1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC 4 * 5 * PowerPC version 6 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 7 * Copyright (C) 2001 IBM 8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 9 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 10 * 11 * Derived from "arch/i386/kernel/signal.c" 12 * Copyright (C) 1991, 1992 Linus Torvalds 13 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 14 */ 15 16 #include <linux/sched.h> 17 #include <linux/mm.h> 18 #include <linux/smp.h> 19 #include <linux/kernel.h> 20 #include <linux/signal.h> 21 #include <linux/errno.h> 22 #include <linux/elf.h> 23 #include <linux/ptrace.h> 24 #include <linux/pagemap.h> 25 #include <linux/ratelimit.h> 26 #include <linux/syscalls.h> 27 #ifdef CONFIG_PPC64 28 #include <linux/compat.h> 29 #else 30 #include <linux/wait.h> 31 #include <linux/unistd.h> 32 #include <linux/stddef.h> 33 #include <linux/tty.h> 34 #include <linux/binfmts.h> 35 #endif 36 37 #include <linux/uaccess.h> 38 #include <asm/cacheflush.h> 39 #include <asm/syscalls.h> 40 #include <asm/sigcontext.h> 41 #include <asm/vdso.h> 42 #include <asm/switch_to.h> 43 #include <asm/tm.h> 44 #include <asm/asm-prototypes.h> 45 #ifdef CONFIG_PPC64 46 #include "ppc32.h" 47 #include <asm/unistd.h> 48 #else 49 #include <asm/ucontext.h> 50 #include <asm/pgtable.h> 51 #endif 52 53 #include "signal.h" 54 55 56 #ifdef CONFIG_PPC64 57 #define old_sigaction old_sigaction32 58 #define sigcontext sigcontext32 59 #define mcontext mcontext32 60 #define ucontext ucontext32 61 62 #define __save_altstack __compat_save_altstack 63 64 /* 65 * Userspace code may pass a ucontext which doesn't include VSX added 66 * at the end. We need to check for this case. 67 */ 68 #define UCONTEXTSIZEWITHOUTVSX \ 69 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) 70 71 /* 72 * Returning 0 means we return to userspace via 73 * ret_from_except and thus restore all user 74 * registers from *regs. This is what we need 75 * to do when a signal has been delivered. 76 */ 77 78 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) 79 #undef __SIGNAL_FRAMESIZE 80 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 81 #undef ELF_NVRREG 82 #define ELF_NVRREG ELF_NVRREG32 83 84 /* 85 * Functions for flipping sigsets (thanks to brain dead generic 86 * implementation that makes things simple for little endian only) 87 */ 88 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) 89 { 90 return put_compat_sigset(uset, set, sizeof(*uset)); 91 } 92 93 static inline int get_sigset_t(sigset_t *set, 94 const compat_sigset_t __user *uset) 95 { 96 return get_compat_sigset(set, uset); 97 } 98 99 #define to_user_ptr(p) ptr_to_compat(p) 100 #define from_user_ptr(p) compat_ptr(p) 101 102 static inline int save_general_regs(struct pt_regs *regs, 103 struct mcontext __user *frame) 104 { 105 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 106 int i; 107 /* Force usr to alway see softe as 1 (interrupts enabled) */ 108 elf_greg_t64 softe = 0x1; 109 110 WARN_ON(!FULL_REGS(regs)); 111 112 for (i = 0; i <= PT_RESULT; i ++) { 113 if (i == 14 && !FULL_REGS(regs)) 114 i = 32; 115 if ( i == PT_SOFTE) { 116 if(__put_user((unsigned int)softe, &frame->mc_gregs[i])) 117 return -EFAULT; 118 else 119 continue; 120 } 121 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) 122 return -EFAULT; 123 } 124 return 0; 125 } 126 127 static inline int restore_general_regs(struct pt_regs *regs, 128 struct mcontext __user *sr) 129 { 130 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 131 int i; 132 133 for (i = 0; i <= PT_RESULT; i++) { 134 if ((i == PT_MSR) || (i == PT_SOFTE)) 135 continue; 136 if (__get_user(gregs[i], &sr->mc_gregs[i])) 137 return -EFAULT; 138 } 139 return 0; 140 } 141 142 #else /* CONFIG_PPC64 */ 143 144 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) 145 146 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) 147 { 148 return copy_to_user(uset, set, sizeof(*uset)); 149 } 150 151 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) 152 { 153 return copy_from_user(set, uset, sizeof(*uset)); 154 } 155 156 #define to_user_ptr(p) ((unsigned long)(p)) 157 #define from_user_ptr(p) ((void __user *)(p)) 158 159 static inline int save_general_regs(struct pt_regs *regs, 160 struct mcontext __user *frame) 161 { 162 WARN_ON(!FULL_REGS(regs)); 163 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); 164 } 165 166 static inline int restore_general_regs(struct pt_regs *regs, 167 struct mcontext __user *sr) 168 { 169 /* copy up to but not including MSR */ 170 if (__copy_from_user(regs, &sr->mc_gregs, 171 PT_MSR * sizeof(elf_greg_t))) 172 return -EFAULT; 173 /* copy from orig_r3 (the word after the MSR) up to the end */ 174 if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], 175 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) 176 return -EFAULT; 177 return 0; 178 } 179 #endif 180 181 /* 182 * When we have signals to deliver, we set up on the 183 * user stack, going down from the original stack pointer: 184 * an ABI gap of 56 words 185 * an mcontext struct 186 * a sigcontext struct 187 * a gap of __SIGNAL_FRAMESIZE bytes 188 * 189 * Each of these things must be a multiple of 16 bytes in size. The following 190 * structure represent all of this except the __SIGNAL_FRAMESIZE gap 191 * 192 */ 193 struct sigframe { 194 struct sigcontext sctx; /* the sigcontext */ 195 struct mcontext mctx; /* all the register values */ 196 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 197 struct sigcontext sctx_transact; 198 struct mcontext mctx_transact; 199 #endif 200 /* 201 * Programs using the rs6000/xcoff abi can save up to 19 gp 202 * regs and 18 fp regs below sp before decrementing it. 203 */ 204 int abigap[56]; 205 }; 206 207 /* We use the mc_pad field for the signal return trampoline. */ 208 #define tramp mc_pad 209 210 /* 211 * When we have rt signals to deliver, we set up on the 212 * user stack, going down from the original stack pointer: 213 * one rt_sigframe struct (siginfo + ucontext + ABI gap) 214 * a gap of __SIGNAL_FRAMESIZE+16 bytes 215 * (the +16 is to get the siginfo and ucontext in the same 216 * positions as in older kernels). 