xref: /openbmc/linux/arch/powerpc/kernel/signal_32.c (revision 8730046c)
1 /*
2  * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3  *
4  *  PowerPC version
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  * Copyright (C) 2001 IBM
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9  *
10  *  Derived from "arch/i386/kernel/signal.c"
11  *    Copyright (C) 1991, 1992 Linus Torvalds
12  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  */
19 
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
39 
40 #include <linux/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #include <asm/asm-prototypes.h>
48 #ifdef CONFIG_PPC64
49 #include "ppc32.h"
50 #include <asm/unistd.h>
51 #else
52 #include <asm/ucontext.h>
53 #include <asm/pgtable.h>
54 #endif
55 
56 #include "signal.h"
57 
58 
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn	compat_sys_rt_sigreturn
61 #define sys_swapcontext	compat_sys_swapcontext
62 #define sys_sigreturn	compat_sys_sigreturn
63 
64 #define old_sigaction	old_sigaction32
65 #define sigcontext	sigcontext32
66 #define mcontext	mcontext32
67 #define ucontext	ucontext32
68 
69 #define __save_altstack __compat_save_altstack
70 
71 /*
72  * Userspace code may pass a ucontext which doesn't include VSX added
73  * at the end.  We need to check for this case.
74  */
75 #define UCONTEXTSIZEWITHOUTVSX \
76 		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77 
78 /*
79  * Returning 0 means we return to userspace via
80  * ret_from_except and thus restore all user
81  * registers from *regs.  This is what we need
82  * to do when a signal has been delivered.
83  */
84 
85 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG	ELF_NVRREG32
90 
91 /*
92  * Functions for flipping sigsets (thanks to brain dead generic
93  * implementation that makes things simple for little endian only)
94  */
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96 {
97 	compat_sigset_t	cset;
98 
99 	switch (_NSIG_WORDS) {
100 	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101 		cset.sig[7] = set->sig[3] >> 32;
102 	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103 		cset.sig[5] = set->sig[2] >> 32;
104 	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105 		cset.sig[3] = set->sig[1] >> 32;
106 	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107 		cset.sig[1] = set->sig[0] >> 32;
108 	}
109 	return copy_to_user(uset, &cset, sizeof(*uset));
110 }
111 
112 static inline int get_sigset_t(sigset_t *set,
113 			       const compat_sigset_t __user *uset)
114 {
115 	compat_sigset_t s32;
116 
117 	if (copy_from_user(&s32, uset, sizeof(*uset)))
118 		return -EFAULT;
119 
120 	/*
121 	 * Swap the 2 words of the 64-bit sigset_t (they are stored
122 	 * in the "wrong" endian in 32-bit user storage).
123 	 */
124 	switch (_NSIG_WORDS) {
125 	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126 	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127 	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128 	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129 	}
130 	return 0;
131 }
132 
133 #define to_user_ptr(p)		ptr_to_compat(p)
134 #define from_user_ptr(p)	compat_ptr(p)
135 
136 static inline int save_general_regs(struct pt_regs *regs,
137 		struct mcontext __user *frame)
138 {
139 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140 	int i;
141 
142 	WARN_ON(!FULL_REGS(regs));
143 
144 	for (i = 0; i <= PT_RESULT; i ++) {
145 		if (i == 14 && !FULL_REGS(regs))
146 			i = 32;
147 		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148 			return -EFAULT;
149 	}
150 	return 0;
151 }
152 
153 static inline int restore_general_regs(struct pt_regs *regs,
154 		struct mcontext __user *sr)
155 {
156 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157 	int i;
158 
159 	for (i = 0; i <= PT_RESULT; i++) {
160 		if ((i == PT_MSR) || (i == PT_SOFTE))
161 			continue;
162 		if (__get_user(gregs[i], &sr->mc_gregs[i]))
163 			return -EFAULT;
164 	}
165 	return 0;
166 }
167 
168 #else /* CONFIG_PPC64 */
169 
170 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171 
172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173 {
174 	return copy_to_user(uset, set, sizeof(*uset));
175 }
176 
177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178 {
179 	return copy_from_user(set, uset, sizeof(*uset));
180 }
181 
182 #define to_user_ptr(p)		((unsigned long)(p))
183 #define from_user_ptr(p)	((void __user *)(p))
184 
185 static inline int save_general_regs(struct pt_regs *regs,
186 		struct mcontext __user *frame)
187 {
188 	WARN_ON(!FULL_REGS(regs));
189 	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
190 }
191 
192 static inline int restore_general_regs(struct pt_regs *regs,
193 		struct mcontext __user *sr)
194 {
195 	/* copy up to but not including MSR */
196 	if (__copy_from_user(regs, &sr->mc_gregs,
197 				PT_MSR * sizeof(elf_greg_t)))
198 		return -EFAULT;
199 	/* copy from orig_r3 (the word after the MSR) up to the end */
200 	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201 				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202 		return -EFAULT;
203 	return 0;
204 }
205 #endif
206 
207 /*
208  * When we have signals to deliver, we set up on the
209  * user stack, going down from the original stack pointer:
210  *	an ABI gap of 56 words
211  *	an mcontext struct
212  *	a sigcontext struct
213  *	a gap of __SIGNAL_FRAMESIZE bytes
214  *
215  * Each of these things must be a multiple of 16 bytes in size. The following
216  * structure represent all of this except the __SIGNAL_FRAMESIZE gap
217  *
218  */
219 struct sigframe {
220 	struct sigcontext sctx;		/* the sigcontext */
221 	struct mcontext	mctx;		/* all the register values */
222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223 	struct sigcontext sctx_transact;
224 	struct mcontext	mctx_transact;
225 #endif
226 	/*
227 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
228 	 * regs and 18 fp regs below sp before decrementing it.
229 	 */
230 	int			abigap[56];
231 };
232 
233 /* We use the mc_pad field for the signal return trampoline. */
234 #define tramp	mc_pad
235 
236 /*
237  *  When we have rt signals to deliver, we set up on the
238  *  user stack, going down from the original stack pointer:
239  *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
240  *	a gap of __SIGNAL_FRAMESIZE+16 bytes
241  *  (the +16 is to get the siginfo and ucontext in the same
242  *  positions as in older kernels).
243  *
244  *  Each of these things must be a multiple of 16 bytes in size.
