1 /* 2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC 3 * 4 * PowerPC version 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Copyright (C) 2001 IBM 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 9 * 10 * Derived from "arch/i386/kernel/signal.c" 11 * Copyright (C) 1991, 1992 Linus Torvalds 12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 13 * 14 * This program is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU General Public License 16 * as published by the Free Software Foundation; either version 17 * 2 of the License, or (at your option) any later version. 18 */ 19 20 #include <linux/sched.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/kernel.h> 24 #include <linux/signal.h> 25 #include <linux/errno.h> 26 #include <linux/elf.h> 27 #include <linux/ptrace.h> 28 #include <linux/ratelimit.h> 29 #ifdef CONFIG_PPC64 30 #include <linux/syscalls.h> 31 #include <linux/compat.h> 32 #else 33 #include <linux/wait.h> 34 #include <linux/unistd.h> 35 #include <linux/stddef.h> 36 #include <linux/tty.h> 37 #include <linux/binfmts.h> 38 #endif 39 40 #include <linux/uaccess.h> 41 #include <asm/cacheflush.h> 42 #include <asm/syscalls.h> 43 #include <asm/sigcontext.h> 44 #include <asm/vdso.h> 45 #include <asm/switch_to.h> 46 #include <asm/tm.h> 47 #include <asm/asm-prototypes.h> 48 #ifdef CONFIG_PPC64 49 #include "ppc32.h" 50 #include <asm/unistd.h> 51 #else 52 #include <asm/ucontext.h> 53 #include <asm/pgtable.h> 54 #endif 55 56 #include "signal.h" 57 58 59 #ifdef CONFIG_PPC64 60 #define sys_rt_sigreturn compat_sys_rt_sigreturn 61 #define sys_swapcontext compat_sys_swapcontext 62 #define sys_sigreturn compat_sys_sigreturn 63 64 #define old_sigaction old_sigaction32 65 #define sigcontext sigcontext32 66 #define mcontext mcontext32 67 #define ucontext ucontext32 68 69 #define __save_altstack __compat_save_altstack 70 71 /* 72 * Userspace code may pass a ucontext which doesn't include VSX added 73 * at the end. We need to check for this case. 74 */ 75 #define UCONTEXTSIZEWITHOUTVSX \ 76 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) 77 78 /* 79 * Returning 0 means we return to userspace via 80 * ret_from_except and thus restore all user 81 * registers from *regs. This is what we need 82 * to do when a signal has been delivered. 83 */ 84 85 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) 86 #undef __SIGNAL_FRAMESIZE 87 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 88 #undef ELF_NVRREG 89 #define ELF_NVRREG ELF_NVRREG32 90 91 /* 92 * Functions for flipping sigsets (thanks to brain dead generic 93 * implementation that makes things simple for little endian only) 94 */ 95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) 96 { 97 compat_sigset_t cset; 98 99 switch (_NSIG_WORDS) { 100 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull; 101 cset.sig[7] = set->sig[3] >> 32; 102 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull; 103 cset.sig[5] = set->sig[2] >> 32; 104 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull; 105 cset.sig[3] = set->sig[1] >> 32; 106 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull; 107 cset.sig[1] = set->sig[0] >> 32; 108 } 109 return copy_to_user(uset, &cset, sizeof(*uset)); 110 } 111 112 static inline int get_sigset_t(sigset_t *set, 113 const compat_sigset_t __user *uset) 114 { 115 compat_sigset_t s32; 116 117 if (copy_from_user(&s32, uset, sizeof(*uset))) 118 return -EFAULT; 119 120 /* 121 * Swap the 2 words of the 64-bit sigset_t (they are stored 122 * in the "wrong" endian in 32-bit user storage). 123 */ 124 switch (_NSIG_WORDS) { 125 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32); 126 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32); 127 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32); 128 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32); 129 } 130 return 0; 131 } 132 133 #define to_user_ptr(p) ptr_to_compat(p) 134 #define from_user_ptr(p) compat_ptr(p) 135 136 static inline int save_general_regs(struct pt_regs *regs, 137 struct mcontext __user *frame) 138 { 139 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 140 int i; 141 142 WARN_ON(!FULL_REGS(regs)); 143 144 for (i = 0; i <= PT_RESULT; i ++) { 145 if (i == 14 && !FULL_REGS(regs)) 146 i = 32; 147 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) 148 return -EFAULT; 149 } 150 return 0; 151 } 152 153 static inline int restore_general_regs(struct pt_regs *regs, 154 struct mcontext __user *sr) 155 { 156 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 157 int i; 158 159 for (i = 0; i <= PT_RESULT; i++) { 160 if ((i == PT_MSR) || (i == PT_SOFTE)) 161 continue; 162 if (__get_user(gregs[i], &sr->mc_gregs[i])) 163 return -EFAULT; 164 } 165 return 0; 166 } 167 168 #else /* CONFIG_PPC64 */ 169 170 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) 171 172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) 173 { 174 return copy_to_user(uset, set, sizeof(*uset)); 175 } 176 177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) 178 { 179 return copy_from_user(set, uset, sizeof(*uset)); 180 } 181 182 #define to_user_ptr(p) ((unsigned long)(p)) 183 #define from_user_ptr(p) ((void __user *)(p)) 184 185 static inline int save_general_regs(struct pt_regs *regs, 186 struct mcontext __user *frame) 187 { 188 WARN_ON(!FULL_REGS(regs)); 189 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); 190 } 191 192 static inline int restore_general_regs(struct pt_regs *regs, 193 struct mcontext __user *sr) 194 { 195 /* copy up to but not including MSR */ 196 if (__copy_from_user(regs, &sr->mc_gregs, 197 PT_MSR * sizeof(elf_greg_t))) 198 return -EFAULT; 199 /* copy from orig_r3 (the word after the MSR) up to the end */ 200 if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], 201 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) 202 return -EFAULT; 203 return 0; 204 } 205 #endif 206 207 /* 208 * When we have signals to deliver, we set up on the 209 * user stack, going down from the original stack pointer: 210 * an ABI gap of 56 words 211 * an mcontext struct 212 * a sigcontext struct 213 * a