217 * 218 * Each of these things must be a multiple of 16 bytes in size. 219 * 220 */ 221 struct rt_sigframe { 222 #ifdef CONFIG_PPC64 223 compat_siginfo_t info; 224 #else 225 struct siginfo info; 226 #endif 227 struct ucontext uc; 228 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 229 struct ucontext uc_transact; 230 #endif 231 /* 232 * Programs using the rs6000/xcoff abi can save up to 19 gp 233 * regs and 18 fp regs below sp before decrementing it. 234 */ 235 int abigap[56]; 236 }; 237 238 #ifdef CONFIG_VSX 239 unsigned long copy_fpr_to_user(void __user *to, 240 struct task_struct *task) 241 { 242 u64 buf[ELF_NFPREG]; 243 int i; 244 245 /* save FPR copy to local buffer then write to the thread_struct */ 246 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 247 buf[i] = task->thread.TS_FPR(i); 248 buf[i] = task->thread.fp_state.fpscr; 249 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 250 } 251 252 unsigned long copy_fpr_from_user(struct task_struct *task, 253 void __user *from) 254 { 255 u64 buf[ELF_NFPREG]; 256 int i; 257 258 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 259 return 1; 260 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 261 task->thread.TS_FPR(i) = buf[i]; 262 task->thread.fp_state.fpscr = buf[i]; 263 264 return 0; 265 } 266 267 unsigned long copy_vsx_to_user(void __user *to, 268 struct task_struct *task) 269 { 270 u64 buf[ELF_NVSRHALFREG]; 271 int i; 272 273 /* save FPR copy to local buffer then write to the thread_struct */ 274 for (i = 0; i < ELF_NVSRHALFREG; i++) 275 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; 276 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 277 } 278 279 unsigned long copy_vsx_from_user(struct task_struct *task, 280 void __user *from) 281 { 282 u64 buf[ELF_NVSRHALFREG]; 283 int i; 284 285 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 286 return 1; 287 for (i = 0; i < ELF_NVSRHALFREG ; i++) 288 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 289 return 0; 290 } 291 292 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 293 unsigned long copy_ckfpr_to_user(void __user *to, 294 struct task_struct *task) 295 { 296 u64 buf[ELF_NFPREG]; 297 int i; 298 299 /* save FPR copy to local buffer then write to the thread_struct */ 300 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 301 buf[i] = task->thread.TS_CKFPR(i); 302 buf[i] = task->thread.ckfp_state.fpscr; 303 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 304 } 305 306 unsigned long copy_ckfpr_from_user(struct task_struct *task, 307 void __user *from) 308 { 309 u64 buf[ELF_NFPREG]; 310 int i; 311 312 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 313 return 1; 314 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 315 task->thread.TS_CKFPR(i) = buf[i]; 316 task->thread.ckfp_state.fpscr = buf[i]; 317 318 return 0; 319 } 320 321 unsigned long copy_ckvsx_to_user(void __user *to, 322 struct task_struct *task) 323 { 324 u64 buf[ELF_NVSRHALFREG]; 325 int i; 326 327 /* save FPR copy to local buffer then write to the thread_struct */ 328 for (i = 0; i < ELF_NVSRHALFREG; i++) 329 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET]; 330 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 331 } 332 333 unsigned long copy_ckvsx_from_user(struct task_struct *task, 334 void __user *from) 335 { 336 u64 buf[ELF_NVSRHALFREG]; 337 int i; 338 339 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 340 return 1; 341 for (i = 0; i < ELF_NVSRHALFREG ; i++) 342 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 343 return 0; 344 } 345 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 346 #else 347 inline unsigned long copy_fpr_to_user(void __user *to, 348 struct task_struct *task) 349 { 350 return __copy_to_user(to, task->thread.fp_state.fpr, 351 ELF_NFPREG * sizeof(double)); 352 } 353 354 inline unsigned long copy_fpr_from_user(struct task_struct *task, 355 void __user *from) 356 { 357 return __copy_from_user(task->thread.fp_state.fpr, from, 358 ELF_NFPREG * sizeof(double)); 359 } 360 361 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 362 inline unsigned long copy_ckfpr_to_user(void __user *to, 363 struct task_struct *task) 364 { 365 return __copy_to_user(to, task->thread.ckfp_state.fpr, 366 ELF_NFPREG * sizeof(double)); 367 } 368 369 inline unsigned long copy_ckfpr_from_user(struct task_struct *task, 370 void __user *from) 371 { 372 return __copy_from_user(task->thread.ckfp_state.fpr, from, 373 ELF_NFPREG * sizeof(double)); 374 } 375 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 376 #endif 377 378 /* 379 * Save the current user registers on the user stack. 380 * We only save the altivec/spe registers if the process has used 381 * altivec/spe instructions at some point. 382 */ 383 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, 384 struct mcontext __user *tm_frame, int sigret, 385 int ctx_has_vsx_region) 386 { 387 unsigned long msr = regs->msr; 388 389 /* Make sure floating point registers are stored in regs */ 390 flush_fp_to_thread(current); 391 392 /* save general registers */ 393 if (save_general_regs(regs, frame)) 394 return 1; 395 396 #ifdef CONFIG_ALTIVEC 397 /* save altivec registers */ 398 if (current->thread.used_vr) { 399 flush_altivec_to_thread(current); 400 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 401 ELF_NVRREG * sizeof(vector128))) 402 return 1; 403 /* set MSR_VEC in the saved MSR value to indicate that 404 frame->mc_vregs contains valid data */ 405 msr |= MSR_VEC; 406 } 407 /* else assert((regs->msr & MSR_VEC) == 0) */ 408 409 /* We always copy to/from vrsave, it's 0 if we don't have or don't 410 * use altivec. Since VSCR only contains 32 bits saved in the least 411 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 412 * most significant bits of that same vector. --BenH 413 * Note that the current VRSAVE value is in the SPR at this point. 