245  *
246  */
247 struct rt_sigframe {
248 #ifdef CONFIG_PPC64
249 	compat_siginfo_t info;
250 #else
251 	struct siginfo info;
252 #endif
253 	struct ucontext	uc;
254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255 	struct ucontext	uc_transact;
256 #endif
257 	/*
258 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
259 	 * regs and 18 fp regs below sp before decrementing it.
260 	 */
261 	int			abigap[56];
262 };
263 
264 #ifdef CONFIG_VSX
265 unsigned long copy_fpr_to_user(void __user *to,
266 			       struct task_struct *task)
267 {
268 	u64 buf[ELF_NFPREG];
269 	int i;
270 
271 	/* save FPR copy to local buffer then write to the thread_struct */
272 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273 		buf[i] = task->thread.TS_FPR(i);
274 	buf[i] = task->thread.fp_state.fpscr;
275 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
276 }
277 
278 unsigned long copy_fpr_from_user(struct task_struct *task,
279 				 void __user *from)
280 {
281 	u64 buf[ELF_NFPREG];
282 	int i;
283 
284 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285 		return 1;
286 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287 		task->thread.TS_FPR(i) = buf[i];
288 	task->thread.fp_state.fpscr = buf[i];
289 
290 	return 0;
291 }
292 
293 unsigned long copy_vsx_to_user(void __user *to,
294 			       struct task_struct *task)
295 {
296 	u64 buf[ELF_NVSRHALFREG];
297 	int i;
298 
299 	/* save FPR copy to local buffer then write to the thread_struct */
300 	for (i = 0; i < ELF_NVSRHALFREG; i++)
301 		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
302 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
303 }
304 
305 unsigned long copy_vsx_from_user(struct task_struct *task,
306 				 void __user *from)
307 {
308 	u64 buf[ELF_NVSRHALFREG];
309 	int i;
310 
311 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312 		return 1;
313 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
314 		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315 	return 0;
316 }
317 
318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319 unsigned long copy_ckfpr_to_user(void __user *to,
320 				  struct task_struct *task)
321 {
322 	u64 buf[ELF_NFPREG];
323 	int i;
324 
325 	/* save FPR copy to local buffer then write to the thread_struct */
326 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327 		buf[i] = task->thread.TS_CKFPR(i);
328 	buf[i] = task->thread.ckfp_state.fpscr;
329 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
330 }
331 
332 unsigned long copy_ckfpr_from_user(struct task_struct *task,
333 					  void __user *from)
334 {
335 	u64 buf[ELF_NFPREG];
336 	int i;
337 
338 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339 		return 1;
340 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341 		task->thread.TS_CKFPR(i) = buf[i];
342 	task->thread.ckfp_state.fpscr = buf[i];
343 
344 	return 0;
345 }
346 
347 unsigned long copy_ckvsx_to_user(void __user *to,
348 				  struct task_struct *task)
349 {
350 	u64 buf[ELF_NVSRHALFREG];
351 	int i;
352 
353 	/* save FPR copy to local buffer then write to the thread_struct */
354 	for (i = 0; i < ELF_NVSRHALFREG; i++)
355 		buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
356 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
357 }
358 
359 unsigned long copy_ckvsx_from_user(struct task_struct *task,
360 					  void __user *from)
361 {
362 	u64 buf[ELF_NVSRHALFREG];
363 	int i;
364 
365 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366 		return 1;
367 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
368 		task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
369 	return 0;
370 }
371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372 #else
373 inline unsigned long copy_fpr_to_user(void __user *to,
374 				      struct task_struct *task)
375 {
376 	return __copy_to_user(to, task->thread.fp_state.fpr,
377 			      ELF_NFPREG * sizeof(double));
378 }
379 
380 inline unsigned long copy_fpr_from_user(struct task_struct *task,
381 					void __user *from)
382 {
383 	return __copy_from_user(task->thread.fp_state.fpr, from,
384 			      ELF_NFPREG * sizeof(double));
385 }
386 
387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388 inline unsigned long copy_ckfpr_to_user(void __user *to,
389 					 struct task_struct *task)
390 {
391 	return __copy_to_user(to, task->thread.ckfp_state.fpr,
392 			      ELF_NFPREG * sizeof(double));
393 }
394 
395 inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
396 						 void __user *from)
397 {
398 	return __copy_from_user(task->thread.ckfp_state.fpr, from,
399 				ELF_NFPREG * sizeof(double));
400 }
401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402 #endif
403 
404 /*
405  * Save the current user registers on the user stack.
406  * We only save the altivec/spe registers if the process has used
407  * altivec/spe instructions at some point.
408  */
409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410 			  struct mcontext __user *tm_frame, int sigret,
411 			  int ctx_has_vsx_region)
412 {
413 	unsigned long msr = regs->msr;
414 
415 	/* Make sure floating point registers are stored in regs */
416 	flush_fp_to_thread(current);
417 
418 	/* save general registers */
419 	if (save_general_regs(regs, frame))
420 		return 1;
421 
422 #ifdef CONFIG_ALTIVEC
423 	/* save altivec registers */
424 	if (current->thread.used_vr) {
425 		flush_altivec_to_thread(current);
426 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
427 				   ELF_NVRREG * sizeof(vector128)))
428 			return 1;
429 		/* set MSR_VEC in the saved MSR value to indicate that
430 		   frame->mc_vregs contains valid data */
431 		msr |= MSR_VEC;
432 	}
433 	/* else assert((regs->msr & MSR_VEC) == 0) */
434 
435 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
436 	 * use altivec. Since VSCR only contains 32 bits saved in the least
437 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438 	 * most significant bits of that same vector. --BenH
439 	 * Note that the current VRSAVE value is in the SPR at this point.
440 	 */
441 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
442 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
443 	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
444 		return 1;
445 #endif /* CONFIG_ALTIVEC */
446 	if (copy_fpr_to_user(&frame->mc_fregs, current))
447 		return 1;
448 
449 	/*
450 	 * Clear the MSR VSX bit to indicate there is no valid state attached
451 	 * to this context, except in the specific case below where we set it.