gap of __SIGNAL_FRAMESIZE bytes 214 * 215 * Each of these things must be a multiple of 16 bytes in size. The following 216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap 217 * 218 */ 219 struct sigframe { 220 struct sigcontext sctx; /* the sigcontext */ 221 struct mcontext mctx; /* all the register values */ 222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 223 struct sigcontext sctx_transact; 224 struct mcontext mctx_transact; 225 #endif 226 /* 227 * Programs using the rs6000/xcoff abi can save up to 19 gp 228 * regs and 18 fp regs below sp before decrementing it. 229 */ 230 int abigap[56]; 231 }; 232 233 /* We use the mc_pad field for the signal return trampoline. */ 234 #define tramp mc_pad 235 236 /* 237 * When we have rt signals to deliver, we set up on the 238 * user stack, going down from the original stack pointer: 239 * one rt_sigframe struct (siginfo + ucontext + ABI gap) 240 * a gap of __SIGNAL_FRAMESIZE+16 bytes 241 * (the +16 is to get the siginfo and ucontext in the same 242 * positions as in older kernels). 243 * 244 * Each of these things must be a multiple of 16 bytes in size. 245 * 246 */ 247 struct rt_sigframe { 248 #ifdef CONFIG_PPC64 249 compat_siginfo_t info; 250 #else 251 struct siginfo info; 252 #endif 253 struct ucontext uc; 254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 255 struct ucontext uc_transact; 256 #endif 257 /* 258 * Programs using the rs6000/xcoff abi can save up to 19 gp 259 * regs and 18 fp regs below sp before decrementing it. 260 */ 261 int abigap[56]; 262 }; 263 264 #ifdef CONFIG_VSX 265 unsigned long copy_fpr_to_user(void __user *to, 266 struct task_struct *task) 267 { 268 u64 buf[ELF_NFPREG]; 269 int i; 270 271 /* save FPR copy to local buffer then write to the thread_struct */ 272 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 273 buf[i] = task->thread.TS_FPR(i); 274 buf[i] = task->thread.fp_state.fpscr; 275 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 276 } 277 278 unsigned long copy_fpr_from_user(struct task_struct *task, 279 void __user *from) 280 { 281 u64 buf[ELF_NFPREG]; 282 int i; 283 284 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 285 return 1; 286 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 287 task->thread.TS_FPR(i) = buf[i]; 288 task->thread.fp_state.fpscr = buf[i]; 289 290 return 0; 291 } 292 293 unsigned long copy_vsx_to_user(void __user *to, 294 struct task_struct *task) 295 { 296 u64 buf[ELF_NVSRHALFREG]; 297 int i; 298 299 /* save FPR copy to local buffer then write to the thread_struct */ 300 for (i = 0; i < ELF_NVSRHALFREG; i++) 301 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; 302 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 303 } 304 305 unsigned long copy_vsx_from_user(struct task_struct *task, 306 void __user *from) 307 { 308 u64 buf[ELF_NVSRHALFREG]; 309 int i; 310 311 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 312 return 1; 313 for (i = 0; i < ELF_NVSRHALFREG ; i++) 314 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 315 return 0; 316 } 317 318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 319 unsigned long copy_ckfpr_to_user(void __user *to, 320 struct task_struct *task) 321 { 322 u64 buf[ELF_NFPREG]; 323 int i; 324 325 /* save FPR copy to local buffer then write to the thread_struct */ 326 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 327 buf[i] = task->thread.TS_CKFPR(i); 328 buf[i] = task->thread.ckfp_state.fpscr; 329 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 330 } 331 332 unsigned long copy_ckfpr_from_user(struct task_struct *task, 333 void __user *from) 334 { 335 u64 buf[ELF_NFPREG]; 336 int i; 337 338 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 339 return 1; 340 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 341 task->thread.TS_CKFPR(i) = buf[i]; 342 task->thread.ckfp_state.fpscr = buf[i]; 343 344 return 0; 345 } 346 347 unsigned long copy_ckvsx_to_user(void __user *to, 348 struct task_struct *task) 349 { 350 u64 buf[ELF_NVSRHALFREG]; 351 int i; 352 353 /* save FPR copy to local buffer then write to the thread_struct */ 354 for (i = 0; i < ELF_NVSRHALFREG; i++) 355 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET]; 356 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 357 } 358 359 unsigned long copy_ckvsx_from_user(struct task_struct *task, 360 void __user *from) 361 { 362 u64 buf[ELF_NVSRHALFREG]; 363 int i; 364 365 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 366 return 1; 367 for (i = 0; i < ELF_NVSRHALFREG ; i++) 368 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 369 return 0; 370 } 371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 372 #else 373 inline unsigned long copy_fpr_to_user(void __user *to, 374 struct task_struct *task) 375 { 376 return __copy_to_user(to, task->thread.fp_state.fpr, 377 ELF_NFPREG * sizeof(double)); 378 } 379 380 inline unsigned long copy_fpr_from_user(struct task_struct *task, 381 void __user *from) 382 { 383 return __copy_from_user(task->thread.fp_state.fpr, from, 384 ELF_NFPREG * sizeof(double)); 385 } 386 387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 388 inline unsigned long copy_ckfpr_to_user(void __user *to, 389 struct task_struct *task) 390 { 391 return __copy_to_user(to, task->thread.ckfp_state.fpr, 392 ELF_NFPREG * sizeof(double)); 393 } 394 395 inline unsigned long copy_ckfpr_from_user(struct task_struct *task, 396 void __user *from) 397 { 398 return __copy_from_user(task->thread.ckfp_state.fpr, from, 399 ELF_NFPREG * sizeof(double)); 400 } 401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 402 #endif 403 404 /* 405 * Save the current user registers on the user stack. 406 * We only save the altivec/spe registers if the process has used 407 * altivec/spe instructions at some point. 