414 */ 415 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 416 current->thread.vrsave = mfspr(SPRN_VRSAVE); 417 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) 418 return 1; 419 #endif /* CONFIG_ALTIVEC */ 420 if (copy_fpr_to_user(&frame->mc_fregs, current)) 421 return 1; 422 423 /* 424 * Clear the MSR VSX bit to indicate there is no valid state attached 425 * to this context, except in the specific case below where we set it. 426 */ 427 msr &= ~MSR_VSX; 428 #ifdef CONFIG_VSX 429 /* 430 * Copy VSR 0-31 upper half from thread_struct to local 431 * buffer, then write that to userspace. Also set MSR_VSX in 432 * the saved MSR value to indicate that frame->mc_vregs 433 * contains valid data 434 */ 435 if (current->thread.used_vsr && ctx_has_vsx_region) { 436 flush_vsx_to_thread(current); 437 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 438 return 1; 439 msr |= MSR_VSX; 440 } 441 #endif /* CONFIG_VSX */ 442 #ifdef CONFIG_SPE 443 /* save spe registers */ 444 if (current->thread.used_spe) { 445 flush_spe_to_thread(current); 446 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 447 ELF_NEVRREG * sizeof(u32))) 448 return 1; 449 /* set MSR_SPE in the saved MSR value to indicate that 450 frame->mc_vregs contains valid data */ 451 msr |= MSR_SPE; 452 } 453 /* else assert((regs->msr & MSR_SPE) == 0) */ 454 455 /* We always copy to/from spefscr */ 456 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 457 return 1; 458 #endif /* CONFIG_SPE */ 459 460 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 461 return 1; 462 /* We need to write 0 the MSR top 32 bits in the tm frame so that we 463 * can check it on the restore to see if TM is active 464 */ 465 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) 466 return 1; 467 468 if (sigret) { 469 /* Set up the sigreturn trampoline: li 0,sigret; sc */ 470 if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0]) 471 || __put_user(PPC_INST_SC, &frame->tramp[1])) 472 return 1; 473 flush_icache_range((unsigned long) &frame->tramp[0], 474 (unsigned long) &frame->tramp[2]); 475 } 476 477 return 0; 478 } 479 480 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 481 /* 482 * Save the current user registers on the user stack. 483 * We only save the altivec/spe registers if the process has used 484 * altivec/spe instructions at some point. 485 * We also save the transactional registers to a second ucontext in the 486 * frame. 487 * 488 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). 489 */ 490 static int save_tm_user_regs(struct pt_regs *regs, 491 struct mcontext __user *frame, 492 struct mcontext __user *tm_frame, int sigret, 493 unsigned long msr) 494 { 495 WARN_ON(tm_suspend_disabled); 496 497 /* Save both sets of general registers */ 498 if (save_general_regs(¤t->thread.ckpt_regs, frame) 499 || save_general_regs(regs, tm_frame)) 500 return 1; 501 502 /* Stash the top half of the 64bit MSR into the 32bit MSR word 503 * of the transactional mcontext. This way we have a backward-compatible 504 * MSR in the 'normal' (checkpointed) mcontext and additionally one can 505 * also look at what type of transaction (T or S) was active at the 506 * time of the signal. 507 */ 508 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) 509 return 1; 510 511 #ifdef CONFIG_ALTIVEC 512 /* save altivec registers */ 513 if (current->thread.used_vr) { 514 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.ckvr_state, 515 ELF_NVRREG * sizeof(vector128))) 516 return 1; 517 if (msr & MSR_VEC) { 518 if (__copy_to_user(&tm_frame->mc_vregs, 519 ¤t->thread.vr_state, 520 ELF_NVRREG * sizeof(vector128))) 521 return 1; 522 } else { 523 if (__copy_to_user(&tm_frame->mc_vregs, 524 ¤t->thread.ckvr_state, 525 ELF_NVRREG * sizeof(vector128))) 526 return 1; 527 } 528 529 /* set MSR_VEC in the saved MSR value to indicate that 530 * frame->mc_vregs contains valid data 531 */ 532 msr |= MSR_VEC; 533 } 534 535 /* We always copy to/from vrsave, it's 0 if we don't have or don't 536 * use altivec. Since VSCR only contains 32 bits saved in the least 537 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 538 * most significant bits of that same vector. --BenH 539 */ 540 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 541 current->thread.ckvrsave = mfspr(SPRN_VRSAVE); 542 if (__put_user(current->thread.ckvrsave, 543 (u32 __user *)&frame->mc_vregs[32])) 544 return 1; 545 if (msr & MSR_VEC) { 546 if (__put_user(current->thread.vrsave, 547 (u32 __user *)&tm_frame->mc_vregs[32])) 548 return 1; 549 } else { 550 if (__put_user(current->thread.ckvrsave, 551 (u32 __user *)&tm_frame->mc_vregs[32])) 552 return 1; 553 } 554 #endif /* CONFIG_ALTIVEC */ 555 556 if (copy_ckfpr_to_user(&frame->mc_fregs, current)) 557 return 1; 558 if (msr & MSR_FP) { 559 if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) 560 return 1; 561 } else { 562 if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current)) 563 return 1; 564 } 565 566 #ifdef CONFIG_VSX 567 /* 568 * Copy VSR 0-31 upper half from thread_struct to local 569 * buffer, then write that to userspace. Also set MSR_VSX in 570 * the saved MSR value to indicate that frame->mc_vregs 571 * contains valid data 572 */ 573 if (current->thread.used_vsr) { 574 if (copy_ckvsx_to_user(&frame->mc_vsregs, current)) 575 return 1; 576 if (msr & MSR_VSX) { 577 if (copy_vsx_to_user(&tm_frame->mc_vsregs, 578 current)) 579 return 1; 580 } else { 581 if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current)) 582 return 1; 583 } 584 585 msr |= MSR_VSX; 586 } 587 #endif /* CONFIG_VSX */ 588 #ifdef CONFIG_SPE 589 /* SPE regs are not checkpointed with TM, so this section is 590 * simply the same as in save_user_regs(). 