452 	 */
453 	msr &= ~MSR_VSX;
454 #ifdef CONFIG_VSX
455 	/*
456 	 * Copy VSR 0-31 upper half from thread_struct to local
457 	 * buffer, then write that to userspace.  Also set MSR_VSX in
458 	 * the saved MSR value to indicate that frame->mc_vregs
459 	 * contains valid data
460 	 */
461 	if (current->thread.used_vsr && ctx_has_vsx_region) {
462 		flush_vsx_to_thread(current);
463 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
464 			return 1;
465 		msr |= MSR_VSX;
466 	}
467 #endif /* CONFIG_VSX */
468 #ifdef CONFIG_SPE
469 	/* save spe registers */
470 	if (current->thread.used_spe) {
471 		flush_spe_to_thread(current);
472 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
473 				   ELF_NEVRREG * sizeof(u32)))
474 			return 1;
475 		/* set MSR_SPE in the saved MSR value to indicate that
476 		   frame->mc_vregs contains valid data */
477 		msr |= MSR_SPE;
478 	}
479 	/* else assert((regs->msr & MSR_SPE) == 0) */
480 
481 	/* We always copy to/from spefscr */
482 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
483 		return 1;
484 #endif /* CONFIG_SPE */
485 
486 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
487 		return 1;
488 	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
489 	 * can check it on the restore to see if TM is active
490 	 */
491 	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
492 		return 1;
493 
494 	if (sigret) {
495 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
496 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
497 		    || __put_user(0x44000002UL, &frame->tramp[1]))
498 			return 1;
499 		flush_icache_range((unsigned long) &frame->tramp[0],
500 				   (unsigned long) &frame->tramp[2]);
501 	}
502 
503 	return 0;
504 }
505 
506 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
507 /*
508  * Save the current user registers on the user stack.
509  * We only save the altivec/spe registers if the process has used
510  * altivec/spe instructions at some point.
511  * We also save the transactional registers to a second ucontext in the
512  * frame.
513  *
514  * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
515  */
516 static int save_tm_user_regs(struct pt_regs *regs,
517 			     struct mcontext __user *frame,
518 			     struct mcontext __user *tm_frame, int sigret)
519 {
520 	unsigned long msr = regs->msr;
521 
522 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
523 	 * just indicates to userland that we were doing a transaction, but we
524 	 * don't want to return in transactional state.  This also ensures
525 	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
526 	 */
527 	regs->msr &= ~MSR_TS_MASK;
528 
529 	/* Save both sets of general registers */
530 	if (save_general_regs(&current->thread.ckpt_regs, frame)
531 	    || save_general_regs(regs, tm_frame))
532 		return 1;
533 
534 	/* Stash the top half of the 64bit MSR into the 32bit MSR word
535 	 * of the transactional mcontext.  This way we have a backward-compatible
536 	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
537 	 * also look at what type of transaction (T or S) was active at the
538 	 * time of the signal.
539 	 */
540 	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
541 		return 1;
542 
543 #ifdef CONFIG_ALTIVEC
544 	/* save altivec registers */
545 	if (current->thread.used_vr) {
546 		if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
547 				   ELF_NVRREG * sizeof(vector128)))
548 			return 1;
549 		if (msr & MSR_VEC) {
550 			if (__copy_to_user(&tm_frame->mc_vregs,
551 					   &current->thread.vr_state,
552 					   ELF_NVRREG * sizeof(vector128)))
553 				return 1;
554 		} else {
555 			if (__copy_to_user(&tm_frame->mc_vregs,
556 					   &current->thread.ckvr_state,
557 					   ELF_NVRREG * sizeof(vector128)))
558 				return 1;
559 		}
560 
561 		/* set MSR_VEC in the saved MSR value to indicate that
562 		 * frame->mc_vregs contains valid data
563 		 */
564 		msr |= MSR_VEC;
565 	}
566 
567 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
568 	 * use altivec. Since VSCR only contains 32 bits saved in the least
569 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
570 	 * most significant bits of that same vector. --BenH
571 	 */
572 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
573 		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
574 	if (__put_user(current->thread.ckvrsave,
575 		       (u32 __user *)&frame->mc_vregs[32]))
576 		return 1;
577 	if (msr & MSR_VEC) {
578 		if (__put_user(current->thread.vrsave,
579 			       (u32 __user *)&tm_frame->mc_vregs[32]))
580 			return 1;
581 	} else {
582 		if (__put_user(current->thread.ckvrsave,
583 			       (u32 __user *)&tm_frame->mc_vregs[32]))
584 			return 1;
585 	}
586 #endif /* CONFIG_ALTIVEC */
587 
588 	if (copy_ckfpr_to_user(&frame->mc_fregs, current))
589 		return 1;
590 	if (msr & MSR_FP) {
591 		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
592 			return 1;
593 	} else {
594 		if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
595 			return 1;
596 	}
597 
598 #ifdef CONFIG_VSX
599 	/*
600 	 * Copy VSR 0-31 upper half from thread_struct to local
601 	 * buffer, then write that to userspace.  Also set MSR_VSX in
602 	 * the saved MSR value to indicate that frame->mc_vregs
603 	 * contains valid data
604 	 */
605 	if (current->thread.used_vsr) {
606 		if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
607 			return 1;
608 		if (msr & MSR_VSX) {
609 			if (copy_vsx_to_user(&tm_frame->mc_vsregs,
610 						      current))
611 				return 1;
612 		} else {
613 			if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
614 				return 1;
615 		}
616 
617 		msr |= MSR_VSX;
618 	}
619 #endif /* CONFIG_VSX */
620 #ifdef CONFIG_SPE
621 	/* SPE regs are not checkpointed with TM, so this section is
622 	 * simply the same as in save_user_regs().
623 	 */
624 	if (current->thread.used_spe) {
625 		flush_spe_to_thread(current);
626 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
627 				   ELF_NEVRREG * sizeof(u32)))
628 			return 1;
629 		/* set MSR_SPE in the saved MSR value to indicate that
630 		 * frame->mc_vregs contains valid data */
631 		msr |= MSR_SPE;
632 	}
633 
634 	/* We always copy to/from spefscr */
635 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
636 		return 1;
637 #endif /* CONFIG_SPE */
638 
639 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
640 		return 1;
641 	if (sigret) {
642 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
643 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
644 		    || __put_user(0x44000002UL, &frame->tramp[1]))
645 			return 1;
646 		flush_icache_range((unsigned long) &frame->tramp[0],
647 				   (unsigned long) &frame->tramp[2]);
648 	}
649 
650 	return 0;
651 }
652 #endif
653 
654 /*
655  * Restore the current user register values from the user stack,
656  * (except for MSR).
