1 /* 2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC 3 * 4 * PowerPC version 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Copyright (C) 2001 IBM 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 9 * 10 * Derived from "arch/i386/kernel/signal.c" 11 * Copyright (C) 1991, 1992 Linus Torvalds 12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 13 * 14 * This program is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU General Public License 16 * as published by the Free Software Foundation; either version 17 * 2 of the License, or (at your option) any later version. 18 */ 19 20 #include <linux/sched.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/kernel.h> 24 #include <linux/signal.h> 25 #include <linux/errno.h> 26 #include <linux/elf.h> 27 #include <linux/ptrace.h> 28 #include <linux/ratelimit.h> 29 #ifdef CONFIG_PPC64 30 #include <linux/syscalls.h> 31 #include <linux/compat.h> 32 #else 33 #include <linux/wait.h> 34 #include <linux/unistd.h> 35 #include <linux/stddef.h> 36 #include <linux/tty.h> 37 #include <linux/binfmts.h> 38 #endif 39 40 #include <asm/uaccess.h> 41 #include <asm/cacheflush.h> 42 #include <asm/syscalls.h> 43 #include <asm/sigcontext.h> 44 #include <asm/vdso.h> 45 #include <asm/switch_to.h> 46 #include <asm/tm.h> 47 #ifdef CONFIG_PPC64 48 #include "ppc32.h" 49 #include <asm/unistd.h> 50 #else 51 #include <asm/ucontext.h> 52 #include <asm/pgtable.h> 53 #endif 54 55 #include "signal.h" 56 57 #undef DEBUG_SIG 58 59 #ifdef CONFIG_PPC64 60 #define sys_rt_sigreturn compat_sys_rt_sigreturn 61 #define sys_swapcontext compat_sys_swapcontext 62 #define sys_sigreturn compat_sys_sigreturn 63 64 #define old_sigaction old_sigaction32 65 #define sigcontext sigcontext32 66 #define mcontext mcontext32 67 #define ucontext ucontext32 68 69 #define __save_altstack __compat_save_altstack 70 71 /* 72 * Userspace code may pass a ucontext which doesn't include VSX added 73 * at the end. We need to check for this case. 74 */ 75 #define UCONTEXTSIZEWITHOUTVSX \ 76 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) 77 78 /* 79 * Returning 0 means we return to userspace via 80 * ret_from_except and thus restore all user 81 * registers from *regs. This is what we need 82 * to do when a signal has been delivered. 83 */ 84 85 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) 86 #undef __SIGNAL_FRAMESIZE 87 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 88 #undef ELF_NVRREG 89 #define ELF_NVRREG ELF_NVRREG32 90 91 /* 92 * Functions for flipping sigsets (thanks to brain dead generic 93 * implementation that makes things simple for little endian only) 94 */ 95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) 96 { 97 compat_sigset_t cset; 98 99 switch (_NSIG_WORDS) { 100 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull; 101 cset.sig[7] = set->sig[3] >> 32; 102 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull; 103 cset.sig[5] = set->sig[2] >> 32; 104 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull; 105 cset.sig[3] = set->sig[1] >> 32; 106 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull; 107 cset.sig[1] = set->sig[0] >> 32; 108 } 109 return copy_to_user(uset, &cset, sizeof(*uset)); 110 } 111 112 static inline int get_sigset_t(sigset_t *set, 113 const compat_sigset_t __user *uset) 114 { 115 compat_sigset_t s32; 116 117 if (copy_from_user(&s32, uset, sizeof(*uset))) 118 return -EFAULT; 119 120 /* 121 * Swap the 2 words of the 64-bit sigset_t (they are stored 122 * in the "wrong" endian in 32-bit user storage). 123 */ 124 switch (_NSIG_WORDS) { 125 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32); 126 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32); 127 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32); 128 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32); 129 } 130 return 0; 131 } 132 133 #define to_user_ptr(p) ptr_to_compat(p) 134 #define from_user_ptr(p) compat_ptr(p) 135 136 static inline int save_general_regs(struct pt_regs *regs, 137 struct mcontext __user *frame) 138 { 139 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 140 int i; 141 142 WARN_ON(!FULL_REGS(regs)); 143 144 for (i = 0; i <= PT_RESULT; i ++) { 145 if (i == 14 && !FULL_REGS(regs)) 146 i = 32; 147 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) 148 return -EFAULT; 149 } 150 return 0; 151 } 152 153 static inline int restore_general_regs(struct pt_regs *regs, 154 struct mcontext __user *sr) 155 { 156 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 157 int i; 158 159 for (i = 0; i <= PT_RESULT; i++) { 160 if ((i == PT_MSR) || (i == PT_SOFTE)) 161 continue; 162 if (__get_user(gregs[i], &sr->mc_gregs[i])) 163 return -EFAULT; 164 } 165 return 0; 166 } 167 168 #else /* CONFIG_PPC64 */ 169 170 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) 