf->info;
978 	regs->gpr[5] = (unsigned long) &rt_sf->uc;
979 	regs->gpr[6] = (unsigned long) rt_sf;
980 	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
981 	/* enter the signal handler in native-endian mode */
982 	regs->msr &= ~MSR_LE;
983 	regs->msr |= (MSR_KERNEL & MSR_LE);
984 	return 0;
985 
986 badframe:
987 	if (show_unhandled_signals)
988 		printk_ratelimited(KERN_INFO
989 				   "%s[%d]: bad frame in handle_rt_signal32: "
990 				   "%p nip %08lx lr %08lx\n",
991 				   tsk->comm, tsk->pid,
992 				   addr, regs->nip, regs->link);
993 
994 	return 1;
995 }
996 
997 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
998 {
999 	sigset_t set;
1000 	struct mcontext __user *mcp;
1001 
1002 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1003 		return -EFAULT;
1004 #ifdef CONFIG_PPC64
1005 	{
1006 		u32 cmcp;
1007 
1008 		if (__get_user(cmcp, &ucp->uc_regs))
1009 			return -EFAULT;
1010 		mcp = (struct mcontext __user *)(u64)cmcp;
1011 		/* no need to check access_ok(mcp), since mcp < 4GB */
1012 	}
1013 #else
1014 	if (__get_user(mcp, &ucp->uc_regs))
1015 		return -EFAULT;
1016 	if (!access_ok(mcp, sizeof(*mcp)))
1017 		return -EFAULT;
1018 #endif
1019 	set_current_blocked(&set);
1020 	if (restore_user_regs(regs, mcp, sig))
1021 		return -EFAULT;
1022 
1023 	return 0;
1024 }
1025 
1026 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1027 static int do_setcontext_tm(struct ucontext __user *ucp,
1028 			    struct ucontext __user *tm_ucp,
1029 			    struct pt_regs *regs)
1030 {
1031 	sigset_t set;
1032 	struct mcontext __user *mcp;
1033 	struct mcontext __user *tm_mcp;
1034 	u32 cmcp;
1035 	u32 tm_cmcp;
1036 
1037 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1038 		return -EFAULT;
1039 
1040 	if (__get_user(cmcp, &ucp->uc_regs) ||
1041 	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1042 		return -EFAULT;
1043 	mcp = (struct mcontext __user *)(u64)cmcp;
1044 	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1045 	/* no need to check access_ok(mcp), since mcp < 4GB */
1046 
1047 	set_current_blocked(&set);
1048 	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1049 		return -EFAULT;
1050 
1051 	return 0;
1052 }
1053 #endif
1054 
1055 #ifdef CONFIG_PPC64
1056 COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
1057 		       struct ucontext __user *, new_ctx, int, ctx_size)
1058 #else
1059 SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
1060 		       struct ucontext __user *, new_ctx, long, ctx_size)
1061 #endif
1062 {
1063 	struct pt_regs *regs = current_pt_regs();
1064 	int ctx_has_vsx_region = 0;
1065 
1066 #ifdef CONFIG_PPC64
1067 	unsigned long new_msr = 0;
1068 
1069 	if (new_ctx) {
1070 		struct mcontext __user *mcp;
1071 		u32 cmcp;
1072 
1073 		/*
1074 		 * Get pointer to the real mcontext.  No need for
1075 		 * access_ok since we are dealing with compat
1076 		 * pointers.
1077 		 */
1078 		if (__get_user(cmcp, &new_ctx->uc_regs))
1079 			return -EFAULT;
1080 		mcp = (struct mcontext __user *)(u64)cmcp;
1081 		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1082 			return -EFAULT;
1083 	}
1084 	/*
1085 	 * Check that the context is not smaller than the original
1086 	 * size (with VMX but without VSX)
1087 	 */
1088 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1089 		return -EINVAL;
1090 	/*
1091 	 * If the new context state sets the MSR VSX bits but
1092 	 * it doesn't provide VSX state.
1093 	 */
1094 	if ((ctx_size < sizeof(struct ucontext)) &&
1095 	    (new_msr & MSR_VSX))
1096 		return -EINVAL;
1097 	/* Does the context have enough room to store VSX data? */
1098 	if (ctx_size >= sizeof(struct ucontext))
1099 		ctx_has_vsx_region = 1;
1100 #else
1101 	/* Context size is for future use. Right now, we only make sure
1102 	 * we are passed something we understand
1103 	 */
1104 	if (ctx_size < sizeof(struct ucontext))
1105 		return -EINVAL;
1106 #endif
1107 	if (old_ctx != NULL) {
1108 		struct mcontext __user *mctx;
1109 
1110 		/*
1111 		 * old_ctx might not be 16-byte aligned, in which
1112 		 * case old_ctx->uc_mcontext won't be either.