657  */
658 static long restore_user_regs(struct pt_regs *regs,
659 			      struct mcontext __user *sr, int sig)
660 {
661 	long err;
662 	unsigned int save_r2 = 0;
663 	unsigned long msr;
664 #ifdef CONFIG_VSX
665 	int i;
666 #endif
667 
668 	/*
669 	 * restore general registers but not including MSR or SOFTE. Also
670 	 * take care of keeping r2 (TLS) intact if not a signal
671 	 */
672 	if (!sig)
673 		save_r2 = (unsigned int)regs->gpr[2];
674 	err = restore_general_regs(regs, sr);
675 	regs->trap = 0;
676 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
677 	if (!sig)
678 		regs->gpr[2] = (unsigned long) save_r2;
679 	if (err)
680 		return 1;
681 
682 	/* if doing signal return, restore the previous little-endian mode */
683 	if (sig)
684 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
685 
686 #ifdef CONFIG_ALTIVEC
687 	/*
688 	 * Force the process to reload the altivec registers from
689 	 * current->thread when it next does altivec instructions
690 	 */
691 	regs->msr &= ~MSR_VEC;
692 	if (msr & MSR_VEC) {
693 		/* restore altivec registers from the stack */
694 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
695 				     sizeof(sr->mc_vregs)))
696 			return 1;
697 		current->thread.used_vr = true;
698 	} else if (current->thread.used_vr)
699 		memset(&current->thread.vr_state, 0,
700 		       ELF_NVRREG * sizeof(vector128));
701 
702 	/* Always get VRSAVE back */
703 	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
704 		return 1;
705 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
706 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
707 #endif /* CONFIG_ALTIVEC */
708 	if (copy_fpr_from_user(current, &sr->mc_fregs))
709 		return 1;
710 
711 #ifdef CONFIG_VSX
712 	/*
713 	 * Force the process to reload the VSX registers from
714 	 * current->thread when it next does VSX instruction.
715 	 */
716 	regs->msr &= ~MSR_VSX;
717 	if (msr & MSR_VSX) {
718 		/*
719 		 * Restore altivec registers from the stack to a local
720 		 * buffer, then write this out to the thread_struct
721 		 */
722 		if (copy_vsx_from_user(current, &sr->mc_vsregs))
723 			return 1;
724 		current->thread.used_vsr = true;
725 	} else if (current->thread.used_vsr)
726 		for (i = 0; i < 32 ; i++)
727 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
728 #endif /* CONFIG_VSX */
729 	/*
730 	 * force the process to reload the FP registers from
731 	 * current->thread when it next does FP instructions
732 	 */
733 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
734 
735 #ifdef CONFIG_SPE
736 	/* force the process to reload the spe registers from
737 	   current->thread when it next does spe instructions */
738 	regs->msr &= ~MSR_SPE;
739 	if (msr & MSR_SPE) {
740 		/* restore spe registers from the stack */
741 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
742 				     ELF_NEVRREG * sizeof(u32)))
743 			return 1;
744 		current->thread.used_spe = true;
745 	} else if (current->thread.used_spe)
746 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
747 
748 	/* Always get SPEFSCR back */
749 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
750 		return 1;
751 #endif /* CONFIG_SPE */
752 
753 	return 0;
754 }
755 
756 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
757 /*
758  * Restore the current user register values from the user stack, except for
759  * MSR, and recheckpoint the original checkpointed register state for processes
760  * in transactions.
761  */
762 static long restore_tm_user_regs(struct pt_regs *regs,
763 				 struct mcontext __user *sr,
764 				 struct mcontext __user *tm_sr)
765 {
766 	long err;
767 	unsigned long msr, msr_hi;
768 #ifdef CONFIG_VSX
769 	int i;
770 #endif
771 
772 	/*
773 	 * restore general registers but not including MSR or SOFTE. Also
774 	 * take care of keeping r2 (TLS) intact if not a signal.
775 	 * See comment in signal_64.c:restore_tm_sigcontexts();
776 	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
777 	 * were set by the signal delivery.
778 	 */
779 	err = restore_general_regs(regs, tm_sr);
780 	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
781 
782 	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
783 
784 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
785 	if (err)
786 		return 1;
787 
788 	/* Restore the previous little-endian mode */
789 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
790 
791 #ifdef CONFIG_ALTIVEC
792 	regs->msr &= ~MSR_VEC;
793 	if (msr & MSR_VEC) {
794 		/* restore altivec registers from the stack */
795 		if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
796 				     sizeof(sr->mc_vregs)) ||
797 		    __copy_from_user(&current->thread.vr_state,
798 				     &tm_sr->mc_vregs,
799 				     sizeof(sr->mc_vregs)))
800 			return 1;
801 		current->thread.used_vr = true;
802 	} else if (current->thread.used_vr) {
803 		memset(&current->thread.vr_state, 0,
804 		       ELF_NVRREG * sizeof(vector128));
805 		memset(&current->thread.ckvr_state, 0,
806 		       ELF_NVRREG * sizeof(vector128));
807 	}
808 
809 	/* Always get VRSAVE back */
810 	if (__get_user(current->thread.ckvrsave,
811 		       (u32 __user *)&sr->mc_vregs[32]) ||
812 	    __get_user(current->thread.vrsave,
813 		       (u32 __user *)&tm_sr->mc_vregs[32]))
814 		return 1;
815 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
816 		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
817 #endif /* CONFIG_ALTIVEC */
818 
819 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
820 
821 	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
822 	    copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
823 		return 1;
824 
825 #ifdef CONFIG_VSX
826 	regs->msr &= ~MSR_VSX;
827 	if (msr & MSR_VSX) {
828 		/*
829 		 * Restore altivec registers from the stack to a local
830 		 * buffer, then write this out to the thread_struct
831 		 */
832 		if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
833 		    copy_ckvsx_from_user(current, &sr->mc_vsregs))
834 			return 1;
835 		current->thread.used_vsr = true;
836 	} else if (current->thread.used_vsr)
837 		for (i = 0; i < 32 ; i++) {
838 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
839 			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
840 		}
841 #endif /* CONFIG_VSX */
842 
843 #ifdef CONFIG_SPE
844 	/* SPE regs are not checkpointed with TM, so this section is
845 	 * simply the same as in restore_user_regs().