408 */ 409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, 410 struct mcontext __user *tm_frame, int sigret, 411 int ctx_has_vsx_region) 412 { 413 unsigned long msr = regs->msr; 414 415 /* Make sure floating point registers are stored in regs */ 416 flush_fp_to_thread(current); 417 418 /* save general registers */ 419 if (save_general_regs(regs, frame)) 420 return 1; 421 422 #ifdef CONFIG_ALTIVEC 423 /* save altivec registers */ 424 if (current->thread.used_vr) { 425 flush_altivec_to_thread(current); 426 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 427 ELF_NVRREG * sizeof(vector128))) 428 return 1; 429 /* set MSR_VEC in the saved MSR value to indicate that 430 frame->mc_vregs contains valid data */ 431 msr |= MSR_VEC; 432 } 433 /* else assert((regs->msr & MSR_VEC) == 0) */ 434 435 /* We always copy to/from vrsave, it's 0 if we don't have or don't 436 * use altivec. Since VSCR only contains 32 bits saved in the least 437 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 438 * most significant bits of that same vector. --BenH 439 * Note that the current VRSAVE value is in the SPR at this point. 440 */ 441 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 442 current->thread.vrsave = mfspr(SPRN_VRSAVE); 443 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) 444 return 1; 445 #endif /* CONFIG_ALTIVEC */ 446 if (copy_fpr_to_user(&frame->mc_fregs, current)) 447 return 1; 448 449 /* 450 * Clear the MSR VSX bit to indicate there is no valid state attached 451 * to this context, except in the specific case below where we set it. 452 */ 453 msr &= ~MSR_VSX; 454 #ifdef CONFIG_VSX 455 /* 456 * Copy VSR 0-31 upper half from thread_struct to local 457 * buffer, then write that to userspace. Also set MSR_VSX in 458 * the saved MSR value to indicate that frame->mc_vregs 459 * contains valid data 460 */ 461 if (current->thread.used_vsr && ctx_has_vsx_region) { 462 flush_vsx_to_thread(current); 463 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 464 return 1; 465 msr |= MSR_VSX; 466 } 467 #endif /* CONFIG_VSX */ 468 #ifdef CONFIG_SPE 469 /* save spe registers */ 470 if (current->thread.used_spe) { 471 flush_spe_to_thread(current); 472 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 473 ELF_NEVRREG * sizeof(u32))) 474 return 1; 475 /* set MSR_SPE in the saved MSR value to indicate that 476 frame->mc_vregs contains valid data */ 477 msr |= MSR_SPE; 478 } 479 /* else assert((regs->msr & MSR_SPE) == 0) */ 480 481 /* We always copy to/from spefscr */ 482 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 483 return 1; 484 #endif /* CONFIG_SPE */ 485 486 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 487 return 1; 488 /* We need to write 0 the MSR top 32 bits in the tm frame so that we 489 * can check it on the restore to see if TM is active 490 */ 491 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) 492 return 1; 493 494 if (sigret) { 495 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 496 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 497 || __put_user(0x44000002UL, &frame->tramp[1])) 498 return 1; 499 flush_icache_range((unsigned long) &frame->tramp[0], 500 (unsigned long) &frame->tramp[2]); 501 } 502 503 return 0; 504 } 505 506 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 507 /* 508 * Save the current user registers on the user stack. 509 * We only save the altivec/spe registers if the process has used 510 * altivec/spe instructions at some point. 511 * We also save the transactional registers to a second ucontext in the 512 * frame. 513 * 514 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). 515 */ 516 static int save_tm_user_regs(struct pt_regs *regs, 517 struct mcontext __user *frame, 518 struct mcontext __user *tm_frame, int sigret) 519 { 520 unsigned long msr = regs->msr; 521 522 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 523 * just indicates to userland that we were doing a transaction, but we 524 * don't want to return in transactional state. This also ensures 525 * that flush_fp_to_thread won't set TIF_RESTORE_TM again. 526 */ 527 regs->msr &= ~MSR_TS_MASK; 528 529 /* Save both sets of general registers */ 530 if (save_general_regs(¤t->thread.ckpt_regs, frame) 531 || save_general_regs(regs, tm_frame)) 532 return 1; 533 534 /* Stash the top half of the 64bit MSR into the 32bit MSR word 535 * of the transactional mcontext. This way we have a backward-compatible 536 * MSR in the 'normal' (checkpointed) mcontext and additionally one can 537 * also look at what type of transaction (T or S) was active at the 538 * time of the signal. 539 */ 540 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) 541 return 1; 542 543 #ifdef CONFIG_ALTIVEC 544 /* save altivec registers */ 545 if (current->thread.used_vr) { 546 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.ckvr_state, 547 ELF_NVRREG * sizeof(vector128))) 548 return 1; 549 if (msr & MSR_VEC) { 550 if (__copy_to_user(&tm_frame->mc_vregs, 551 ¤t->thread.vr_state, 552 ELF_NVRREG * sizeof(vector128))) 553 return 1; 554 } else { 555 if (__copy_to_user(&tm_frame->mc_vregs, 556 ¤t->thread.ckvr_state, 557 ELF_NVRREG * sizeof(vector128))) 558 return 1; 559 } 560 561 /* set MSR_VEC in the saved MSR value to indicate that 562 * frame->mc_vregs contains valid data 563 */ 564 msr |= MSR_VEC; 565 } 566 567 /* We always copy to/from vrsave, it's 0 if we don't have or don't 568 * use altivec. Since VSCR only contains 32 bits saved in the least 569 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 570 * most significant bits of that same vector. --BenH 571 */ 572 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 573 current->thread.ckvrsave = mfspr(SPRN_VRSAVE); 574 if (__put_user(current->thread.ckvrsave, 575 (u32 __user *)&frame->mc_vregs[32])) 576 return 1; 577 if (msr & MSR_VEC) { 578 if (__put_user(current->thread.vrsave, 579 (u32 __user *)&tm_frame->mc_vregs[32])) 580 return 1; 581 } else { 582 if (__put_user(current->thread.ckvrsave, 583 (u32 __user *)&tm_frame->mc_vregs[32])) 584 return 1; 585 } 586 #endif /* CONFIG_ALTIVEC */ 587 588 if (copy_ckfpr_to_user(&frame->mc_fregs, current)) 589 return 1; 590 if (msr & MSR_FP) { 591 if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) 592 return 1; 593 } else { 594 if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current)) 595 return 1; 596 } 597 598 #ifdef CONFIG_VSX 599 /* 600 * Copy VSR 0-31 upper half from thread_struct to local 601 * buffer, then write that to userspace. Also set MSR_VSX in 602 * the saved MSR value to indicate that frame->mc_vregs 603 * contains valid data 604 */ 605 if (current->thread.used_vsr) { 606 if (copy_ckvsx_to_user(&frame->mc_vsregs, current)) 607 return 1; 608 if (msr & MSR_VSX) { 609 if (copy_vsx_to_user(&tm_frame->mc_vsregs, 610 current)) 611 return 1; 612 } else { 613 if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current)) 614 return 1; 615 } 616 617 msr |= MSR_VSX; 618 } 619 #endif /* CONFIG_VSX */ 620 #ifdef CONFIG_SPE 621 /* SPE regs are not checkpointed with TM, so this section is 622 * simply the same as in save_user_regs(). 