171 172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) 173 { 174 return copy_to_user(uset, set, sizeof(*uset)); 175 } 176 177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) 178 { 179 return copy_from_user(set, uset, sizeof(*uset)); 180 } 181 182 #define to_user_ptr(p) ((unsigned long)(p)) 183 #define from_user_ptr(p) ((void __user *)(p)) 184 185 static inline int save_general_regs(struct pt_regs *regs, 186 struct mcontext __user *frame) 187 { 188 WARN_ON(!FULL_REGS(regs)); 189 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); 190 } 191 192 static inline int restore_general_regs(struct pt_regs *regs, 193 struct mcontext __user *sr) 194 { 195 /* copy up to but not including MSR */ 196 if (__copy_from_user(regs, &sr->mc_gregs, 197 PT_MSR * sizeof(elf_greg_t))) 198 return -EFAULT; 199 /* copy from orig_r3 (the word after the MSR) up to the end */ 200 if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], 201 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) 202 return -EFAULT; 203 return 0; 204 } 205 #endif 206 207 /* 208 * When we have signals to deliver, we set up on the 209 * user stack, going down from the original stack pointer: 210 * an ABI gap of 56 words 211 * an mcontext struct 212 * a sigcontext struct 213 * a gap of __SIGNAL_FRAMESIZE bytes 214 * 215 * Each of these things must be a multiple of 16 bytes in size. The following 216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap 217 * 218 */ 219 struct sigframe { 220 struct sigcontext sctx; /* the sigcontext */ 221 struct mcontext mctx; /* all the register values */ 222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 223 struct sigcontext sctx_transact; 224 struct mcontext mctx_transact; 225 #endif 226 /* 227 * Programs using the rs6000/xcoff abi can save up to 19 gp 228 * regs and 18 fp regs below sp before decrementing it. 229 */ 230 int abigap[56]; 231 }; 232 233 /* We use the mc_pad field for the signal return trampoline. */ 234 #define tramp mc_pad 235 236 /* 237 * When we have rt signals to deliver, we set up on the 238 * user stack, going down from the original stack pointer: 239 * one rt_sigframe struct (siginfo + ucontext + ABI gap) 240 * a gap of __SIGNAL_FRAMESIZE+16 bytes 241 * (the +16 is to get the siginfo and ucontext in the same 242 * positions as in older kernels). 243 * 244 * Each of these things must be a multiple of 16 bytes in size. 245 * 246 */ 247 struct rt_sigframe { 248 #ifdef CONFIG_PPC64 249 compat_siginfo_t info; 250 #else 251 struct siginfo info; 252 #endif 253 struct ucontext uc; 254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 255 struct ucontext uc_transact; 256 #endif 257 /* 258 * Programs using the rs6000/xcoff abi can save up to 19 gp 259 * regs and 18 fp regs below sp before decrementing it. 260 */ 261 int abigap[56]; 262 }; 263 264 #ifdef CONFIG_VSX 265 unsigned long copy_fpr_to_user(void __user *to, 266 struct task_struct *task) 267 { 268 double buf[ELF_NFPREG]; 269 int i; 270 271 /* save FPR copy to local buffer then write to the thread_struct */ 272 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 273 buf[i] = task->thread.TS_FPR(i); 274 memcpy(&buf[i], &task->thread.fpscr, sizeof(double)); 275 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 276 } 277 278 unsigned long copy_fpr_from_user(struct task_struct *task, 279 void __user *from) 280 { 281 double buf[ELF_NFPREG]; 282 int i; 283 284 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 285 return 1; 286 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 287 task->thread.TS_FPR(i) = buf[i]; 288 memcpy(&task->thread.fpscr, &buf[i], sizeof(double)); 289 290 return 0; 291 } 292 293 unsigned long copy_vsx_to_user(void __user *to, 294 struct task_struct *task) 295 { 296 double buf[ELF_NVSRHALFREG]; 297 int i; 298 299 /* save FPR copy to local buffer then write to the thread_struct */ 300 for (i = 0; i < ELF_NVSRHALFREG; i++) 301 buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET]; 302 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 303 } 304 305 unsigned long copy_vsx_from_user(struct task_struct *task, 306 void __user *from) 307 { 308 double buf[ELF_NVSRHALFREG]; 309 int i; 310 311 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 312 return 1; 313 for (i = 0; i < ELF_NVSRHALFREG ; i++) 314 task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 315 return 0; 316 } 317 318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 319 unsigned long copy_transact_fpr_to_user(void __user *to, 320 struct task_struct *task) 321 { 322 double buf[ELF_NFPREG]; 323 int i; 324 325 /* save FPR copy to local buffer then write to the thread_struct */ 326 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 327 buf[i] = task->thread.TS_TRANS_FPR(i); 328 