846 	 */
847 	regs->msr &= ~MSR_SPE;
848 	if (msr & MSR_SPE) {
849 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
850 				     ELF_NEVRREG * sizeof(u32)))
851 			return 1;
852 		current->thread.used_spe = true;
853 	} else if (current->thread.used_spe)
854 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
855 
856 	/* Always get SPEFSCR back */
857 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
858 		       + ELF_NEVRREG))
859 		return 1;
860 #endif /* CONFIG_SPE */
861 
862 	/* Get the top half of the MSR from the user context */
863 	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
864 		return 1;
865 	msr_hi <<= 32;
866 	/* If TM bits are set to the reserved value, it's an invalid context */
867 	if (MSR_TM_RESV(msr_hi))
868 		return 1;
869 	/* Pull in the MSR TM bits from the user context */
870 	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
871 	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
872 	 * registers, including FP and V[S]Rs.  After recheckpointing, the
873 	 * transactional versions should be loaded.
874 	 */
875 	tm_enable();
876 	/* Make sure the transaction is marked as failed */
877 	current->thread.tm_texasr |= TEXASR_FS;
878 	/* This loads the checkpointed FP/VEC state, if used */
879 	tm_recheckpoint(&current->thread, msr);
880 
881 	/* This loads the speculative FP/VEC state, if used */
882 	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
883 	if (msr & MSR_FP) {
884 		load_fp_state(&current->thread.fp_state);
885 		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
886 	}
887 #ifdef CONFIG_ALTIVEC
888 	if (msr & MSR_VEC) {
889 		load_vr_state(&current->thread.vr_state);
890 		regs->msr |= MSR_VEC;
891 	}
892 #endif
893 
894 	return 0;
895 }
896 #endif
897 
898 #ifdef CONFIG_PPC64
899 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
900 {
901 	int err;
902 
903 	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
904 		return -EFAULT;
905 
906 	/* If you change siginfo_t structure, please be sure
907 	 * this code is fixed accordingly.
908 	 * It should never copy any pad contained in the structure
909 	 * to avoid security leaks, but must copy the generic
910 	 * 3 ints plus the relevant union member.
911 	 * This routine must convert siginfo from 64bit to 32bit as well
912 	 * at the same time.
913 	 */
914 	err = __put_user(s->si_signo, &d->si_signo);
915 	err |= __put_user(s->si_errno, &d->si_errno);
916 	err |= __put_user((short)s->si_code, &d->si_code);
917 	if (s->si_code < 0)
918 		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
919 				      SI_PAD_SIZE32);
920 	else switch(s->si_code >> 16) {
921 	case __SI_CHLD >> 16:
922 		err |= __put_user(s->si_pid, &d->si_pid);
923 		err |= __put_user(s->si_uid, &d->si_uid);
924 		err |= __put_user(s->si_utime, &d->si_utime);
925 		err |= __put_user(s->si_stime, &d->si_stime);
926 		err |= __put_user(s->si_status, &d->si_status);
927 		break;
928 	case __SI_FAULT >> 16:
929 		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
930 				  &d->si_addr);
931 		break;
932 	case __SI_POLL >> 16:
933 		err |= __put_user(s->si_band, &d->si_band);
934 		err |= __put_user(s->si_fd, &d->si_fd);
935 		break;
936 	case __SI_TIMER >> 16:
937 		err |= __put_user(s->si_tid, &d->si_tid);
938 		err |= __put_user(s->si_overrun, &d->si_overrun);
939 		err |= __put_user(s->si_int, &d->si_int);
940 		break;
941 	case __SI_SYS >> 16:
942 		err |= __put_user(ptr_to_compat(s->si_call_addr), &d->si_call_addr);
943 		err |= __put_user(s->si_syscall, &d->si_syscall);
944 		err |= __put_user(s->si_arch, &d->si_arch);
945 		break;
946 	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
947 	case __SI_MESGQ >> 16:
948 		err |= __put_user(s->si_int, &d->si_int);
949 		/* fallthrough */
950 	case __SI_KILL >> 16:
951 	default:
952 		err |= __put_user(s->si_pid, &d->si_pid);
953 		err |= __put_user(s->si_uid, &d->si_uid);
954 		break;
955 	}
956 	return err;
957 }
958 
959 #define copy_siginfo_to_user	copy_siginfo_to_user32
960 
961 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
962 {
963 	if (copy_from_user(to, from, 3*sizeof(int)) ||
964 	    copy_from_user(to->_sifields._pad,
965 			   from->_sifields._pad, SI_PAD_SIZE32))
966 		return -EFAULT;
967 
968 	return 0;
969 }
970 #endif /* CONFIG_PPC64 */
971 
972 /*
973  * Set up a signal frame for a "real-time" signal handler
974  * (one which gets siginfo).