623 */ 624 if (current->thread.used_spe) { 625 flush_spe_to_thread(current); 626 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 627 ELF_NEVRREG * sizeof(u32))) 628 return 1; 629 /* set MSR_SPE in the saved MSR value to indicate that 630 * frame->mc_vregs contains valid data */ 631 msr |= MSR_SPE; 632 } 633 634 /* We always copy to/from spefscr */ 635 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 636 return 1; 637 #endif /* CONFIG_SPE */ 638 639 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 640 return 1; 641 if (sigret) { 642 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 643 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 644 || __put_user(0x44000002UL, &frame->tramp[1])) 645 return 1; 646 flush_icache_range((unsigned long) &frame->tramp[0], 647 (unsigned long) &frame->tramp[2]); 648 } 649 650 return 0; 651 } 652 #endif 653 654 /* 655 * Restore the current user register values from the user stack, 656 * (except for MSR). 657 */ 658 static long restore_user_regs(struct pt_regs *regs, 659 struct mcontext __user *sr, int sig) 660 { 661 long err; 662 unsigned int save_r2 = 0; 663 unsigned long msr; 664 #ifdef CONFIG_VSX 665 int i; 666 #endif 667 668 /* 669 * restore general registers but not including MSR or SOFTE. Also 670 * take care of keeping r2 (TLS) intact if not a signal 671 */ 672 if (!sig) 673 save_r2 = (unsigned int)regs->gpr[2]; 674 err = restore_general_regs(regs, sr); 675 regs->trap = 0; 676 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 677 if (!sig) 678 regs->gpr[2] = (unsigned long) save_r2; 679 if (err) 680 return 1; 681 682 /* if doing signal return, restore the previous little-endian mode */ 683 if (sig) 684 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 685 686 #ifdef CONFIG_ALTIVEC 687 /* 688 * Force the process to reload the altivec registers from 689 * current->thread when it next does altivec instructions 690 */ 691 regs->msr &= ~MSR_VEC; 692 if (msr & MSR_VEC) { 693 /* restore altivec registers from the stack */ 694 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 695 sizeof(sr->mc_vregs))) 696 return 1; 697 current->thread.used_vr = true; 698 } else if (current->thread.used_vr) 699 memset(¤t->thread.vr_state, 0, 700 ELF_NVRREG * sizeof(vector128)); 701 702 /* Always get VRSAVE back */ 703 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) 704 return 1; 705 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 706 mtspr(SPRN_VRSAVE, current->thread.vrsave); 707 #endif /* CONFIG_ALTIVEC */ 708 if (copy_fpr_from_user(current, &sr->mc_fregs)) 709 return 1; 710 711 #ifdef CONFIG_VSX 712 /* 713 * Force the process to reload the VSX registers from 714 * current->thread when it next does VSX instruction. 715 */ 716 regs->msr &= ~MSR_VSX; 717 if (msr & MSR_VSX) { 718 /* 719 * Restore altivec registers from the stack to a local 720 * buffer, then write this out to the thread_struct 721 */ 722 if (copy_vsx_from_user(current, &sr->mc_vsregs)) 723 return 1; 724 current->thread.used_vsr = true; 725 } else if (current->thread.used_vsr) 726 for (i = 0; i < 32 ; i++) 727 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 728 #endif /* CONFIG_VSX */ 729 /* 730 * force the process to reload the FP registers from 731 * current->thread when it next does FP instructions 732 */ 733 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 734 735 #ifdef CONFIG_SPE 736 /* force the process to reload the spe registers from 737 current->thread when it next does spe instructions */ 738 regs->msr &= ~MSR_SPE; 739 if (msr & MSR_SPE) { 740 /* restore spe registers from the stack */ 741 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 742 ELF_NEVRREG * sizeof(u32))) 743 return 1; 744 current->thread.used_spe = true; 745 } else if (current->thread.used_spe) 746 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 747 748 /* Always get SPEFSCR back */ 749 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) 750 return 1; 751 #endif /* CONFIG_SPE */ 752 753 return 0; 754 } 755 756 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 757 /* 758 * Restore the current user register values from the user stack, except for 759 * MSR, and recheckpoint the original checkpointed register state for processes 760 * in transactions. 761 */ 762 static long restore_tm_user_regs(struct pt_regs *regs, 763 struct mcontext __user *sr, 764 struct mcontext __user *tm_sr) 765 { 766 long err; 767 unsigned long msr, msr_hi; 768 #ifdef CONFIG_VSX 769 int i; 770 #endif 771 772 /* 773 * restore general registers but not including MSR or SOFTE. Also 774 * take care of keeping r2 (TLS) intact if not a signal. 775 * See comment in signal_64.c:restore_tm_sigcontexts(); 776 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR 777 * were set by the signal delivery. 