memcpy(&buf[i], &task->thread.transact_fpscr, sizeof(double)); 329 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 330 } 331 332 unsigned long copy_transact_fpr_from_user(struct task_struct *task, 333 void __user *from) 334 { 335 double buf[ELF_NFPREG]; 336 int i; 337 338 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 339 return 1; 340 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 341 task->thread.TS_TRANS_FPR(i) = buf[i]; 342 memcpy(&task->thread.transact_fpscr, &buf[i], sizeof(double)); 343 344 return 0; 345 } 346 347 unsigned long copy_transact_vsx_to_user(void __user *to, 348 struct task_struct *task) 349 { 350 double buf[ELF_NVSRHALFREG]; 351 int i; 352 353 /* save FPR copy to local buffer then write to the thread_struct */ 354 for (i = 0; i < ELF_NVSRHALFREG; i++) 355 buf[i] = task->thread.transact_fpr[i][TS_VSRLOWOFFSET]; 356 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 357 } 358 359 unsigned long copy_transact_vsx_from_user(struct task_struct *task, 360 void __user *from) 361 { 362 double buf[ELF_NVSRHALFREG]; 363 int i; 364 365 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 366 return 1; 367 for (i = 0; i < ELF_NVSRHALFREG ; i++) 368 task->thread.transact_fpr[i][TS_VSRLOWOFFSET] = buf[i]; 369 return 0; 370 } 371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 372 #else 373 inline unsigned long copy_fpr_to_user(void __user *to, 374 struct task_struct *task) 375 { 376 return __copy_to_user(to, task->thread.fpr, 377 ELF_NFPREG * sizeof(double)); 378 } 379 380 inline unsigned long copy_fpr_from_user(struct task_struct *task, 381 void __user *from) 382 { 383 return __copy_from_user(task->thread.fpr, from, 384 ELF_NFPREG * sizeof(double)); 385 } 386 387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 388 inline unsigned long copy_transact_fpr_to_user(void __user *to, 389 struct task_struct *task) 390 { 391 return __copy_to_user(to, task->thread.transact_fpr, 392 ELF_NFPREG * sizeof(double)); 393 } 394 395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task, 396 void __user *from) 397 { 398 return __copy_from_user(task->thread.transact_fpr, from, 399 ELF_NFPREG * sizeof(double)); 400 } 401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 402 #endif 403 404 /* 405 * Save the current user registers on the user stack. 406 * We only save the altivec/spe registers if the process has used 407 * altivec/spe instructions at some point. 408 */ 409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, 410 struct mcontext __user *tm_frame, int sigret, 411 int ctx_has_vsx_region) 412 { 413 unsigned long msr = regs->msr; 414 415 /* Make sure floating point registers are stored in regs */ 416 flush_fp_to_thread(current); 417 418 /* save general registers */ 419 if (save_general_regs(regs, frame)) 420 return 1; 421 422 #ifdef CONFIG_ALTIVEC 423 /* save altivec registers */ 424 if (current->thread.used_vr) { 425 flush_altivec_to_thread(current); 426 if (__copy_to_user(&frame->mc_vregs, current->thread.vr, 427 ELF_NVRREG * sizeof(vector128))) 428 return 1; 429 /* set MSR_VEC in the saved MSR value to indicate that 430 frame->mc_vregs contains valid data */ 431 msr |= MSR_VEC; 432 } 433 /* else assert((regs->msr & MSR_VEC) == 0) */ 434 435 /* We always copy to/from vrsave, it's 0 if we don't have or don't 436 * use altivec. Since VSCR only contains 32 bits saved in the least 437 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 438 * most significant bits of that same vector. --BenH 439 */ 440 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) 441 return 1; 442 #endif /* CONFIG_ALTIVEC */ 443 if (copy_fpr_to_user(&frame->mc_fregs, current)) 444 return 1; 445 #ifdef CONFIG_VSX 446 /* 447 * Copy VSR 0-31 upper half from thread_struct to local 448 * buffer, then write that to userspace. Also set MSR_VSX in 449 * the saved MSR value to indicate that frame->mc_vregs 450 * contains valid data 451 */ 452 if (current->thread.used_vsr && ctx_has_vsx_region) { 453 __giveup_vsx(current); 454 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 455 return 1; 456 msr |= MSR_VSX; 457 } 458 #endif /* CONFIG_VSX */ 459 #ifdef CONFIG_SPE 460 /* save spe registers */ 461 if (current->thread.used_spe) { 462 flush_spe_to_thread(current); 463 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 464 ELF_NEVRREG * sizeof(u32))) 465 return 1; 466 /* set MSR_SPE in the saved MSR value to indicate that 467 frame->mc_vregs contains valid data */ 468 msr |= MSR_SPE; 469 } 470 /* else assert((regs->msr & MSR_SPE) == 0) */ 471 472 /* We always copy to/from spefscr */ 473 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 474 return 1; 475 #endif /* CONFIG_SPE */ 476 477 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 478 return 1; 479 /* We need to write 0 the MSR top 32 bits in the tm frame so that we 480 * can check it on the restore to see if TM is active 481 */ 482 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) 483 return 1; 484 485 if (sigret) { 486 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 487 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 488 || __put_user(0x44000002UL, &frame->tramp[1])) 489 return 1; 490 flush_icache_range((unsigned long) &frame->tramp[0], 491 (unsigned long) &frame->tramp[2]); 492 } 493 494 return 0; 495 } 496 497 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 498 /* 499 * Save the current user registers on the user stack. 