975  */
976 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
977 		       struct task_struct *tsk)
978 {
979 	struct rt_sigframe __user *rt_sf;
980 	struct mcontext __user *frame;
981 	struct mcontext __user *tm_frame = NULL;
982 	void __user *addr;
983 	unsigned long newsp = 0;
984 	int sigret;
985 	unsigned long tramp;
986 	struct pt_regs *regs = tsk->thread.regs;
987 
988 	BUG_ON(tsk != current);
989 
990 	/* Set up Signal Frame */
991 	/* Put a Real Time Context onto stack */
992 	rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
993 	addr = rt_sf;
994 	if (unlikely(rt_sf == NULL))
995 		goto badframe;
996 
997 	/* Put the siginfo & fill in most of the ucontext */
998 	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
999 	    || __put_user(0, &rt_sf->uc.uc_flags)
1000 	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1001 	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1002 		    &rt_sf->uc.uc_regs)
1003 	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1004 		goto badframe;
1005 
1006 	/* Save user registers on the stack */
1007 	frame = &rt_sf->uc.uc_mcontext;
1008 	addr = frame;
1009 	if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
1010 		sigret = 0;
1011 		tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
1012 	} else {
1013 		sigret = __NR_rt_sigreturn;
1014 		tramp = (unsigned long) frame->tramp;
1015 	}
1016 
1017 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1018 	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1019 	if (MSR_TM_ACTIVE(regs->msr)) {
1020 		if (__put_user((unsigned long)&rt_sf->uc_transact,
1021 			       &rt_sf->uc.uc_link) ||
1022 		    __put_user((unsigned long)tm_frame,
1023 			       &rt_sf->uc_transact.uc_regs))
1024 			goto badframe;
1025 		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1026 			goto badframe;
1027 	}
1028 	else
1029 #endif
1030 	{
1031 		if (__put_user(0, &rt_sf->uc.uc_link))
1032 			goto badframe;
1033 		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1034 			goto badframe;
1035 	}
1036 	regs->link = tramp;
1037 
1038 	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1039 
1040 	/* create a stack frame for the caller of the handler */
1041 	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1042 	addr = (void __user *)regs->gpr[1];
1043 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1044 		goto badframe;
1045 
1046 	/* Fill registers for signal handler */
1047 	regs->gpr[1] = newsp;
1048 	regs->gpr[3] = ksig->sig;
1049 	regs->gpr[4] = (unsigned long) &rt_sf->info;
1050 	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1051 	regs->gpr[6] = (unsigned long) rt_sf;
1052 	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
1053 	/* enter the signal handler in native-endian mode */
1054 	regs->msr &= ~MSR_LE;
1055 	regs->msr |= (MSR_KERNEL & MSR_LE);
1056 	return 0;
1057 
1058 badframe:
1059 	if (show_unhandled_signals)
1060 		printk_ratelimited(KERN_INFO
1061 				   "%s[%d]: bad frame in handle_rt_signal32: "
1062 				   "%p nip %08lx lr %08lx\n",
1063 				   tsk->comm, tsk->pid,
1064 				   addr, regs->nip, regs->link);
1065 
1066 	return 1;
1067 }
1068 
1069 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1070 {
1071 	sigset_t set;
1072 	struct mcontext __user *mcp;
1073 
1074 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1075 		return -EFAULT;
1076 #ifdef CONFIG_PPC64
1077 	{
1078 		u32 cmcp;
1079 
1080 		if (__get_user(cmcp, &ucp->uc_regs))
1081 			return -EFAULT;
1082 		mcp = (struct mcontext __user *)(u64)cmcp;
1083 		/* no need to check access_ok(mcp), since mcp < 4GB */
1084 	}
1085 #else
1086 	if (__get_user(mcp, &ucp->uc_regs))
1087 		return -EFAULT;
1088 	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1089 		return -EFAULT;
1090 #endif
1091 	set_current_blocked(&set);
1092 	if (restore_user_regs(regs, mcp, sig))
1093 		return -EFAULT;
1094 
1095 	return 0;
1096 }
1097 
1098 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1099 static int do_setcontext_tm(struct ucontext __user *ucp,
1100 			    struct ucontext __user *tm_ucp,
1101 			    struct pt_regs *regs)
1102 {
1103 	sigset_t set;
1104 	struct mcontext __user *mcp;
1105 	struct mcontext __user *tm_mcp;
1106 	u32 cmcp;
1107 	u32 tm_cmcp;
1108 
1109 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1110 		return -EFAULT;
1111 
1112 	if (__get_user(cmcp, &ucp->uc_regs) ||
1113 	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1114 		return -EFAULT;
1115 	mcp = (struct mcontext __user *)(u64)cmcp;
1116 	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1117 	/* no need to check access_ok(mcp), since mcp < 4GB */
1118 
1119 	set_current_blocked(&set);
1120 	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1121 		return -EFAULT;
1122 
1123 	return 0;
1124 }
1125 #endif
1126 
1127 long sys_swapcontext(struct ucontext __user *old_ctx,
1128 		     struct ucontext __user *new_ctx,
1129 		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1130 {
1131 	unsigned char tmp;
1132 	int ctx_has_vsx_region = 0;
1133 
1134 #ifdef CONFIG_PPC64
1135 	unsigned long new_msr = 0;
1136 
1137 	if (new_ctx) {
1138 		struct mcontext __user *mcp;
1139 		u32 cmcp;
1140 
1141 		/*
1142 		 * Get pointer to the real mcontext.  No need for
1143 		 * access_ok since we are dealing with compat
1144 		 * pointers.
1145 		 */
1146 		if (__get_user(cmcp, &new_ctx->uc_regs))
1147 			return -EFAULT;
1148 		mcp = (struct mcontext __user *)(u64)cmcp;
1149 		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1150 			return -EFAULT;
1151 	}
1152 	/*
1153 	 * Check that the context is not smaller than the original
1154 	 * size (with VMX but without VSX)
1155 	 */
1156 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1157 		return -EINVAL;
1158 	/*
1159 	 * If the new context state sets the MSR VSX bits but
1160 	 * it doesn't provide VSX state.
1161 	 */
1162 	if ((ctx_size < sizeof(struct ucontext)) &&
1163 	    (new_msr & MSR_VSX))
1164 		return -EINVAL;
1165 	/* Does the context have enough room to store VSX data? */
1166 	if (ctx_size >= sizeof(struct ucontext))
1167 		ctx_has_vsx_region = 1;
1168 #else
1169 	/* Context size is for future use. Right now, we only make sure
1170 	 * we are passed something we understand
1171 	 */
1172 	if (ctx_size < sizeof(struct ucontext))
1173 		return -EINVAL;
1174 #endif
1175 	if (old_ctx != NULL) {
1176 		struct mcontext __user *mctx;
1177 
1178 		/*
1179 		 * old_ctx might not be 16-byte aligned, in which
1180 		 * case old_ctx->uc_mcontext won't be either.
1181 		 * Because we have the old_ctx->uc_pad2 field
1182 		 * before old_ctx->uc_mcontext, we need to round down
1183 		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1184 		 */
1185 		mctx = (struct mcontext __user *)
1186 			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1187 		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1188 		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1189 		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1190 		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1191 			return -EFAULT;
1192 	}
1193 	if (new_ctx == NULL)
1194 		return 0;
1195 	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1196 	    || __get_user(tmp, (u8 __user *) new_ctx)
1197 	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1198 		return -EFAULT;
1199 
1200 	/*
1201 	 * If we get a fault copying the context into the kernel's
1202 	 * image of the user's registers, we can't just return -EFAULT
1203 	 * because the user's registers will be corrupted.  For instance
1204 	 * the NIP value may have been updated but not some of the
1205 	 * other registers.  Given that we have done the access_ok
1206 	 * and successfully read the first and last bytes of the region
1207 	 * above, this should only happen in an out-of-memory situation
1208 	 * or if another thread unmaps the region containing the context.