591 */ 592 if (current->thread.used_spe) { 593 flush_spe_to_thread(current); 594 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 595 ELF_NEVRREG * sizeof(u32))) 596 return 1; 597 /* set MSR_SPE in the saved MSR value to indicate that 598 * frame->mc_vregs contains valid data */ 599 msr |= MSR_SPE; 600 } 601 602 /* We always copy to/from spefscr */ 603 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 604 return 1; 605 #endif /* CONFIG_SPE */ 606 607 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 608 return 1; 609 if (sigret) { 610 /* Set up the sigreturn trampoline: li 0,sigret; sc */ 611 if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0]) 612 || __put_user(PPC_INST_SC, &frame->tramp[1])) 613 return 1; 614 flush_icache_range((unsigned long) &frame->tramp[0], 615 (unsigned long) &frame->tramp[2]); 616 } 617 618 return 0; 619 } 620 #endif 621 622 /* 623 * Restore the current user register values from the user stack, 624 * (except for MSR). 625 */ 626 static long restore_user_regs(struct pt_regs *regs, 627 struct mcontext __user *sr, int sig) 628 { 629 long err; 630 unsigned int save_r2 = 0; 631 unsigned long msr; 632 #ifdef CONFIG_VSX 633 int i; 634 #endif 635 636 /* 637 * restore general registers but not including MSR or SOFTE. Also 638 * take care of keeping r2 (TLS) intact if not a signal 639 */ 640 if (!sig) 641 save_r2 = (unsigned int)regs->gpr[2]; 642 err = restore_general_regs(regs, sr); 643 regs->trap = 0; 644 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 645 if (!sig) 646 regs->gpr[2] = (unsigned long) save_r2; 647 if (err) 648 return 1; 649 650 /* if doing signal return, restore the previous little-endian mode */ 651 if (sig) 652 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 653 654 #ifdef CONFIG_ALTIVEC 655 /* 656 * Force the process to reload the altivec registers from 657 * current->thread when it next does altivec instructions 658 */ 659 regs->msr &= ~MSR_VEC; 660 if (msr & MSR_VEC) { 661 /* restore altivec registers from the stack */ 662 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 663 sizeof(sr->mc_vregs))) 664 return 1; 665 current->thread.used_vr = true; 666 } else if (current->thread.used_vr) 667 memset(¤t->thread.vr_state, 0, 668 ELF_NVRREG * sizeof(vector128)); 669 670 /* Always get VRSAVE back */ 671 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) 672 return 1; 673 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 674 mtspr(SPRN_VRSAVE, current->thread.vrsave); 675 #endif /* CONFIG_ALTIVEC */ 676 if (copy_fpr_from_user(current, &sr->mc_fregs)) 677 return 1; 678 679 #ifdef CONFIG_VSX 680 /* 681 * Force the process to reload the VSX registers from 682 * current->thread when it next does VSX instruction. 683 */ 684 regs->msr &= ~MSR_VSX; 685 if (msr & MSR_VSX) { 686 /* 687 * Restore altivec registers from the stack to a local 688 * buffer, then write this out to the thread_struct 689 */ 690 if (copy_vsx_from_user(current, &sr->mc_vsregs)) 691 return 1; 692 current->thread.used_vsr = true; 693 } else if (current->thread.used_vsr) 694 for (i = 0; i < 32 ; i++) 695 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 696 #endif /* CONFIG_VSX */ 697 /* 698 * force the process to reload the FP registers from 699 * current->thread when it next does FP instructions 700 */ 701 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 702 703 #ifdef CONFIG_SPE 704 /* force the process to reload the spe registers from 705 current->thread when it next does spe instructions */ 706 regs->msr &= ~MSR_SPE; 707 if (msr & MSR_SPE) { 708 /* restore spe registers from the stack */ 709 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 710 ELF_NEVRREG * sizeof(u32))) 711 return 1; 712 current->thread.used_spe = true; 713 } else if (current->thread.used_spe) 714 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 715 716 /* Always get SPEFSCR back */ 717 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) 718 return 1; 719 #endif /* CONFIG_SPE */ 720 721 return 0; 722 } 723 724 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 725 /* 726 * Restore the current user register values from the user stack, except for 727 * MSR, and recheckpoint the original checkpointed register state for processes 728 * in transactions. 729 */ 730 static long restore_tm_user_regs(struct pt_regs *regs, 731 struct mcontext __user *sr, 732 struct mcontext __user *tm_sr) 733 { 734 long err; 735 unsigned long msr, msr_hi; 736 #ifdef CONFIG_VSX 737 int i; 738 #endif 739 740 if (tm_suspend_disabled) 741 return 1; 742 /* 743 * restore general registers but not including MSR or SOFTE. Also 744 * take care of keeping r2 (TLS) intact if not a signal. 745 * See comment in signal_64.c:restore_tm_sigcontexts(); 746 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR 747 * were set by the signal delivery. 