1113 		 * Because we have the old_ctx->uc_pad2 field
1114 		 * before old_ctx->uc_mcontext, we need to round down
1115 		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1116 		 */
1117 		mctx = (struct mcontext __user *)
1118 			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1119 		if (!access_ok(old_ctx, ctx_size)
1120 		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1121 		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1122 		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1123 			return -EFAULT;
1124 	}
1125 	if (new_ctx == NULL)
1126 		return 0;
1127 	if (!access_ok(new_ctx, ctx_size) ||
1128 	    fault_in_pages_readable((u8 __user *)new_ctx, ctx_size))
1129 		return -EFAULT;
1130 
1131 	/*
1132 	 * If we get a fault copying the context into the kernel's
1133 	 * image of the user's registers, we can't just return -EFAULT
1134 	 * because the user's registers will be corrupted.  For instance
1135 	 * the NIP value may have been updated but not some of the
1136 	 * other registers.  Given that we have done the access_ok
1137 	 * and successfully read the first and last bytes of the region
1138 	 * above, this should only happen in an out-of-memory situation
1139 	 * or if another thread unmaps the region containing the context.
1140 	 * We kill the task with a SIGSEGV in this situation.
1141 	 */
1142 	if (do_setcontext(new_ctx, regs, 0))
1143 		do_exit(SIGSEGV);
1144 
1145 	set_thread_flag(TIF_RESTOREALL);
1146 	return 0;
1147 }
1148 
1149 #ifdef CONFIG_PPC64
1150 COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1151 #else
1152 SYSCALL_DEFINE0(rt_sigreturn)
1153 #endif
1154 {
1155 	struct rt_sigframe __user *rt_sf;
1156 	struct pt_regs *regs = current_pt_regs();
1157 	int tm_restore = 0;
1158 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1159 	struct ucontext __user *uc_transact;
1160 	unsigned long msr_hi;
1161 	unsigned long tmp;
1162 #endif
1163 	/* Always make any pending restarted system calls return -EINTR */
1164 	current->restart_block.fn = do_no_restart_syscall;
1165 
1166 	rt_sf = (struct rt_sigframe __user *)
1167 		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1168 	if (!access_ok(rt_sf, sizeof(*rt_sf)))
1169 		goto bad;
1170 
1171 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1172 	/*
1173 	 * If there is a transactional state then throw it away.
1174 	 * The purpose of a sigreturn is to destroy all traces of the
1175 	 * signal frame, this includes any transactional state created
1176 	 * within in. We only check for suspended as we can never be
1177 	 * active in the kernel, we are active, there is nothing better to
1178 	 * do than go ahead and Bad Thing later.
1179 	 * The cause is not important as there will never be a
1180 	 * recheckpoint so it's not user visible.
1181 	 */
1182 	if (MSR_TM_SUSPENDED(mfmsr()))
1183 		tm_reclaim_current(0);
1184 
1185 	if (__get_user(tmp, &rt_sf->uc.uc_link))
1186 		goto bad;
1187 	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1188 	if (uc_transact) {
1189 		u32 cmcp;
1190 		struct mcontext __user *mcp;
1191 
1192 		if (__get_user(cmcp, &uc_transact->uc_regs))
1193 			return -EFAULT;
1194 		mcp = (struct mcontext __user *)(u64)cmcp;
1195 		/* The top 32 bits of the MSR are stashed in the transactional
1196 		 * ucontext. */
1197 		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1198 			goto bad;
1199 
1200 		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1201 			/* We only recheckpoint on return if we're
1202 			 * transaction.