1209 	 * We kill the task with a SIGSEGV in this situation.
1210 	 */
1211 	if (do_setcontext(new_ctx, regs, 0))
1212 		do_exit(SIGSEGV);
1213 
1214 	set_thread_flag(TIF_RESTOREALL);
1215 	return 0;
1216 }
1217 
1218 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1219 		     struct pt_regs *regs)
1220 {
1221 	struct rt_sigframe __user *rt_sf;
1222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1223 	struct ucontext __user *uc_transact;
1224 	unsigned long msr_hi;
1225 	unsigned long tmp;
1226 	int tm_restore = 0;
1227 #endif
1228 	/* Always make any pending restarted system calls return -EINTR */
1229 	current->restart_block.fn = do_no_restart_syscall;
1230 
1231 	rt_sf = (struct rt_sigframe __user *)
1232 		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1233 	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1234 		goto bad;
1235 
1236 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1237 	/*
1238 	 * If there is a transactional state then throw it away.
1239 	 * The purpose of a sigreturn is to destroy all traces of the
1240 	 * signal frame, this includes any transactional state created
1241 	 * within in. We only check for suspended as we can never be
1242 	 * active in the kernel, we are active, there is nothing better to
1243 	 * do than go ahead and Bad Thing later.
1244 	 * The cause is not important as there will never be a
1245 	 * recheckpoint so it's not user visible.
1246 	 */
1247 	if (MSR_TM_SUSPENDED(mfmsr()))
1248 		tm_reclaim_current(0);
1249 
1250 	if (__get_user(tmp, &rt_sf->uc.uc_link))
1251 		goto bad;
1252 	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1253 	if (uc_transact) {
1254 		u32 cmcp;
1255 		struct mcontext __user *mcp;
1256 
1257 		if (__get_user(cmcp, &uc_transact->uc_regs))
1258 			return -EFAULT;
1259 		mcp = (struct mcontext __user *)(u64)cmcp;
1260 		/* The top 32 bits of the MSR are stashed in the transactional
1261 		 * ucontext. */
1262 		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1263 			goto bad;
1264 
1265 		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1266 			/* We only recheckpoint on return if we're
1267 			 * transaction.
1268 			 */
1269 			tm_restore = 1;
1270 			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1271 				goto bad;
1272 		}
1273 	}
1274 	if (!tm_restore)
1275 		/* Fall through, for non-TM restore */
1276 #endif
1277 	if (do_setcontext(&rt_sf->uc, regs, 1))
1278 		goto bad;
1279 
1280 	/*
1281 	 * It's not clear whether or why it is desirable to save the
1282 	 * sigaltstack setting on signal delivery and restore it on
1283 	 * signal return.  But other architectures do this and we have
1284 	 * always done it up until now so it is probably better not to
1285 	 * change it.  -- paulus
1286 	 */
1287 #ifdef CONFIG_PPC64
1288 	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1289 		goto bad;
1290 #else
1291 	if (restore_altstack(&rt_sf->uc.uc_stack))
1292 		goto bad;
1293 #endif
1294 	set_thread_flag(TIF_RESTOREALL);
1295 	return 0;
1296 
1297  bad:
1298 	if (show_unhandled_signals)
1299 		printk_ratelimited(KERN_INFO
1300 				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1301 				   "%p nip %08lx lr %08lx\n",
1302 				   current->comm, current->pid,
1303 				   rt_sf, regs->nip, regs->link);
1304 
1305 	force_sig(SIGSEGV, current);
1306 	return 0;
1307 }
1308 
1309 #ifdef CONFIG_PPC32
1310 int sys_debug_setcontext(struct ucontext __user *ctx,
1311 			 int ndbg, struct sig_dbg_op __user *dbg,
1312 			 int r6, int r7, int r8,
1313 			 struct pt_regs *regs)
1314 {
1315 	struct sig_dbg_op op;
1316 	int i;
1317 	unsigned char tmp;
1318 	unsigned long new_msr = regs->msr;
1319 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1320 	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1321 #endif
1322 
1323 	for (i=0; i<ndbg; i++) {
1324 		if (copy_from_user(&op, dbg + i, sizeof(op)))
1325 			return -EFAULT;
1326 		switch (op.dbg_type) {
1327 		case SIG_DBG_SINGLE_STEPPING:
1328 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1329 			if (op.dbg_value) {
1330 				new_msr |= MSR_DE;
1331 				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1332 			} else {
1333 				new_dbcr0 &= ~DBCR0_IC;
1334 				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1335 						current->thread.debug.dbcr1)) {
1336 					new_msr &= ~MSR_DE;
1337 					new_dbcr0 &= ~DBCR0_IDM;
1338 				}
1339 			}
1340 #else
1341 			if (op.dbg_value)
1342 				new_msr |= MSR_SE;
1343 			else
1344 				new_msr &= ~MSR_SE;
1345 #endif
1346 			break;
1347 		case SIG_DBG_BRANCH_TRACING:
1348 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1349 			return -EINVAL;
1350 #else
1351 			if (op.dbg_value)
1352 				new_msr |= MSR_BE;
1353 			else
1354 				new_msr &= ~MSR_BE;
1355 #endif
1356 			break;
1357 
1358 		default:
1359 			return -EINVAL;
1360 		}
1361 	}
1362 
1363 	/* We wait until here to actually install the values in the
1364 	   registers so if we fail in the above loop, it will not
1365 	   affect the contents of these registers.  After this point,
1366 	   failure is a problem, anyway, and it's very unlikely unless
1367 	   the user is really doing something wrong. */
1368 	regs->msr = new_msr;
1369 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1370 	current->thread.debug.dbcr0 = new_dbcr0;
1371 #endif
1372 
1373 	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1374 	    || __get_user(tmp, (u8 __user *) ctx)
1375 	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1376 		return -EFAULT;
1377 
1378 	/*
1379 	 * If we get a fault copying the context into the kernel's
1380 	 * image of the user's registers, we can't just return -EFAULT
1381 	 * because the user's registers will be corrupted.  For instance
1382 	 * the NIP value may have been updated but not some of the
1383 	 * other registers.  Given that we have done the access_ok
1384 	 * and successfully read the first and last bytes of the region
1385 	 * above, this should only happen in an out-of-memory situation
1386 	 * or if another thread unmaps the region containing the context.