778 */ 779 err = restore_general_regs(regs, tm_sr); 780 err |= restore_general_regs(¤t->thread.ckpt_regs, sr); 781 782 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); 783 784 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 785 if (err) 786 return 1; 787 788 /* Restore the previous little-endian mode */ 789 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 790 791 #ifdef CONFIG_ALTIVEC 792 regs->msr &= ~MSR_VEC; 793 if (msr & MSR_VEC) { 794 /* restore altivec registers from the stack */ 795 if (__copy_from_user(¤t->thread.ckvr_state, &sr->mc_vregs, 796 sizeof(sr->mc_vregs)) || 797 __copy_from_user(¤t->thread.vr_state, 798 &tm_sr->mc_vregs, 799 sizeof(sr->mc_vregs))) 800 return 1; 801 current->thread.used_vr = true; 802 } else if (current->thread.used_vr) { 803 memset(¤t->thread.vr_state, 0, 804 ELF_NVRREG * sizeof(vector128)); 805 memset(¤t->thread.ckvr_state, 0, 806 ELF_NVRREG * sizeof(vector128)); 807 } 808 809 /* Always get VRSAVE back */ 810 if (__get_user(current->thread.ckvrsave, 811 (u32 __user *)&sr->mc_vregs[32]) || 812 __get_user(current->thread.vrsave, 813 (u32 __user *)&tm_sr->mc_vregs[32])) 814 return 1; 815 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 816 mtspr(SPRN_VRSAVE, current->thread.ckvrsave); 817 #endif /* CONFIG_ALTIVEC */ 818 819 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 820 821 if (copy_fpr_from_user(current, &sr->mc_fregs) || 822 copy_ckfpr_from_user(current, &tm_sr->mc_fregs)) 823 return 1; 824 825 #ifdef CONFIG_VSX 826 regs->msr &= ~MSR_VSX; 827 if (msr & MSR_VSX) { 828 /* 829 * Restore altivec registers from the stack to a local 830 * buffer, then write this out to the thread_struct 831 */ 832 if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) || 833 copy_ckvsx_from_user(current, &sr->mc_vsregs)) 834 return 1; 835 current->thread.used_vsr = true; 836 } else if (current->thread.used_vsr) 837 for (i = 0; i < 32 ; i++) { 838 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 839 current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 840 } 841 #endif /* CONFIG_VSX */ 842 843 #ifdef CONFIG_SPE 844 /* SPE regs are not checkpointed with TM, so this section is 845 * simply the same as in restore_user_regs(). 846 */ 847 regs->msr &= ~MSR_SPE; 848 if (msr & MSR_SPE) { 849 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 850 ELF_NEVRREG * sizeof(u32))) 851 return 1; 852 current->thread.used_spe = true; 853 } else if (current->thread.used_spe) 854 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 855 856 /* Always get SPEFSCR back */ 857 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs 858 + ELF_NEVRREG)) 859 return 1; 860 #endif /* CONFIG_SPE */ 861 862 /* Get the top half of the MSR from the user context */ 863 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) 864 return 1; 865 msr_hi <<= 32; 866 /* If TM bits are set to the reserved value, it's an invalid context */ 867 if (MSR_TM_RESV(msr_hi)) 868 return 1; 869 /* Pull in the MSR TM bits from the user context */ 870 regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK); 871 /* Now, recheckpoint. This loads up all of the checkpointed (older) 872 * registers, including FP and V[S]Rs. After recheckpointing, the 873 * transactional versions should be loaded. 874 */ 875 tm_enable(); 876 /* Make sure the transaction is marked as failed */ 877 current->thread.tm_texasr |= TEXASR_FS; 878 /* This loads the checkpointed FP/VEC state, if used */ 879 tm_recheckpoint(¤t->thread, msr); 880 881 /* This loads the speculative FP/VEC state, if used */ 882 msr_check_and_set(msr & (MSR_FP | MSR_VEC)); 883 if (msr & MSR_FP) { 884 load_fp_state(¤t->thread.fp_state); 885 regs->msr |= (MSR_FP | current->thread.fpexc_mode); 886 } 887 #ifdef CONFIG_ALTIVEC 888 if (msr & MSR_VEC) { 889 load_vr_state(¤t->thread.vr_state); 890 regs->msr |= MSR_VEC; 891 } 892 #endif 893 894 return 0; 895 } 896 #endif 897 898 #ifdef CONFIG_PPC64 899 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s) 900 { 901 int err; 902 903 if (!access_ok (VERIFY_WRITE, d, sizeof(*d))) 904 return -EFAULT; 905 906 /* If you change siginfo_t structure, please be sure 907 * this code is fixed accordingly. 908 * It should never copy any pad contained in the structure 909 * to avoid security leaks, but must copy the generic 910 * 3 ints plus the relevant union member. 911 * This routine must convert siginfo from 64bit to 32bit as well 912 * at the same time. 913 */ 914 err = __put_user(s->si_signo, &d->si_signo); 915 err |= __put_user(s->si_errno, &d->si_errno); 916 err |= __put_user(s->si_code, &d->si_code); 917 if (s->si_code < 0) 918 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad, 919 SI_PAD_SIZE32); 920 else switch(siginfo_layout(s->si_signo, s->si_code)) { 921 case SIL_CHLD: 922 err |= __put_user(s->si_pid, &d->si_pid); 923 err |= __put_user(s->si_uid, &d->si_uid); 924 err |= __put_user(s->si_utime, &d->si_utime); 925 err |= __put_user(s->si_stime, &d->si_stime); 926 err |= __put_user(s->si_status, &d->si_status); 927 break; 928 case SIL_FAULT: 929 err |= __put_user((unsigned int)(unsigned long)s->si_addr, 930 &d->si_addr); 931 break; 932 case SIL_POLL: 933 err |= __put_user(s->si_band, &d->si_band); 934 err |= __put_user(s->si_fd, &d->si_fd); 935 break; 936 case SIL_TIMER: 937 err |= __put_user(s->si_tid, &d->si_tid); 938 err |= __put_user(s->si_overrun, &d->si_overrun); 939 err |= __put_user(s->si_int, &d->si_int); 940 break; 941 case SIL_SYS: 942 err |= __put_user(ptr_to_compat(s->si_call_addr), &d->si_call_addr); 943 err |= __put_user(s->si_syscall, &d->si_syscall); 944 err |= __put_user(s->si_arch, &d->si_arch); 945 break; 946 case SIL_RT: 947 err |= __put_user(s->si_int, &d->si_int); 948 /* fallthrough */ 949 case SIL_KILL: 950 err |= __put_user(s->si_pid, &d->si_pid); 951 err |= __put_user(s->si_uid, &d->si_uid); 952 break; 953 } 954 return err; 955 } 956 957 #define copy_siginfo_to_user copy_siginfo_to_user32 958 959 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from) 960 { 961 if (copy_from_user(to, from, 3*sizeof(int)) || 962 copy_from_user(to->_sifields._pad, 963 from->_sifields._pad, SI_PAD_SIZE32)) 964 return -EFAULT; 965 966 return 0; 967 } 968 #endif /* CONFIG_PPC64 */ 969 970 /* 971 * Set up a signal frame for a "real-time" signal handler 972 * (one which gets siginfo). 