500 * We only save the altivec/spe registers if the process has used 501 * altivec/spe instructions at some point. 502 * We also save the transactional registers to a second ucontext in the 503 * frame. 504 * 505 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). 506 */ 507 static int save_tm_user_regs(struct pt_regs *regs, 508 struct mcontext __user *frame, 509 struct mcontext __user *tm_frame, int sigret) 510 { 511 unsigned long msr = regs->msr; 512 513 /* Make sure floating point registers are stored in regs */ 514 flush_fp_to_thread(current); 515 516 /* Save both sets of general registers */ 517 if (save_general_regs(¤t->thread.ckpt_regs, frame) 518 || save_general_regs(regs, tm_frame)) 519 return 1; 520 521 /* Stash the top half of the 64bit MSR into the 32bit MSR word 522 * of the transactional mcontext. This way we have a backward-compatible 523 * MSR in the 'normal' (checkpointed) mcontext and additionally one can 524 * also look at what type of transaction (T or S) was active at the 525 * time of the signal. 526 */ 527 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) 528 return 1; 529 530 #ifdef CONFIG_ALTIVEC 531 /* save altivec registers */ 532 if (current->thread.used_vr) { 533 flush_altivec_to_thread(current); 534 if (__copy_to_user(&frame->mc_vregs, current->thread.vr, 535 ELF_NVRREG * sizeof(vector128))) 536 return 1; 537 if (msr & MSR_VEC) { 538 if (__copy_to_user(&tm_frame->mc_vregs, 539 current->thread.transact_vr, 540 ELF_NVRREG * sizeof(vector128))) 541 return 1; 542 } else { 543 if (__copy_to_user(&tm_frame->mc_vregs, 544 current->thread.vr, 545 ELF_NVRREG * sizeof(vector128))) 546 return 1; 547 } 548 549 /* set MSR_VEC in the saved MSR value to indicate that 550 * frame->mc_vregs contains valid data 551 */ 552 msr |= MSR_VEC; 553 } 554 555 /* We always copy to/from vrsave, it's 0 if we don't have or don't 556 * use altivec. Since VSCR only contains 32 bits saved in the least 557 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 558 * most significant bits of that same vector. --BenH 559 */ 560 if (__put_user(current->thread.vrsave, 561 (u32 __user *)&frame->mc_vregs[32])) 562 return 1; 563 if (msr & MSR_VEC) { 564 if (__put_user(current->thread.transact_vrsave, 565 (u32 __user *)&tm_frame->mc_vregs[32])) 566 return 1; 567 } else { 568 if (__put_user(current->thread.vrsave, 569 (u32 __user *)&tm_frame->mc_vregs[32])) 570 return 1; 571 } 572 #endif /* CONFIG_ALTIVEC */ 573 574 if (copy_fpr_to_user(&frame->mc_fregs, current)) 575 return 1; 576 if (msr & MSR_FP) { 577 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current)) 578 return 1; 579 } else { 580 if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) 581 return 1; 582 } 583 584 #ifdef CONFIG_VSX 585 /* 586 * Copy VSR 0-31 upper half from thread_struct to local 587 * buffer, then write that to userspace. Also set MSR_VSX in 588 * the saved MSR value to indicate that frame->mc_vregs 589 * contains valid data 590 */ 591 if (current->thread.used_vsr) { 592 __giveup_vsx(current); 593 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 594 return 1; 595 if (msr & MSR_VSX) { 596 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs, 597 current)) 598 return 1; 599 } else { 600 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current)) 601 return 1; 602 } 603 604 msr |= MSR_VSX; 605 } 606 #endif /* CONFIG_VSX */ 607 #ifdef CONFIG_SPE 608 /* SPE regs are not checkpointed with TM, so this section is 609 * simply the same as in save_user_regs(). 610 */ 611 if (current->thread.used_spe) { 612 flush_spe_to_thread(current); 613 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 614 ELF_NEVRREG * sizeof(u32))) 615 return 1; 616 /* set MSR_SPE in the saved MSR value to indicate that 617 * frame->mc_vregs contains valid data */ 618 msr |= MSR_SPE; 619 } 620 621 /* We always copy to/from spefscr */ 622 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 623 return 1; 624 #endif /* CONFIG_SPE */ 625 626 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 627 return 1; 628 if (sigret) { 629 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 630 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 631 || __put_user(0x44000002UL, &frame->tramp[1])) 632 return 1; 633 flush_icache_range((unsigned long) &frame->tramp[0], 634 (unsigned long) &frame->tramp[2]); 635 } 636 637 return 0; 638 } 639 #endif 640 641 /* 642 * Restore the current user register values from the user stack, 643 * (except for MSR). 