748 */ 749 err = restore_general_regs(regs, tm_sr); 750 err |= restore_general_regs(¤t->thread.ckpt_regs, sr); 751 752 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); 753 754 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 755 if (err) 756 return 1; 757 758 /* Restore the previous little-endian mode */ 759 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 760 761 #ifdef CONFIG_ALTIVEC 762 regs->msr &= ~MSR_VEC; 763 if (msr & MSR_VEC) { 764 /* restore altivec registers from the stack */ 765 if (__copy_from_user(¤t->thread.ckvr_state, &sr->mc_vregs, 766 sizeof(sr->mc_vregs)) || 767 __copy_from_user(¤t->thread.vr_state, 768 &tm_sr->mc_vregs, 769 sizeof(sr->mc_vregs))) 770 return 1; 771 current->thread.used_vr = true; 772 } else if (current->thread.used_vr) { 773 memset(¤t->thread.vr_state, 0, 774 ELF_NVRREG * sizeof(vector128)); 775 memset(¤t->thread.ckvr_state, 0, 776 ELF_NVRREG * sizeof(vector128)); 777 } 778 779 /* Always get VRSAVE back */ 780 if (__get_user(current->thread.ckvrsave, 781 (u32 __user *)&sr->mc_vregs[32]) || 782 __get_user(current->thread.vrsave, 783 (u32 __user *)&tm_sr->mc_vregs[32])) 784 return 1; 785 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 786 mtspr(SPRN_VRSAVE, current->thread.ckvrsave); 787 #endif /* CONFIG_ALTIVEC */ 788 789 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 790 791 if (copy_fpr_from_user(current, &sr->mc_fregs) || 792 copy_ckfpr_from_user(current, &tm_sr->mc_fregs)) 793 return 1; 794 795 #ifdef CONFIG_VSX 796 regs->msr &= ~MSR_VSX; 797 if (msr & MSR_VSX) { 798 /* 799 * Restore altivec registers from the stack to a local 800 * buffer, then write this out to the thread_struct 801 */ 802 if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) || 803 copy_ckvsx_from_user(current, &sr->mc_vsregs)) 804 return 1; 805 current->thread.used_vsr = true; 806 } else if (current->thread.used_vsr) 807 for (i = 0; i < 32 ; i++) { 808 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 809 current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 810 } 811 #endif /* CONFIG_VSX */ 812 813 #ifdef CONFIG_SPE 814 /* SPE regs are not checkpointed with TM, so this section is 815 * simply the same as in restore_user_regs(). 816 */ 817 regs->msr &= ~MSR_SPE; 818 if (msr & MSR_SPE) { 819 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 820 ELF_NEVRREG * sizeof(u32))) 821 return 1; 822 current->thread.used_spe = true; 823 } else if (current->thread.used_spe) 824 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 825 826 /* Always get SPEFSCR back */ 827 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs 828 + ELF_NEVRREG)) 829 return 1; 830 #endif /* CONFIG_SPE */ 831 832 /* Get the top half of the MSR from the user context */ 833 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) 834 return 1; 835 msr_hi <<= 32; 836 /* If TM bits are set to the reserved value, it's an invalid context */ 837 if (MSR_TM_RESV(msr_hi)) 838 return 1; 839 840 /* 841 * Disabling preemption, since it is unsafe to be preempted 842 * with MSR[TS] set without recheckpointing. 843 */ 844 preempt_disable(); 845 846 /* 847 * CAUTION: 848 * After regs->MSR[TS] being updated, make sure that get_user(), 849 * put_user() or similar functions are *not* called. These 850 * functions can generate page faults which will cause the process 851 * to be de-scheduled with MSR[TS] set but without calling 852 * tm_recheckpoint(). This can cause a bug. 853 * 854 * Pull in the MSR TM bits from the user context 855 */ 856 regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK); 857 /* Now, recheckpoint. This loads up all of the checkpointed (older) 858 * registers, including FP and V[S]Rs. After recheckpointing, the 859 * transactional versions should be loaded. 860 */ 861 tm_enable(); 862 /* Make sure the transaction is marked as failed */ 863 current->thread.tm_texasr |= TEXASR_FS; 864 /* This loads the checkpointed FP/VEC state, if used */ 865 tm_recheckpoint(¤t->thread); 866 867 /* This loads the speculative FP/VEC state, if used */ 868 msr_check_and_set(msr & (MSR_FP | MSR_VEC)); 869 if (msr & MSR_FP) { 870 load_fp_state(¤t->thread.fp_state); 871 regs->msr |= (MSR_FP | current->thread.fpexc_mode); 872 } 873 #ifdef CONFIG_ALTIVEC 874 if (msr & MSR_VEC) { 875 load_vr_state(¤t->thread.vr_state); 876 regs->msr |= MSR_VEC; 877 } 878 #endif 879 880 preempt_enable(); 881 882 return 0; 883 } 884 #endif 885 886 #ifdef CONFIG_PPC64 887 888 #define copy_siginfo_to_user copy_siginfo_to_user32 889 890 #endif /* CONFIG_PPC64 */ 891 892 /* 893 * Set up a signal frame for a "real-time" signal handler 894 * (one which gets siginfo). 895 */ 896 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset, 897 struct task_struct *tsk) 898 { 899 struct rt_sigframe __user *rt_sf; 900 struct mcontext __user *frame; 901 struct mcontext __user *tm_frame = NULL; 902 void __user *addr; 903 unsigned long newsp = 0; 904 int sigret; 905 unsigned long tramp; 906 struct pt_regs *regs = tsk->thread.regs; 907 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 908 /* Save the thread's msr before get_tm_stackpointer() changes it */ 909 unsigned long msr = regs->msr; 910 #endif 911 912 BUG_ON(tsk != current); 913 914 /* Set up Signal Frame */ 915 /* Put a Real Time Context onto stack */ 916 rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1); 917 addr = rt_sf; 918 if (unlikely(rt_sf == NULL)) 919 goto badframe; 920 921 /* Put the siginfo & fill in most of the ucontext */ 922 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info) 923 || __put_user(0, &rt_sf->uc.uc_flags) 924 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) 925 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), 926 &rt_sf->uc.uc_regs) 927 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) 928 goto badframe; 929 930 /* Save user registers on the stack */ 931 frame = &rt_sf->uc.uc_mcontext; 932 addr = frame; 933 if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) { 934 sigret = 0; 935 tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp; 936 } else { 937 sigret = __NR_rt_sigreturn; 938 tramp = (unsigned long) frame->tramp; 939 } 940 941 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 942 tm_frame = &rt_sf->uc_transact.uc_mcontext; 943 if (MSR_TM_ACTIVE(msr)) { 944 if (__put_user((unsigned long)&rt_sf->uc_transact, 945 &rt_sf->uc.uc_link) || 946 __put_user((unsigned long)tm_frame, 947 &rt_sf->uc_transact.uc_regs)) 948 goto badframe; 949 if (save_tm_user_regs(regs, frame, tm_frame, sigret, msr)) 950 goto badframe; 951 } 952 else 953 #endif 954 { 955 if (__put_user(0, &rt_sf->uc.uc_link)) 956 goto badframe; 957 if (save_user_regs(regs, frame, tm_frame, sigret, 1)) 958 goto badframe; 959 } 960 regs->link = tramp; 961 962 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 963 964 /* create a stack frame for the caller of the handler */ 965 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); 966 addr = (void __user *)regs->gpr[1]; 967 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 968 goto badframe; 969 970 /* Fill registers for signal handler */ 971 regs->gpr[1] = newsp; 972 regs->gpr[3] = ksig->sig; 973 regs->gpr[4] = (unsigned long) &rt_sf->info; 974 regs->gpr[5] = (unsigned long) &rt_sf->uc; 975 regs->gpr[6] = (unsigned long) rt_sf; 976 regs->nip = (unsigned long) ksig->ka.sa.sa_handler; 977 /* enter the signal handler in native-endian mode */ 978 regs->msr &= ~MSR_LE; 979 regs->msr |= (MSR_KERNEL & MSR_LE); 980 return 0; 981 982 badframe: 983 if (show_unhandled_signals) 984 printk_ratelimited(KERN_INFO 985 "%s[%d]: bad frame in handle_rt_signal32: " 986 "%p nip %08lx lr %08lx\n", 987 tsk->comm, tsk->pid, 988 addr, regs->nip, regs->link); 989 990 return 1; 991 } 992 993 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) 994 { 995 sigset_t set; 996 struct mcontext __user *mcp; 997 998 if (get_sigset_t(&set, &ucp->uc_sigmask)) 999 return -EFAULT; 1000 #ifdef CONFIG_PPC64 1001 { 1002 u32 cmcp; 1003 1004 if (__get_user(cmcp, &ucp->uc_regs)) 1005 return -EFAULT; 1006 mcp = (struct mcontext __user *)(u64)cmcp; 1007 /* no need to check access_ok(mcp), since mcp < 4GB */ 1008 } 1009 #else 1010 if (__get_user(mcp, &ucp->uc_regs)) 1011 return -EFAULT; 1012 if (!access_ok(mcp, sizeof(*mcp))) 1013 return -EFAULT; 1014 #endif 1015 set_current_blocked(&set); 1016 if (restore_user_regs(regs, mcp, sig)) 1017 return -EFAULT; 1018 1019 return 0; 1020 } 1021 1022 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1023 static int do_setcontext_tm(struct ucontext __user *ucp, 1024 struct ucontext __user *tm_ucp, 1025 struct pt_regs *regs) 1026 { 1027 sigset_t set; 1028 struct mcontext __user *mcp; 1029 struct mcontext __user *tm_mcp; 1030 u32 cmcp; 1031 u32 tm_cmcp; 1032 1033 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1034 return -EFAULT; 1035 1036 if (__get_user(cmcp, &ucp->uc_regs) || 1037 __get_user(tm_cmcp, &tm_ucp->uc_regs)) 1038 return -EFAULT; 1039 mcp = (struct mcontext __user *)(u64)cmcp; 1040 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; 1041 /* no need to check access_ok(mcp), since mcp < 4GB */ 1042 1043 set_current_blocked(&set); 1044 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1045 return -EFAULT; 1046 1047 return 0; 1048 } 1049 #endif 1050 1051 #ifdef CONFIG_PPC64 1052 COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx, 1053 struct ucontext __user *, new_ctx, int, ctx_size) 1054 #else 1055 SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx, 1056 struct ucontext __user *, new_ctx, long, ctx_size) 1057 #endif 1058 { 1059 struct pt_regs *regs = current_pt_regs(); 1060 int ctx_has_vsx_region = 0; 1061 1062 #ifdef CONFIG_PPC64 1063 unsigned long new_msr = 0; 1064 1065 if (new_ctx) { 1066 struct mcontext __user *mcp; 1067 u32 cmcp; 1068 1069 /* 1070 * Get pointer to the real mcontext. No need for 1071 * access_ok since we are dealing with compat 1072 * pointers. 1073 */ 1074 if (__get_user(cmcp, &new_ctx->uc_regs)) 1075 return -EFAULT; 1076 mcp = (struct mcontext __user *)(u64)cmcp; 1077 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) 1078 return -EFAULT; 1079 } 1080 /* 1081 * Check that the context is not smaller than the original 1082 * size (with VMX but without VSX) 1083 */ 1084 if (ctx_size < UCONTEXTSIZEWITHOUTVSX) 1085 return -EINVAL; 1086 /* 1087 * If the new context state sets the MSR VSX bits but 1088 * it doesn't provide VSX state. 1089 */ 1090 if ((ctx_size < sizeof(struct ucontext)) && 1091 (new_msr & MSR_VSX)) 1092 return -EINVAL; 1093 /* Does the context have enough room to store VSX data? */ 1094 if (ctx_size >= sizeof(struct ucontext)) 1095 ctx_has_vsx_region = 1; 1096 #else 1097 /* Context size is for future use. Right now, we only make sure 1098 * we are passed something we understand 1099 */ 1100 if (ctx_size < sizeof(struct ucontext)) 1101 return -EINVAL; 1102 #endif 1103 if (old_ctx != NULL) { 1104 struct mcontext __user *mctx; 1105 1106 /* 1107 * old_ctx might not be 16-byte aligned, in which 1108 * case old_ctx->uc_mcontext won't be either. 1109 * Because we have the old_ctx->uc_pad2 field 1110 * before old_ctx->uc_mcontext, we need to round down 1111 * from &old_ctx->uc_mcontext to a 16-byte boundary. 1112 */ 1113 mctx = (struct mcontext __user *) 1114 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); 1115 if (!access_ok(old_ctx, ctx_size) 1116 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) 1117 || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) 1118 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) 1119 return -EFAULT; 1120 } 1121 if (new_ctx == NULL) 1122 return 0; 1123 if (!access_ok(new_ctx, ctx_size) || 1124 fault_in_pages_readable((u8 __user *)new_ctx, ctx_size)) 1125 return -EFAULT; 1126 1127 /* 1128 * If we get a fault copying the context into the kernel's 1129 * image of the user's registers, we can't just return -EFAULT 1130 * because the user's registers will be corrupted. For instance 1131 * the NIP value may have been updated but not some of the 1132 * other registers. Given that we have done the access_ok 1133 * and successfully read the first and last bytes of the region 1134 * above, this should only happen in an out-of-memory situation 1135 * or if another thread unmaps the region containing the context. 1136 * We kill the task with a SIGSEGV in this situation. 