1203 			 */
1204 			tm_restore = 1;
1205 			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1206 				goto bad;
1207 		}
1208 	}
1209 	if (!tm_restore) {
1210 		/*
1211 		 * Unset regs->msr because ucontext MSR TS is not
1212 		 * set, and recheckpoint was not called. This avoid
1213 		 * hitting a TM Bad thing at RFID
1214 		 */
1215 		regs->msr &= ~MSR_TS_MASK;
1216 	}
1217 	/* Fall through, for non-TM restore */
1218 #endif
1219 	if (!tm_restore)
1220 		if (do_setcontext(&rt_sf->uc, regs, 1))
1221 			goto bad;
1222 
1223 	/*
1224 	 * It's not clear whether or why it is desirable to save the
1225 	 * sigaltstack setting on signal delivery and restore it on
1226 	 * signal return.  But other architectures do this and we have
1227 	 * always done it up until now so it is probably better not to
1228 	 * change it.  -- paulus
1229 	 */
1230 #ifdef CONFIG_PPC64
1231 	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1232 		goto bad;
1233 #else
1234 	if (restore_altstack(&rt_sf->uc.uc_stack))
1235 		goto bad;
1236 #endif
1237 	set_thread_flag(TIF_RESTOREALL);
1238 	return 0;
1239 
1240  bad:
1241 	if (show_unhandled_signals)
1242 		printk_ratelimited(KERN_INFO
1243 				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1244 				   "%p nip %08lx lr %08lx\n",
1245 				   current->comm, current->pid,
1246 				   rt_sf, regs->nip, regs->link);
1247 
1248 	force_sig(SIGSEGV, current);
1249 	return 0;
1250 }
1251 
1252 #ifdef CONFIG_PPC32
1253 SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1254 			 int, ndbg, struct sig_dbg_op __user *, dbg)
1255 {
1256 	struct pt_regs *regs = current_pt_regs();
1257 	struct sig_dbg_op op;
1258 	int i;
1259 	unsigned long new_msr = regs->msr;
1260 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1261 	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1262 #endif
1263 
1264 	for (i=0; i<ndbg; i++) {
1265 		if (copy_from_user(&op, dbg + i, sizeof(op)))
1266 			return -EFAULT;
1267 		switch (op.dbg_type) {
1268 		case SIG_DBG_SINGLE_STEPPING:
1269 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1270 			if (op.dbg_value) {
1271 				new_msr |= MSR_DE;
1272 				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1273 			} else {
1274 				new_dbcr0 &= ~DBCR0_IC;
1275 				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1276 						current->thread.debug.dbcr1)) {
1277 					new_msr &= ~MSR_DE;
1278 					new_dbcr0 &= ~DBCR0_IDM;
1279 				}
1280 			}
1281 #else
1282 			if (op.dbg_value)
1283 				new_msr |= MSR_SE;
1284 			else
1285 				new_msr &= ~MSR_SE;
1286 #endif
1287 			break;
1288 		case SIG_DBG_BRANCH_TRACING:
1289 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1290 			return -EINVAL;
1291 #else
1292 			if (op.dbg_value)
1293 				new_msr |= MSR_BE;
1294 			else
1295 				new_msr &= ~MSR_BE;
1296 #endif
1297 			break;
1298 
1299 		default:
1300 			return -EINVAL;
1301 		}
1302 	}
1303 
1304 	/* We wait until here to actually install the values in the
1305 	   registers so if we fail in the above loop, it will not
1306 	   affect the contents of these registers.  After this point,
1307 	   failure is a problem, anyway, and it's very unlikely unless
1308 	   the user is really doing something wrong. */
1309 	regs->msr = new_msr;
1310 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1311 	current->thread.debug.dbcr0 = new_dbcr0;
1312 #endif
1313 
1314 	if (!access_ok(ctx, sizeof(*ctx)) ||
1315 	    fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx)))
1316 		return -EFAULT;
1317 
1318 	/*
1319 	 * If we get a fault copying the context into the kernel's
1320 	 * image of the user's registers, we can't just return -EFAULT
1321 	 * because the user's registers will be corrupted.  For instance
1322 	 * the NIP value may have been updated but not some of the
1323 	 * other registers.  Given that we have done the access_ok
1324 	 * and successfully read the first and last bytes of the region
1325 	 * above, this should only happen in an out-of-memory situation
1326 	 * or if another thread unmaps the region containing the context.
1327 	 * We kill the task with a SIGSEGV in this situation.