644 */ 645 static long restore_user_regs(struct pt_regs *regs, 646 struct mcontext __user *sr, int sig) 647 { 648 long err; 649 unsigned int save_r2 = 0; 650 unsigned long msr; 651 #ifdef CONFIG_VSX 652 int i; 653 #endif 654 655 /* 656 * restore general registers but not including MSR or SOFTE. Also 657 * take care of keeping r2 (TLS) intact if not a signal 658 */ 659 if (!sig) 660 save_r2 = (unsigned int)regs->gpr[2]; 661 err = restore_general_regs(regs, sr); 662 regs->trap = 0; 663 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 664 if (!sig) 665 regs->gpr[2] = (unsigned long) save_r2; 666 if (err) 667 return 1; 668 669 /* if doing signal return, restore the previous little-endian mode */ 670 if (sig) 671 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 672 673 /* 674 * Do this before updating the thread state in 675 * current->thread.fpr/vr/evr. That way, if we get preempted 676 * and another task grabs the FPU/Altivec/SPE, it won't be 677 * tempted to save the current CPU state into the thread_struct 678 * and corrupt what we are writing there. 679 */ 680 discard_lazy_cpu_state(); 681 682 #ifdef CONFIG_ALTIVEC 683 /* 684 * Force the process to reload the altivec registers from 685 * current->thread when it next does altivec instructions 686 */ 687 regs->msr &= ~MSR_VEC; 688 if (msr & MSR_VEC) { 689 /* restore altivec registers from the stack */ 690 if (__copy_from_user(current->thread.vr, &sr->mc_vregs, 691 sizeof(sr->mc_vregs))) 692 return 1; 693 } else if (current->thread.used_vr) 694 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128)); 695 696 /* Always get VRSAVE back */ 697 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) 698 return 1; 699 #endif /* CONFIG_ALTIVEC */ 700 if (copy_fpr_from_user(current, &sr->mc_fregs)) 701 return 1; 702 703 #ifdef CONFIG_VSX 704 /* 705 * Force the process to reload the VSX registers from 706 * current->thread when it next does VSX instruction. 707 */ 708 regs->msr &= ~MSR_VSX; 709 if (msr & MSR_VSX) { 710 /* 711 * Restore altivec registers from the stack to a local 712 * buffer, then write this out to the thread_struct 713 */ 714 if (copy_vsx_from_user(current, &sr->mc_vsregs)) 715 return 1; 716 } else if (current->thread.used_vsr) 717 for (i = 0; i < 32 ; i++) 718 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0; 719 #endif /* CONFIG_VSX */ 720 /* 721 * force the process to reload the FP registers from 722 * current->thread when it next does FP instructions 723 */ 724 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 725 726 #ifdef CONFIG_SPE 727 /* force the process to reload the spe registers from 728 current->thread when it next does spe instructions */ 729 regs->msr &= ~MSR_SPE; 730 if (msr & MSR_SPE) { 731 /* restore spe registers from the stack */ 732 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 733 ELF_NEVRREG * sizeof(u32))) 734 return 1; 735 } else if (current->thread.used_spe) 736 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 737 738 /* Always get SPEFSCR back */ 739 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) 740 return 1; 741 #endif /* CONFIG_SPE */ 742 743 return 0; 744 } 745 746 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 747 /* 748 * Restore the current user register values from the user stack, except for 749 * MSR, and recheckpoint the original checkpointed register state for processes 750 * in transactions. 751 */ 752 static long restore_tm_user_regs(struct pt_regs *regs, 753 struct mcontext __user *sr, 754 struct mcontext __user *tm_sr) 755 { 756 long err; 757 unsigned long msr, msr_hi; 758 #ifdef CONFIG_VSX 759 int i; 760 #endif 761 762 /* 763 * restore general registers but not including MSR or SOFTE. Also 764 * take care of keeping r2 (TLS) intact if not a signal. 765 * See comment in signal_64.c:restore_tm_sigcontexts(); 766 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR 767 * were set by the signal delivery. 768 */ 769 err = restore_general_regs(regs, tm_sr); 770 err |= restore_general_regs(¤t->thread.ckpt_regs, sr); 771 772 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); 773 774 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 775 if (err) 776 return 1; 777 778 /* Restore the previous little-endian mode */ 779 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 780 781 /* 782 * Do this before updating the thread state in 783 * current->thread.fpr/vr/evr. That way, if we get preempted 784 * and another task grabs the FPU/Altivec/SPE, it won't be 785 * tempted to save the current CPU state into the thread_struct 786 * and corrupt what we are writing there. 