973 */ 974 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset, 975 struct task_struct *tsk) 976 { 977 struct rt_sigframe __user *rt_sf; 978 struct mcontext __user *frame; 979 struct mcontext __user *tm_frame = NULL; 980 void __user *addr; 981 unsigned long newsp = 0; 982 int sigret; 983 unsigned long tramp; 984 struct pt_regs *regs = tsk->thread.regs; 985 986 BUG_ON(tsk != current); 987 988 /* Set up Signal Frame */ 989 /* Put a Real Time Context onto stack */ 990 rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1); 991 addr = rt_sf; 992 if (unlikely(rt_sf == NULL)) 993 goto badframe; 994 995 /* Put the siginfo & fill in most of the ucontext */ 996 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info) 997 || __put_user(0, &rt_sf->uc.uc_flags) 998 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) 999 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), 1000 &rt_sf->uc.uc_regs) 1001 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) 1002 goto badframe; 1003 1004 /* Save user registers on the stack */ 1005 frame = &rt_sf->uc.uc_mcontext; 1006 addr = frame; 1007 if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) { 1008 sigret = 0; 1009 tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp; 1010 } else { 1011 sigret = __NR_rt_sigreturn; 1012 tramp = (unsigned long) frame->tramp; 1013 } 1014 1015 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1016 tm_frame = &rt_sf->uc_transact.uc_mcontext; 1017 if (MSR_TM_ACTIVE(regs->msr)) { 1018 if (__put_user((unsigned long)&rt_sf->uc_transact, 1019 &rt_sf->uc.uc_link) || 1020 __put_user((unsigned long)tm_frame, 1021 &rt_sf->uc_transact.uc_regs)) 1022 goto badframe; 1023 if (save_tm_user_regs(regs, frame, tm_frame, sigret)) 1024 goto badframe; 1025 } 1026 else 1027 #endif 1028 { 1029 if (__put_user(0, &rt_sf->uc.uc_link)) 1030 goto badframe; 1031 if (save_user_regs(regs, frame, tm_frame, sigret, 1)) 1032 goto badframe; 1033 } 1034 regs->link = tramp; 1035 1036 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1037 1038 /* create a stack frame for the caller of the handler */ 1039 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); 1040 addr = (void __user *)regs->gpr[1]; 1041 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1042 goto badframe; 1043 1044 /* Fill registers for signal handler */ 1045 regs->gpr[1] = newsp; 1046 regs->gpr[3] = ksig->sig; 1047 regs->gpr[4] = (unsigned long) &rt_sf->info; 1048 regs->gpr[5] = (unsigned long) &rt_sf->uc; 1049 regs->gpr[6] = (unsigned long) rt_sf; 1050 regs->nip = (unsigned long) ksig->ka.sa.sa_handler; 1051 /* enter the signal handler in native-endian mode */ 1052 regs->msr &= ~MSR_LE; 1053 regs->msr |= (MSR_KERNEL & MSR_LE); 1054 return 0; 1055 1056 badframe: 1057 if (show_unhandled_signals) 1058 printk_ratelimited(KERN_INFO 1059 "%s[%d]: bad frame in handle_rt_signal32: " 1060 "%p nip %08lx lr %08lx\n", 1061 tsk->comm, tsk->pid, 1062 addr, regs->nip, regs->link); 1063 1064 return 1; 1065 } 1066 1067 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) 1068 { 1069 sigset_t set; 1070 struct mcontext __user *mcp; 1071 1072 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1073 return -EFAULT; 1074 #ifdef CONFIG_PPC64 1075 { 1076 u32 cmcp; 1077 1078 if (__get_user(cmcp, &ucp->uc_regs)) 1079 return -EFAULT; 1080 mcp = (struct mcontext __user *)(u64)cmcp; 1081 /* no need to check access_ok(mcp), since mcp < 4GB */ 1082 } 1083 #else 1084 if (__get_user(mcp, &ucp->uc_regs)) 1085 return -EFAULT; 1086 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp))) 1087 return -EFAULT; 1088 #endif 1089 set_current_blocked(&set); 1090 if (restore_user_regs(regs, mcp, sig)) 1091 return -EFAULT; 1092 1093 return 0; 1094 } 1095 1096 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1097 static int do_setcontext_tm(struct ucontext __user *ucp, 1098 struct ucontext __user *tm_ucp, 1099 struct pt_regs *regs) 1100 { 1101 sigset_t set; 1102 struct mcontext __user *mcp; 1103 struct mcontext __user *tm_mcp; 1104 u32 cmcp; 1105 u32 tm_cmcp; 1106 1107 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1108 return -EFAULT; 1109 1110 if (__get_user(cmcp, &ucp->uc_regs) || 1111 __get_user(tm_cmcp, &tm_ucp->uc_regs)) 1112 return -EFAULT; 1113 mcp = (struct mcontext __user *)(u64)cmcp; 1114 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; 1115 /* no need to check access_ok(mcp), since mcp < 4GB */ 1116 1117 set_current_blocked(&set); 1118 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1119 return -EFAULT; 1120 1121 return 0; 1122 } 1123 #endif 1124 1125 long sys_swapcontext(struct ucontext __user *old_ctx, 1126 struct ucontext __user *new_ctx, 1127 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs) 1128 { 1129 unsigned char tmp; 1130 int ctx_has_vsx_region = 0; 1131 1132 #ifdef CONFIG_PPC64 1133 unsigned long new_msr = 0; 1134 1135 if (new_ctx) { 1136 struct mcontext __user *mcp; 1137 u32 cmcp; 1138 1139 /* 1140 * Get pointer to the real mcontext. No need for 1141 * access_ok since we are dealing with compat 1142 * pointers. 1143 */ 1144 if (__get_user(cmcp, &new_ctx->uc_regs)) 1145 return -EFAULT; 1146 mcp = (struct mcontext __user *)(u64)cmcp; 1147 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) 1148 return -EFAULT; 1149 } 1150 /* 1151 * Check that the context is not smaller than the original 1152 * size (with VMX but without VSX) 1153 */ 1154 if (ctx_size < UCONTEXTSIZEWITHOUTVSX) 1155 return -EINVAL; 1156 /* 1157 * If the new context state sets the MSR VSX bits but 1158 * it doesn't provide VSX state. 1159 */ 1160 if ((ctx_size < sizeof(struct ucontext)) && 1161 (new_msr & MSR_VSX)) 1162 return -EINVAL; 1163 /* Does the context have enough room to store VSX data? */ 1164 if (ctx_size >= sizeof(struct ucontext)) 1165 ctx_has_vsx_region = 1; 1166 #else 1167 /* Context size is for future use. Right now, we only make sure 1168 * we are passed something we understand 1169 */ 1170 if (ctx_size < sizeof(struct ucontext)) 1171 return -EINVAL; 1172 #endif 1173 if (old_ctx != NULL) { 1174 struct mcontext __user *mctx; 1175 1176 /* 1177 * old_ctx might not be 16-byte aligned, in which 1178 * case old_ctx->uc_mcontext won't be either. 1179 * Because we have the old_ctx->uc_pad2 field 1180 * before old_ctx->uc_mcontext, we need to round down 1181 * from &old_ctx->uc_mcontext to a 16-byte boundary. 