1137 */ 1138 if (do_setcontext(new_ctx, regs, 0)) 1139 do_exit(SIGSEGV); 1140 1141 set_thread_flag(TIF_RESTOREALL); 1142 return 0; 1143 } 1144 1145 #ifdef CONFIG_PPC64 1146 COMPAT_SYSCALL_DEFINE0(rt_sigreturn) 1147 #else 1148 SYSCALL_DEFINE0(rt_sigreturn) 1149 #endif 1150 { 1151 struct rt_sigframe __user *rt_sf; 1152 struct pt_regs *regs = current_pt_regs(); 1153 int tm_restore = 0; 1154 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1155 struct ucontext __user *uc_transact; 1156 unsigned long msr_hi; 1157 unsigned long tmp; 1158 #endif 1159 /* Always make any pending restarted system calls return -EINTR */ 1160 current->restart_block.fn = do_no_restart_syscall; 1161 1162 rt_sf = (struct rt_sigframe __user *) 1163 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); 1164 if (!access_ok(rt_sf, sizeof(*rt_sf))) 1165 goto bad; 1166 1167 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1168 /* 1169 * If there is a transactional state then throw it away. 1170 * The purpose of a sigreturn is to destroy all traces of the 1171 * signal frame, this includes any transactional state created 1172 * within in. We only check for suspended as we can never be 1173 * active in the kernel, we are active, there is nothing better to 1174 * do than go ahead and Bad Thing later. 1175 * The cause is not important as there will never be a 1176 * recheckpoint so it's not user visible. 1177 */ 1178 if (MSR_TM_SUSPENDED(mfmsr())) 1179 tm_reclaim_current(0); 1180 1181 if (__get_user(tmp, &rt_sf->uc.uc_link)) 1182 goto bad; 1183 uc_transact = (struct ucontext __user *)(uintptr_t)tmp; 1184 if (uc_transact) { 1185 u32 cmcp; 1186 struct mcontext __user *mcp; 1187 1188 if (__get_user(cmcp, &uc_transact->uc_regs)) 1189 return -EFAULT; 1190 mcp = (struct mcontext __user *)(u64)cmcp; 1191 /* The top 32 bits of the MSR are stashed in the transactional 1192 * ucontext. */ 1193 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) 1194 goto bad; 1195 1196 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1197 /* Trying to start TM on non TM system */ 1198 if (!cpu_has_feature(CPU_FTR_TM)) 1199 goto bad; 1200 /* We only recheckpoint on return if we're 1201 * transaction. 1202 */ 1203 tm_restore = 1; 1204 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) 1205 goto bad; 1206 } 1207 } 1208 if (!tm_restore) { 1209 /* 1210 * Unset regs->msr because ucontext MSR TS is not 1211 * set, and recheckpoint was not called. This avoid 1212 * hitting a TM Bad thing at RFID 1213 */ 1214 regs->msr &= ~MSR_TS_MASK; 1215 } 1216 /* Fall through, for non-TM restore */ 1217 #endif 1218 if (!tm_restore) 1219 if (do_setcontext(&rt_sf->uc, regs, 1)) 1220 goto bad; 1221 1222 /* 1223 * It's not clear whether or why it is desirable to save the 1224 * sigaltstack setting on signal delivery and restore it on 1225 * signal return. But other architectures do this and we have 1226 * always done it up until now so it is probably better not to 1227 * change it. -- paulus 1228 */ 1229 #ifdef CONFIG_PPC64 1230 if (compat_restore_altstack(&rt_sf->uc.uc_stack)) 1231 goto bad; 1232 #else 1233 if (restore_altstack(&rt_sf->uc.uc_stack)) 1234 goto bad; 1235 #endif 1236 set_thread_flag(TIF_RESTOREALL); 1237 return 0; 1238 1239 bad: 1240 if (show_unhandled_signals) 1241 printk_ratelimited(KERN_INFO 1242 "%s[%d]: bad frame in sys_rt_sigreturn: " 1243 "%p nip %08lx lr %08lx\n", 1244 current->comm, current->pid, 1245 rt_sf, regs->nip, regs->link); 1246 1247 force_sig(SIGSEGV); 1248 return 0; 1249 } 1250 1251 #ifdef CONFIG_PPC32 1252 SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx, 1253 int, ndbg, struct sig_dbg_op __user *, dbg) 1254 { 1255 struct pt_regs *regs = current_pt_regs(); 1256 struct sig_dbg_op op; 1257 int i; 1258 unsigned long new_msr = regs->msr; 1259 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1260 unsigned long new_dbcr0 = current->thread.debug.dbcr0; 1261 #endif 1262 1263 for (i=0; i<ndbg; i++) { 1264 if (copy_from_user(&op, dbg + i, sizeof(op))) 1265 return -EFAULT; 1266 switch (op.dbg_type) { 1267 case SIG_DBG_SINGLE_STEPPING: 1268 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1269 if (op.dbg_value) { 1270 new_msr |= MSR_DE; 1271 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); 1272 } else { 1273 new_dbcr0 &= ~DBCR0_IC; 1274 if (!DBCR_ACTIVE_EVENTS(new_dbcr0, 1275 current->thread.debug.dbcr1)) { 1276 new_msr &= ~MSR_DE; 1277 new_dbcr0 &= ~DBCR0_IDM; 1278 } 1279 } 1280 #else 1281 if (op.dbg_value) 1282 new_msr |= MSR_SE; 1283 else 1284 new_msr &= ~MSR_SE; 1285 #endif 1286 break; 1287 case SIG_DBG_BRANCH_TRACING: 1288 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1289 return -EINVAL; 1290 #else 1291 if (op.dbg_value) 1292 new_msr |= MSR_BE; 1293 else 1294 new_msr &= ~MSR_BE; 1295 #endif 1296 break; 1297 1298 default: 1299 return -EINVAL; 1300 } 1301 } 1302 1303 /* We wait until here to actually install the values in the 1304 registers so if we fail in the above loop, it will not 1305 affect the contents of these registers. After this point, 1306 failure is a problem, anyway, and it's very unlikely unless 1307 the user is really doing something wrong. */ 1308 regs->msr = new_msr; 1309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1310 current->thread.debug.dbcr0 = new_dbcr0; 1311 #endif 1312 1313 if (!access_ok(ctx, sizeof(*ctx)) || 1314 fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx))) 1315 return -EFAULT; 1316 1317 /* 1318 * If we get a fault copying the context into the kernel's 1319 * image of the user's registers, we can't just return -EFAULT 1320 * because the user's registers will be corrupted. For instance 1321 * the NIP value may have been updated but not some of the 1322 * other registers. Given that we have done the access_ok 1323 * and successfully read the first and last bytes of the region 1324 * above, this should only happen in an out-of-memory situation 1325 * or if another thread unmaps the region containing the context. 