787 */ 788 discard_lazy_cpu_state(); 789 790 #ifdef CONFIG_ALTIVEC 791 regs->msr &= ~MSR_VEC; 792 if (msr & MSR_VEC) { 793 /* restore altivec registers from the stack */ 794 if (__copy_from_user(current->thread.vr, &sr->mc_vregs, 795 sizeof(sr->mc_vregs)) || 796 __copy_from_user(current->thread.transact_vr, 797 &tm_sr->mc_vregs, 798 sizeof(sr->mc_vregs))) 799 return 1; 800 } else if (current->thread.used_vr) { 801 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128)); 802 memset(current->thread.transact_vr, 0, 803 ELF_NVRREG * sizeof(vector128)); 804 } 805 806 /* Always get VRSAVE back */ 807 if (__get_user(current->thread.vrsave, 808 (u32 __user *)&sr->mc_vregs[32]) || 809 __get_user(current->thread.transact_vrsave, 810 (u32 __user *)&tm_sr->mc_vregs[32])) 811 return 1; 812 #endif /* CONFIG_ALTIVEC */ 813 814 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 815 816 if (copy_fpr_from_user(current, &sr->mc_fregs) || 817 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs)) 818 return 1; 819 820 #ifdef CONFIG_VSX 821 regs->msr &= ~MSR_VSX; 822 if (msr & MSR_VSX) { 823 /* 824 * Restore altivec registers from the stack to a local 825 * buffer, then write this out to the thread_struct 826 */ 827 if (copy_vsx_from_user(current, &sr->mc_vsregs) || 828 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs)) 829 return 1; 830 } else if (current->thread.used_vsr) 831 for (i = 0; i < 32 ; i++) { 832 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0; 833 current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0; 834 } 835 #endif /* CONFIG_VSX */ 836 837 #ifdef CONFIG_SPE 838 /* SPE regs are not checkpointed with TM, so this section is 839 * simply the same as in restore_user_regs(). 840 */ 841 regs->msr &= ~MSR_SPE; 842 if (msr & MSR_SPE) { 843 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 844 ELF_NEVRREG * sizeof(u32))) 845 return 1; 846 } else if (current->thread.used_spe) 847 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 848 849 /* Always get SPEFSCR back */ 850 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs 851 + ELF_NEVRREG)) 852 return 1; 853 #endif /* CONFIG_SPE */ 854 855 /* Now, recheckpoint. This loads up all of the checkpointed (older) 856 * registers, including FP and V[S]Rs. After recheckpointing, the 857 * transactional versions should be loaded. 858 */ 859 tm_enable(); 860 /* This loads the checkpointed FP/VEC state, if used */ 861 tm_recheckpoint(¤t->thread, msr); 862 /* Get the top half of the MSR */ 863 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) 864 return 1; 865 /* Pull in MSR TM from user context */ 866 regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK); 867 868 /* This loads the speculative FP/VEC state, if used */ 869 if (msr & MSR_FP) { 870 do_load_up_transact_fpu(¤t->thread); 871 regs->msr |= (MSR_FP | current->thread.fpexc_mode); 872 } 873 #ifdef CONFIG_ALTIVEC 874 if (msr & MSR_VEC) { 875 do_load_up_transact_altivec(¤t->thread); 876 regs->msr |= MSR_VEC; 877 } 878 #endif 879 880 return 0; 881 } 882 #endif 883 884 #ifdef CONFIG_PPC64 885 int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s) 886 { 887 int err; 888 889 if (!access_ok (VERIFY_WRITE, d, sizeof(*d))) 890 return -EFAULT; 891 892 /* If you change siginfo_t structure, please be sure 893 * this code is fixed accordingly. 894 * It should never copy any pad contained in the structure 895 * to avoid security leaks, but must copy the generic 896 * 3 ints plus the relevant union member. 897 * This routine must convert siginfo from 64bit to 32bit as well 898 * at the same time. 899 */ 900 err = __put_user(s->si_signo, &d->si_signo); 901 err |= __put_user(s->si_errno, &d->si_errno); 902 err |= __put_user((short)s->si_code, &d->si_code); 903 if (s->si_code < 0) 904 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad, 905 SI_PAD_SIZE32); 906 else switch(s->si_code >> 16) { 907 case __SI_CHLD >> 16: 908 err |= __put_user(s->si_pid, &d->si_pid); 909 err |= __put_user(s->si_uid, &d->si_uid); 910 err |= __put_user(s->si_utime, &d->si_utime); 911 err |= __put_user(s->si_stime, &d->si_stime); 912 err |= __put_user(s->si_status, &d->si_status); 913 break; 914 case __SI_FAULT >> 16: 915 err |= __put_user((unsigned int)(unsigned long)s->si_addr, 916 &d->si_addr); 917 break; 918 case __SI_POLL >> 16: 919 err |= __put_user(s->si_band, &d->si_band); 920 err |= __put_user(s->si_fd, &d->si_fd); 921 break; 922 case __SI_TIMER >> 16: 923 err |= __put_user(s->si_tid, &d->si_tid); 924 err |= __put_user(s->si_overrun, &d->si_overrun); 925 err |= __put_user(s->si_int, &d->si_int); 926 break; 927 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */ 928 case __SI_MESGQ >> 16: 929 err |= __put_user(s->si_int, &d->si_int); 930 /* fallthrough */ 931 case __SI_KILL >> 16: 932 default: 933 err |= __put_user(s->si_pid, &d->si_pid); 934 err |= __put_user(s->si_uid, &d->si_uid); 935 break; 936 } 937 return err; 938 } 939 940 #define copy_siginfo_to_user copy_siginfo_to_user32 941 942 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from) 943 { 944 memset(to, 0, sizeof *to); 945 946 if (copy_from_user(to, from, 3*sizeof(int)) || 947 copy_from_user(to->_sifields._pad, 948 from->_sifields._pad, SI_PAD_SIZE32)) 949 return -EFAULT; 950 951 return 0; 952 } 953 #endif /* CONFIG_PPC64 */ 954 955 /* 956 * Set up a signal frame for a "real-time" signal handler 957 * (one which gets siginfo). 