1182 */ 1183 mctx = (struct mcontext __user *) 1184 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); 1185 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size) 1186 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) 1187 || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) 1188 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) 1189 return -EFAULT; 1190 } 1191 if (new_ctx == NULL) 1192 return 0; 1193 if (!access_ok(VERIFY_READ, new_ctx, ctx_size) 1194 || __get_user(tmp, (u8 __user *) new_ctx) 1195 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1)) 1196 return -EFAULT; 1197 1198 /* 1199 * If we get a fault copying the context into the kernel's 1200 * image of the user's registers, we can't just return -EFAULT 1201 * because the user's registers will be corrupted. For instance 1202 * the NIP value may have been updated but not some of the 1203 * other registers. Given that we have done the access_ok 1204 * and successfully read the first and last bytes of the region 1205 * above, this should only happen in an out-of-memory situation 1206 * or if another thread unmaps the region containing the context. 1207 * We kill the task with a SIGSEGV in this situation. 1208 */ 1209 if (do_setcontext(new_ctx, regs, 0)) 1210 do_exit(SIGSEGV); 1211 1212 set_thread_flag(TIF_RESTOREALL); 1213 return 0; 1214 } 1215 1216 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1217 struct pt_regs *regs) 1218 { 1219 struct rt_sigframe __user *rt_sf; 1220 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1221 struct ucontext __user *uc_transact; 1222 unsigned long msr_hi; 1223 unsigned long tmp; 1224 int tm_restore = 0; 1225 #endif 1226 /* Always make any pending restarted system calls return -EINTR */ 1227 current->restart_block.fn = do_no_restart_syscall; 1228 1229 rt_sf = (struct rt_sigframe __user *) 1230 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); 1231 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf))) 1232 goto bad; 1233 1234 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1235 /* 1236 * If there is a transactional state then throw it away. 1237 * The purpose of a sigreturn is to destroy all traces of the 1238 * signal frame, this includes any transactional state created 1239 * within in. We only check for suspended as we can never be 1240 * active in the kernel, we are active, there is nothing better to 1241 * do than go ahead and Bad Thing later. 1242 * The cause is not important as there will never be a 1243 * recheckpoint so it's not user visible. 1244 */ 1245 if (MSR_TM_SUSPENDED(mfmsr())) 1246 tm_reclaim_current(0); 1247 1248 if (__get_user(tmp, &rt_sf->uc.uc_link)) 1249 goto bad; 1250 uc_transact = (struct ucontext __user *)(uintptr_t)tmp; 1251 if (uc_transact) { 1252 u32 cmcp; 1253 struct mcontext __user *mcp; 1254 1255 if (__get_user(cmcp, &uc_transact->uc_regs)) 1256 return -EFAULT; 1257 mcp = (struct mcontext __user *)(u64)cmcp; 1258 /* The top 32 bits of the MSR are stashed in the transactional 1259 * ucontext. */ 1260 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) 1261 goto bad; 1262 1263 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1264 /* We only recheckpoint on return if we're 1265 * transaction. 1266 */ 1267 tm_restore = 1; 1268 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) 1269 goto bad; 1270 } 1271 } 1272 if (!tm_restore) 1273 /* Fall through, for non-TM restore */ 1274 #endif 1275 if (do_setcontext(&rt_sf->uc, regs, 1)) 1276 goto bad; 1277 1278 /* 1279 * It's not clear whether or why it is desirable to save the 1280 * sigaltstack setting on signal delivery and restore it on 1281 * signal return. But other architectures do this and we have 1282 * always done it up until now so it is probably better not to 1283 * change it. -- paulus 1284 */ 1285 #ifdef CONFIG_PPC64 1286 if (compat_restore_altstack(&rt_sf->uc.uc_stack)) 1287 goto bad; 1288 #else 1289 if (restore_altstack(&rt_sf->uc.uc_stack)) 1290 goto bad; 1291 #endif 1292 set_thread_flag(TIF_RESTOREALL); 1293 return 0; 1294 1295 bad: 1296 if (show_unhandled_signals) 1297 printk_ratelimited(KERN_INFO 1298 "%s[%d]: bad frame in sys_rt_sigreturn: " 1299 "%p nip %08lx lr %08lx\n", 1300 current->comm, current->pid, 1301 rt_sf, regs->nip, regs->link); 1302 1303 force_sig(SIGSEGV, current); 1304 return 0; 1305 } 1306 1307 #ifdef CONFIG_PPC32 1308 int sys_debug_setcontext(struct ucontext __user *ctx, 1309 int ndbg, struct sig_dbg_op __user *dbg, 1310 int r6, int r7, int r8, 1311 struct pt_regs *regs) 1312 { 1313 struct sig_dbg_op op; 1314 int i; 1315 unsigned char tmp; 1316 unsigned long new_msr = regs->msr; 1317 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1318 unsigned long new_dbcr0 = current->thread.debug.dbcr0; 1319 #endif 1320 1321 for (i=0; i<ndbg; i++) { 1322 if (copy_from_user(&op, dbg + i, sizeof(op))) 1323 return -EFAULT; 1324 switch (op.dbg_type) { 1325 case SIG_DBG_SINGLE_STEPPING: 1326 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1327 if (op.dbg_value) { 1328 new_msr |= MSR_DE; 1329 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); 1330 } else { 1331 new_dbcr0 &= ~DBCR0_IC; 1332 if (!DBCR_ACTIVE_EVENTS(new_dbcr0, 1333 current->thread.debug.dbcr1)) { 1334 new_msr &= ~MSR_DE; 1335 new_dbcr0 &= ~DBCR0_IDM; 1336 } 1337 } 1338 #else 1339 if (op.dbg_value) 1340 new_msr |= MSR_SE; 1341 else 1342 new_msr &= ~MSR_SE; 1343 #endif 1344 break; 1345 case SIG_DBG_BRANCH_TRACING: 1346 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1347 return -EINVAL; 1348 #else 1349 if (op.dbg_value) 1350 new_msr |= MSR_BE; 1351 else 1352 new_msr &= ~MSR_BE; 1353 #endif 1354 break; 1355 1356 default: 1357 return -EINVAL; 1358 } 1359 } 1360 1361 /* We wait until here to actually install the values in the 1362 registers so if we fail in the above loop, it will not 1363 affect the contents of these registers. After this point, 1364 failure is a problem, anyway, and it's very unlikely unless 1365 the user is really doing something wrong. */ 1366 regs->msr = new_msr; 1367 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1368 current->thread.debug.dbcr0 = new_dbcr0; 1369 #endif 1370 1371 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx)) 1372 || __get_user(tmp, (u8 __user *) ctx) 1373 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1)) 1374 return -EFAULT; 1375 1376 /* 1377 * If we get a fault copying the context into the kernel's 1378 * image of the user's registers, we can't just return -EFAULT 1379 * because the user's registers will be corrupted. For instance 1380 * the NIP value may have been updated but not some of the 1381 * other registers. Given that we have done the access_ok 1382 * and successfully read the first and last bytes of the region 1383 * above, this should only happen in an out-of-memory situation 1384 * or if another thread unmaps the region containing the context. 