1326 * We kill the task with a SIGSEGV in this situation. 1327 */ 1328 if (do_setcontext(ctx, regs, 1)) { 1329 if (show_unhandled_signals) 1330 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " 1331 "sys_debug_setcontext: %p nip %08lx " 1332 "lr %08lx\n", 1333 current->comm, current->pid, 1334 ctx, regs->nip, regs->link); 1335 1336 force_sig(SIGSEGV); 1337 goto out; 1338 } 1339 1340 /* 1341 * It's not clear whether or why it is desirable to save the 1342 * sigaltstack setting on signal delivery and restore it on 1343 * signal return. But other architectures do this and we have 1344 * always done it up until now so it is probably better not to 1345 * change it. -- paulus 1346 */ 1347 restore_altstack(&ctx->uc_stack); 1348 1349 set_thread_flag(TIF_RESTOREALL); 1350 out: 1351 return 0; 1352 } 1353 #endif 1354 1355 /* 1356 * OK, we're invoking a handler 1357 */ 1358 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, 1359 struct task_struct *tsk) 1360 { 1361 struct sigcontext __user *sc; 1362 struct sigframe __user *frame; 1363 struct mcontext __user *tm_mctx = NULL; 1364 unsigned long newsp = 0; 1365 int sigret; 1366 unsigned long tramp; 1367 struct pt_regs *regs = tsk->thread.regs; 1368 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1369 /* Save the thread's msr before get_tm_stackpointer() changes it */ 1370 unsigned long msr = regs->msr; 1371 #endif 1372 1373 BUG_ON(tsk != current); 1374 1375 /* Set up Signal Frame */ 1376 frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1); 1377 if (unlikely(frame == NULL)) 1378 goto badframe; 1379 sc = (struct sigcontext __user *) &frame->sctx; 1380 1381 #if _NSIG != 64 1382 #error "Please adjust handle_signal()" 1383 #endif 1384 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler) 1385 || __put_user(oldset->sig[0], &sc->oldmask) 1386 #ifdef CONFIG_PPC64 1387 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) 1388 #else 1389 || __put_user(oldset->sig[1], &sc->_unused[3]) 1390 #endif 1391 || __put_user(to_user_ptr(&frame->mctx), &sc->regs) 1392 || __put_user(ksig->sig, &sc->signal)) 1393 goto badframe; 1394 1395 if (vdso32_sigtramp && tsk->mm->context.vdso_base) { 1396 sigret = 0; 1397 tramp = tsk->mm->context.vdso_base + vdso32_sigtramp; 1398 } else { 1399 sigret = __NR_sigreturn; 1400 tramp = (unsigned long) frame->mctx.tramp; 1401 } 1402 1403 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1404 tm_mctx = &frame->mctx_transact; 1405 if (MSR_TM_ACTIVE(msr)) { 1406 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, 1407 sigret, msr)) 1408 goto badframe; 1409 } 1410 else 1411 #endif 1412 { 1413 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) 1414 goto badframe; 1415 } 1416 1417 regs->link = tramp; 1418 1419 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1420 1421 /* create a stack frame for the caller of the handler */ 1422 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; 1423 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1424 goto badframe; 1425 1426 regs->gpr[1] = newsp; 1427 regs->gpr[3] = ksig->sig; 1428 regs->gpr[4] = (unsigned long) sc; 1429 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler; 1430 /* enter the signal handler in big-endian mode */ 1431 regs->msr &= ~MSR_LE; 1432 return 0; 1433 1434 badframe: 1435 if (show_unhandled_signals) 1436 printk_ratelimited(KERN_INFO 1437 "%s[%d]: bad frame in handle_signal32: " 1438 "%p nip %08lx lr %08lx\n", 1439 tsk->comm, tsk->pid, 1440 frame, regs->nip, regs->link); 1441 1442 return 1; 1443 } 1444 1445 /* 1446 * Do a signal return; undo the signal stack. 1447 */ 1448 #ifdef CONFIG_PPC64 1449 COMPAT_SYSCALL_DEFINE0(sigreturn) 1450 #else 1451 SYSCALL_DEFINE0(sigreturn) 1452 #endif 1453 { 1454 struct pt_regs *regs = current_pt_regs(); 1455 struct sigframe __user *sf; 1456 struct sigcontext __user *sc; 1457 struct sigcontext sigctx; 1458 struct mcontext __user *sr; 1459 void __user *addr; 1460 sigset_t set; 1461 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1462 struct mcontext __user *mcp, *tm_mcp; 1463 unsigned long msr_hi; 1464 #endif 1465 1466 /* Always make any pending restarted system calls return -EINTR */ 1467 current->restart_block.fn = do_no_restart_syscall; 1468 1469 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); 1470 sc = &sf->sctx; 1471 addr = sc; 1472 if (copy_from_user(&sigctx, sc, sizeof(sigctx))) 1473 goto badframe; 1474 1475 #ifdef CONFIG_PPC64 1476 /* 1477 * Note that PPC32 puts the upper 32 bits of the sigmask in the 1478 * unused part of the signal stackframe 1479 */ 1480 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); 1481 #else 1482 set.sig[0] = sigctx.oldmask; 1483 set.sig[1] = sigctx._unused[3]; 1484 #endif 1485 set_current_blocked(&set); 1486 1487 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1488 mcp = (struct mcontext __user *)&sf->mctx; 1489 tm_mcp = (struct mcontext __user *)&sf->mctx_transact; 1490 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) 1491 goto badframe; 1492 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1493 if (!cpu_has_feature(CPU_FTR_TM)) 1494 goto badframe; 1495 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1496 goto badframe; 1497 } else 1498 #endif 1499 { 1500 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); 1501 addr = sr; 1502 if (!access_ok(sr, sizeof(*sr)) 1503 || restore_user_regs(regs, sr, 1)) 1504 goto badframe; 1505 } 1506 1507 set_thread_flag(TIF_RESTOREALL); 1508 return 0; 1509 1510 badframe: 1511 if (show_unhandled_signals) 1512 printk_ratelimited(KERN_INFO 1513 "%s[%d]: bad frame in sys_sigreturn: " 1514 "%p nip %08lx lr %08lx\n", 1515 current->comm, current->pid, 1516 addr, regs->nip, regs->link); 1517 1518 force_sig(SIGSEGV); 1519 return 0; 1520 } 1521