958 */ 959 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka, 960 siginfo_t *info, sigset_t *oldset, 961 struct pt_regs *regs) 962 { 963 struct rt_sigframe __user *rt_sf; 964 struct mcontext __user *frame; 965 struct mcontext __user *tm_frame = NULL; 966 void __user *addr; 967 unsigned long newsp = 0; 968 int sigret; 969 unsigned long tramp; 970 971 /* Set up Signal Frame */ 972 /* Put a Real Time Context onto stack */ 973 rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1); 974 addr = rt_sf; 975 if (unlikely(rt_sf == NULL)) 976 goto badframe; 977 978 /* Put the siginfo & fill in most of the ucontext */ 979 if (copy_siginfo_to_user(&rt_sf->info, info) 980 || __put_user(0, &rt_sf->uc.uc_flags) 981 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) 982 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), 983 &rt_sf->uc.uc_regs) 984 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) 985 goto badframe; 986 987 /* Save user registers on the stack */ 988 frame = &rt_sf->uc.uc_mcontext; 989 addr = frame; 990 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) { 991 sigret = 0; 992 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp; 993 } else { 994 sigret = __NR_rt_sigreturn; 995 tramp = (unsigned long) frame->tramp; 996 } 997 998 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 999 tm_frame = &rt_sf->uc_transact.uc_mcontext; 1000 if (MSR_TM_ACTIVE(regs->msr)) { 1001 if (save_tm_user_regs(regs, frame, tm_frame, sigret)) 1002 goto badframe; 1003 } 1004 else 1005 #endif 1006 { 1007 if (save_user_regs(regs, frame, tm_frame, sigret, 1)) 1008 goto badframe; 1009 } 1010 regs->link = tramp; 1011 1012 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1013 if (MSR_TM_ACTIVE(regs->msr)) { 1014 if (__put_user((unsigned long)&rt_sf->uc_transact, 1015 &rt_sf->uc.uc_link) 1016 || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs)) 1017 goto badframe; 1018 } 1019 else 1020 #endif 1021 if (__put_user(0, &rt_sf->uc.uc_link)) 1022 goto badframe; 1023 1024 current->thread.fpscr.val = 0; /* turn off all fp exceptions */ 1025 1026 /* create a stack frame for the caller of the handler */ 1027 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); 1028 addr = (void __user *)regs->gpr[1]; 1029 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1030 goto badframe; 1031 1032 /* Fill registers for signal handler */ 1033 regs->gpr[1] = newsp; 1034 regs->gpr[3] = sig; 1035 regs->gpr[4] = (unsigned long) &rt_sf->info; 1036 regs->gpr[5] = (unsigned long) &rt_sf->uc; 1037 regs->gpr[6] = (unsigned long) rt_sf; 1038 regs->nip = (unsigned long) ka->sa.sa_handler; 1039 /* enter the signal handler in big-endian mode */ 1040 regs->msr &= ~MSR_LE; 1041 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1042 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 1043 * just indicates to userland that we were doing a transaction, but we 1044 * don't want to return in transactional state: 1045 */ 1046 regs->msr &= ~MSR_TS_MASK; 1047 #endif 1048 return 1; 1049 1050 badframe: 1051 #ifdef DEBUG_SIG 1052 printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n", 1053 regs, frame, newsp); 1054 #endif 1055 if (show_unhandled_signals) 1056 printk_ratelimited(KERN_INFO 1057 "%s[%d]: bad frame in handle_rt_signal32: " 1058 "%p nip %08lx lr %08lx\n", 1059 current->comm, current->pid, 1060 addr, regs->nip, regs->link); 1061 1062 force_sigsegv(sig, current); 1063 return 0; 1064 } 1065 1066 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) 1067 { 1068 sigset_t set; 1069 struct mcontext __user *mcp; 1070 1071 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1072 return -EFAULT; 1073 #ifdef CONFIG_PPC64 1074 { 1075 u32 cmcp; 1076 1077 if (__get_user(cmcp, &ucp->uc_regs)) 1078 return -EFAULT; 1079 mcp = (struct mcontext __user *)(u64)cmcp; 1080 /* no need to check access_ok(mcp), since mcp < 4GB */ 1081 } 1082 #else 1083 if (__get_user(mcp, &ucp->uc_regs)) 1084 return -EFAULT; 1085 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp))) 1086 return -EFAULT; 1087 #endif 1088 set_current_blocked(&set); 1089 if (restore_user_regs(regs, mcp, sig)) 1090 