1385 * We kill the task with a SIGSEGV in this situation. 1386 */ 1387 if (do_setcontext(ctx, regs, 1)) { 1388 if (show_unhandled_signals) 1389 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " 1390 "sys_debug_setcontext: %p nip %08lx " 1391 "lr %08lx\n", 1392 current->comm, current->pid, 1393 ctx, regs->nip, regs->link); 1394 1395 force_sig(SIGSEGV, current); 1396 goto out; 1397 } 1398 1399 /* 1400 * It's not clear whether or why it is desirable to save the 1401 * sigaltstack setting on signal delivery and restore it on 1402 * signal return. But other architectures do this and we have 1403 * always done it up until now so it is probably better not to 1404 * change it. -- paulus 1405 */ 1406 restore_altstack(&ctx->uc_stack); 1407 1408 set_thread_flag(TIF_RESTOREALL); 1409 out: 1410 return 0; 1411 } 1412 #endif 1413 1414 /* 1415 * OK, we're invoking a handler 1416 */ 1417 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, 1418 struct task_struct *tsk) 1419 { 1420 struct sigcontext __user *sc; 1421 struct sigframe __user *frame; 1422 struct mcontext __user *tm_mctx = NULL; 1423 unsigned long newsp = 0; 1424 int sigret; 1425 unsigned long tramp; 1426 struct pt_regs *regs = tsk->thread.regs; 1427 1428 BUG_ON(tsk != current); 1429 1430 /* Set up Signal Frame */ 1431 frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1); 1432 if (unlikely(frame == NULL)) 1433 goto badframe; 1434 sc = (struct sigcontext __user *) &frame->sctx; 1435 1436 #if _NSIG != 64 1437 #error "Please adjust handle_signal()" 1438 #endif 1439 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler) 1440 || __put_user(oldset->sig[0], &sc->oldmask) 1441 #ifdef CONFIG_PPC64 1442 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) 1443 #else 1444 || __put_user(oldset->sig[1], &sc->_unused[3]) 1445 #endif 1446 || __put_user(to_user_ptr(&frame->mctx), &sc->regs) 1447 || __put_user(ksig->sig, &sc->signal)) 1448 goto badframe; 1449 1450 if (vdso32_sigtramp && tsk->mm->context.vdso_base) { 1451 sigret = 0; 1452 tramp = tsk->mm->context.vdso_base + vdso32_sigtramp; 1453 } else { 1454 sigret = __NR_sigreturn; 1455 tramp = (unsigned long) frame->mctx.tramp; 1456 } 1457 1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1459 tm_mctx = &frame->mctx_transact; 1460 if (MSR_TM_ACTIVE(regs->msr)) { 1461 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, 1462 sigret)) 1463 goto badframe; 1464 } 1465 else 1466 #endif 1467 { 1468 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) 1469 goto badframe; 1470 } 1471 1472 regs->link = tramp; 1473 1474 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1475 1476 /* create a stack frame for the caller of the handler */ 1477 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; 1478 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1479 goto badframe; 1480 1481 regs->gpr[1] = newsp; 1482 regs->gpr[3] = ksig->sig; 1483 regs->gpr[4] = (unsigned long) sc; 1484 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler; 1485 /* enter the signal handler in big-endian mode */ 1486 regs->msr &= ~MSR_LE; 1487 return 0; 1488 1489 badframe: 1490 if (show_unhandled_signals) 1491 printk_ratelimited(KERN_INFO 1492 "%s[%d]: bad frame in handle_signal32: " 1493 "%p nip %08lx lr %08lx\n", 1494 tsk->comm, tsk->pid, 1495 frame, regs->nip, regs->link); 1496 1497 return 1; 1498 } 1499 1500 /* 1501 * Do a signal return; undo the signal stack. 1502 */ 1503 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1504 struct pt_regs *regs) 1505 { 1506 struct sigframe __user *sf; 1507 struct sigcontext __user *sc; 1508 struct sigcontext sigctx; 1509 struct mcontext __user *sr; 1510 void __user *addr; 1511 sigset_t set; 1512 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1513 struct mcontext __user *mcp, *tm_mcp; 1514 unsigned long msr_hi; 1515 #endif 1516 1517 /* Always make any pending restarted system calls return -EINTR */ 1518 current->restart_block.fn = do_no_restart_syscall; 1519 1520 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); 1521 sc = &sf->sctx; 1522 addr = sc; 1523 if (copy_from_user(&sigctx, sc, sizeof(sigctx))) 1524 goto badframe; 1525 1526 #ifdef CONFIG_PPC64 1527 /* 1528 * Note that PPC32 puts the upper 32 bits of the sigmask in the 1529 * unused part of the signal stackframe 1530 */ 1531 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); 1532 #else 1533 set.sig[0] = sigctx.oldmask; 1534 set.sig[1] = sigctx._unused[3]; 1535 #endif 1536 set_current_blocked(&set); 1537 1538 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1539 mcp = (struct mcontext __user *)&sf->mctx; 1540 tm_mcp = (struct mcontext __user *)&sf->mctx_transact; 1541 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) 1542 goto badframe; 1543 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1544 if (!cpu_has_feature(CPU_FTR_TM)) 1545 goto badframe; 1546 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1547 goto badframe; 1548 } else 1549 #endif 1550 { 1551 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); 1552 addr = sr; 1553 if (!access_ok(VERIFY_READ, sr, sizeof(*sr)) 1554 || restore_user_regs(regs, sr, 1)) 1555 goto badframe; 1556 } 1557 1558 set_thread_flag(TIF_RESTOREALL); 1559 return 0; 1560 1561 badframe: 1562 if (show_unhandled_signals) 1563 printk_ratelimited(KERN_INFO 1564 "%s[%d]: bad frame in sys_sigreturn: " 1565 "%p nip %08lx lr %08lx\n", 1566 current->comm, current->pid, 1567 addr, regs->nip, regs->link); 1568 1569 force_sig(SIGSEGV, current); 1570 return 0; 1571 } 1572