1387 	 * We kill the task with a SIGSEGV in this situation.
1388 	 */
1389 	if (do_setcontext(ctx, regs, 1)) {
1390 		if (show_unhandled_signals)
1391 			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1392 					   "sys_debug_setcontext: %p nip %08lx "
1393 					   "lr %08lx\n",
1394 					   current->comm, current->pid,
1395 					   ctx, regs->nip, regs->link);
1396 
1397 		force_sig(SIGSEGV, current);
1398 		goto out;
1399 	}
1400 
1401 	/*
1402 	 * It's not clear whether or why it is desirable to save the
1403 	 * sigaltstack setting on signal delivery and restore it on
1404 	 * signal return.  But other architectures do this and we have
1405 	 * always done it up until now so it is probably better not to
1406 	 * change it.  -- paulus
1407 	 */
1408 	restore_altstack(&ctx->uc_stack);
1409 
1410 	set_thread_flag(TIF_RESTOREALL);
1411  out:
1412 	return 0;
1413 }
1414 #endif
1415 
1416 /*
1417  * OK, we're invoking a handler
1418  */
1419 int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1420 		struct task_struct *tsk)
1421 {
1422 	struct sigcontext __user *sc;
1423 	struct sigframe __user *frame;
1424 	struct mcontext __user *tm_mctx = NULL;
1425 	unsigned long newsp = 0;
1426 	int sigret;
1427 	unsigned long tramp;
1428 	struct pt_regs *regs = tsk->thread.regs;
1429 
1430 	BUG_ON(tsk != current);
1431 
1432 	/* Set up Signal Frame */
1433 	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1434 	if (unlikely(frame == NULL))
1435 		goto badframe;
1436 	sc = (struct sigcontext __user *) &frame->sctx;
1437 
1438 #if _NSIG != 64
1439 #error "Please adjust handle_signal()"
1440 #endif
1441 	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1442 	    || __put_user(oldset->sig[0], &sc->oldmask)
1443 #ifdef CONFIG_PPC64
1444 	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1445 #else
1446 	    || __put_user(oldset->sig[1], &sc->_unused[3])
1447 #endif
1448 	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1449 	    || __put_user(ksig->sig, &sc->signal))
1450 		goto badframe;
1451 
1452 	if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1453 		sigret = 0;
1454 		tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1455 	} else {
1456 		sigret = __NR_sigreturn;
1457 		tramp = (unsigned long) frame->mctx.tramp;
1458 	}
1459 
1460 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1461 	tm_mctx = &frame->mctx_transact;
1462 	if (MSR_TM_ACTIVE(regs->msr)) {
1463 		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1464 				      sigret))
1465 			goto badframe;
1466 	}
1467 	else
1468 #endif
1469 	{
1470 		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1471 			goto badframe;
1472 	}
1473 
1474 	regs->link = tramp;
1475 
1476 	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1477 
1478 	/* create a stack frame for the caller of the handler */
1479 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1480 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1481 		goto badframe;
1482 
1483 	regs->gpr[1] = newsp;
1484 	regs->gpr[3] = ksig->sig;
1485 	regs->gpr[4] = (unsigned long) sc;
1486 	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1487 	/* enter the signal handler in big-endian mode */
1488 	regs->msr &= ~MSR_LE;
1489 	return 0;
1490 
1491 badframe:
1492 	if (show_unhandled_signals)
1493 		printk_ratelimited(KERN_INFO
1494 				   "%s[%d]: bad frame in handle_signal32: "
1495 				   "%p nip %08lx lr %08lx\n",
1496 				   tsk->comm, tsk->pid,
1497 				   frame, regs->nip, regs->link);
1498 
1499 	return 1;
1500 }
1501 
1502 /*
1503  * Do a signal return; undo the signal stack.
1504  */
1505 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1506 		       struct pt_regs *regs)
1507 {
1508 	struct sigframe __user *sf;
1509 	struct sigcontext __user *sc;
1510 	struct sigcontext sigctx;
1511 	struct mcontext __user *sr;
1512 	void __user *addr;
1513 	sigset_t set;
1514 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1515 	struct mcontext __user *mcp, *tm_mcp;
1516 	unsigned long msr_hi;
1517 #endif
1518 
1519 	/* Always make any pending restarted system calls return -EINTR */
1520 	current->restart_block.fn = do_no_restart_syscall;
1521 
1522 	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1523 	sc = &sf->sctx;
1524 	addr = sc;
1525 	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1526 		goto badframe;
1527 
1528 #ifdef CONFIG_PPC64
1529 	/*
1530 	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1531 	 * unused part of the signal stackframe
1532 	 */
1533 	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1534 #else
1535 	set.sig[0] = sigctx.oldmask;
1536 	set.sig[1] = sigctx._unused[3];
1537 #endif
1538 	set_current_blocked(&set);
1539 
1540 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1541 	mcp = (struct mcontext __user *)&sf->mctx;
1542 	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1543 	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1544 		goto badframe;
1545 	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1546 		if (!cpu_has_feature(CPU_FTR_TM))
1547 			goto badframe;
1548 		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1549 			goto badframe;
1550 	} else
1551 #endif
1552 	{
1553 		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1554 		addr = sr;
1555 		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1556 		    || restore_user_regs(regs, sr, 1))
1557 			goto badframe;
1558 	}
1559 
1560 	set_thread_flag(TIF_RESTOREALL);
1561 	return 0;
1562 
1563 badframe:
1564 	if (show_unhandled_signals)
1565 		printk_ratelimited(KERN_INFO
1566 				   "%s[%d]: bad frame in sys_sigreturn: "
1567 				   "%p nip %08lx lr %08lx\n",
1568 				   current->comm, current->pid,
1569 				   addr, regs->nip, regs->link);
1570 
1571 	force_sig(SIGSEGV, current);
1572 	return 0;
1573 }
1574