1328 	 */
1329 	if (do_setcontext(ctx, regs, 1)) {
1330 		if (show_unhandled_signals)
1331 			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1332 					   "sys_debug_setcontext: %p nip %08lx "
1333 					   "lr %08lx\n",
1334 					   current->comm, current->pid,
1335 					   ctx, regs->nip, regs->link);
1336 
1337 		force_sig(SIGSEGV, current);
1338 		goto out;
1339 	}
1340 
1341 	/*
1342 	 * It's not clear whether or why it is desirable to save the
1343 	 * sigaltstack setting on signal delivery and restore it on
1344 	 * signal return.  But other architectures do this and we have
1345 	 * always done it up until now so it is probably better not to
1346 	 * change it.  -- paulus
1347 	 */
1348 	restore_altstack(&ctx->uc_stack);
1349 
1350 	set_thread_flag(TIF_RESTOREALL);
1351  out:
1352 	return 0;
1353 }
1354 #endif
1355 
1356 /*
1357  * OK, we're invoking a handler
1358  */
1359 int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1360 		struct task_struct *tsk)
1361 {
1362 	struct sigcontext __user *sc;
1363 	struct sigframe __user *frame;
1364 	struct mcontext __user *tm_mctx = NULL;
1365 	unsigned long newsp = 0;
1366 	int sigret;
1367 	unsigned long tramp;
1368 	struct pt_regs *regs = tsk->thread.regs;
1369 
1370 	BUG_ON(tsk != current);
1371 
1372 	/* Set up Signal Frame */
1373 	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1374 	if (unlikely(frame == NULL))
1375 		goto badframe;
1376 	sc = (struct sigcontext __user *) &frame->sctx;
1377 
1378 #if _NSIG != 64
1379 #error "Please adjust handle_signal()"
1380 #endif
1381 	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1382 	    || __put_user(oldset->sig[0], &sc->oldmask)
1383 #ifdef CONFIG_PPC64
1384 	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1385 #else
1386 	    || __put_user(oldset->sig[1], &sc->_unused[3])
1387 #endif
1388 	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1389 	    || __put_user(ksig->sig, &sc->signal))
1390 		goto badframe;
1391 
1392 	if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1393 		sigret = 0;
1394 		tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1395 	} else {
1396 		sigret = __NR_sigreturn;
1397 		tramp = (unsigned long) frame->mctx.tramp;
1398 	}
1399 
1400 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1401 	tm_mctx = &frame->mctx_transact;
1402 	if (MSR_TM_ACTIVE(regs->msr)) {
1403 		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1404 				      sigret))
1405 			goto badframe;
1406 	}
1407 	else
1408 #endif
1409 	{
1410 		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1411 			goto badframe;
1412 	}
1413 
1414 	regs->link = tramp;
1415 
1416 	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1417 
1418 	/* create a stack frame for the caller of the handler */
1419 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1420 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1421 		goto badframe;
1422 
1423 	regs->gpr[1] = newsp;
1424 	regs->gpr[3] = ksig->sig;
1425 	regs->gpr[4] = (unsigned long) sc;
1426 	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1427 	/* enter the signal handler in big-endian mode */
1428 	regs->msr &= ~MSR_LE;
1429 	return 0;
1430 
1431 badframe:
1432 	if (show_unhandled_signals)
1433 		printk_ratelimited(KERN_INFO
1434 				   "%s[%d]: bad frame in handle_signal32: "
1435 				   "%p nip %08lx lr %08lx\n",
1436 				   tsk->comm, tsk->pid,
1437 				   frame, regs->nip, regs->link);
1438 
1439 	return 1;
1440 }
1441 
1442 /*
1443  * Do a signal return; undo the signal stack.
1444  */
1445 #ifdef CONFIG_PPC64
1446 COMPAT_SYSCALL_DEFINE0(sigreturn)
1447 #else
1448 SYSCALL_DEFINE0(sigreturn)
1449 #endif
1450 {
1451 	struct pt_regs *regs = current_pt_regs();
1452 	struct sigframe __user *sf;
1453 	struct sigcontext __user *sc;
1454 	struct sigcontext sigctx;
1455 	struct mcontext __user *sr;
1456 	void __user *addr;
1457 	sigset_t set;
1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459 	struct mcontext __user *mcp, *tm_mcp;
1460 	unsigned long msr_hi;
1461 #endif
1462 
1463 	/* Always make any pending restarted system calls return -EINTR */
1464 	current->restart_block.fn = do_no_restart_syscall;
1465 
1466 	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1467 	sc = &sf->sctx;
1468 	addr = sc;
1469 	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1470 		goto badframe;
1471 
1472 #ifdef CONFIG_PPC64
1473 	/*
1474 	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1475 	 * unused part of the signal stackframe
1476 	 */
1477 	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1478 #else
1479 	set.sig[0] = sigctx.oldmask;
1480 	set.sig[1] = sigctx._unused[3];
1481 #endif
1482 	set_current_blocked(&set);
1483 
1484 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1485 	mcp = (struct mcontext __user *)&sf->mctx;
1486 	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1487 	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1488 		goto badframe;
1489 	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1490 		if (!cpu_has_feature(CPU_FTR_TM))
1491 			goto badframe;
1492 		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1493 			goto badframe;
1494 	} else
1495 #endif
1496 	{
1497 		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1498 		addr = sr;
1499 		if (!access_ok(sr, sizeof(*sr))
1500 		    || restore_user_regs(regs, sr, 1))
1501 			goto badframe;
1502 	}
1503 
1504 	set_thread_flag(TIF_RESTOREALL);
1505 	return 0;
1506 
1507 badframe:
1508 	if (show_unhandled_signals)
1509 		printk_ratelimited(KERN_INFO
1510 				   "%s[%d]: bad frame in sys_sigreturn: "
1511 				   "%p nip %08lx lr %08lx\n",
1512 				   current->comm, current->pid,
1513 				   addr, regs->nip, regs->link);
1514 
1515 	force_sig(SIGSEGV, current);
1516 	return 0;
1517 }
1518