return -EFAULT; 1091 1092 return 0; 1093 } 1094 1095 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1096 static int do_setcontext_tm(struct ucontext __user *ucp, 1097 struct ucontext __user *tm_ucp, 1098 struct pt_regs *regs) 1099 { 1100 sigset_t set; 1101 struct mcontext __user *mcp; 1102 struct mcontext __user *tm_mcp; 1103 u32 cmcp; 1104 u32 tm_cmcp; 1105 1106 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1107 return -EFAULT; 1108 1109 if (__get_user(cmcp, &ucp->uc_regs) || 1110 __get_user(tm_cmcp, &tm_ucp->uc_regs)) 1111 return -EFAULT; 1112 mcp = (struct mcontext __user *)(u64)cmcp; 1113 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; 1114 /* no need to check access_ok(mcp), since mcp < 4GB */ 1115 1116 set_current_blocked(&set); 1117 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1118 return -EFAULT; 1119 1120 return 0; 1121 } 1122 #endif 1123 1124 long sys_swapcontext(struct ucontext __user *old_ctx, 1125 struct ucontext __user *new_ctx, 1126 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs) 1127 { 1128 unsigned char tmp; 1129 int ctx_has_vsx_region = 0; 1130 1131 #ifdef CONFIG_PPC64 1132 unsigned long new_msr = 0; 1133 1134 if (new_ctx) { 1135 struct mcontext __user *mcp; 1136 u32 cmcp; 1137 1138 /* 1139 * Get pointer to the real mcontext. No need for 1140 * access_ok since we are dealing with compat 1141 * pointers. 1142 */ 1143 if (__get_user(cmcp, &new_ctx->uc_regs)) 1144 return -EFAULT; 1145 mcp = (struct mcontext __user *)(u64)cmcp; 1146 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) 1147 return -EFAULT; 1148 } 1149 /* 1150 * Check that the context is not smaller than the original 1151 * size (with VMX but without VSX) 1152 */ 1153 if (ctx_size < UCONTEXTSIZEWITHOUTVSX) 1154 return -EINVAL; 1155 /* 1156 * If the new context state sets the MSR VSX bits but 1157 * it doesn't provide VSX state. 1158 */ 1159 if ((ctx_size < sizeof(struct ucontext)) && 1160 (new_msr & MSR_VSX)) 1161 return -EINVAL; 1162 /* Does the context have enough room to store VSX data? */ 1163 if (ctx_size >= sizeof(struct ucontext)) 1164 ctx_has_vsx_region = 1; 1165 #else 1166 /* Context size is for future use. Right now, we only make sure 1167 * we are passed something we understand 1168 */ 1169 if (ctx_size < sizeof(struct ucontext)) 1170 return -EINVAL; 1171 #endif 1172 if (old_ctx != NULL) { 1173 struct mcontext __user *mctx; 1174 1175 /* 1176 * old_ctx might not be 16-byte aligned, in which 1177 * case old_ctx->uc_mcontext won't be either. 1178 * Because we have the old_ctx->uc_pad2 field 1179 * before old_ctx->uc_mcontext, we need to round down 1180 * from &old_ctx->uc_mcontext to a 16-byte boundary. 1181 */ 1182 mctx = (struct mcontext __user *) 1183 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); 1184 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size) 1185 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) 1186 || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) 1187 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) 1188 return -EFAULT; 1189 } 1190 if (new_ctx == NULL) 1191 return 0; 1192 if (!access_ok(VERIFY_READ, new_ctx, ctx_size) 1193 || __get_user(tmp, (u8 __user *) new_ctx) 1194 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1)) 1195 return -EFAULT; 1196 1197 /* 1198 * If we get a fault copying the context into the kernel's 1199 * image of the user's registers, we can't just return -EFAULT 1200 * because the user's registers will be corrupted. For instance 1201 * the NIP value may have been updated but not some of the 1202 * other registers. Given that we have done the access_ok 1203 * and successfully read the first and last bytes of the region 1204 * above, this should only happen in an out-of-memory situation 1205 * or if another thread unmaps the region containing the context. 1206 * We kill the task with a SIGSEGV in this situation. 1207 */ 1208 if (do_setcontext(new_ctx, regs, 0)) 1209 do_exit(SIGSEGV); 1210 1211 set_thread_flag(TIF_RESTOREALL); 1212 return 0; 1213 } 1214 1215 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1216 struct pt_regs *regs) 1217 { 1218 struct rt_sigframe __user *rt_sf; 1219 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1220 struct ucontext __user *uc_transact; 1221 unsigned long msr_hi; 1222 unsigned long tmp; 1223 int tm_restore = 0; 1224 #endif 1225 /* Always make any pending restarted system calls return -EINTR */ 1226 current_thread_info()->restart_block.fn = do_no_restart_syscall; 1227 1228 rt_sf = (struct rt_sigframe __user *) 1229 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); 1230 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf))) 1231 goto bad; 1232 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1233 if (__get_user(tmp, &rt_sf->uc.uc_link)) 1234 goto bad; 1235 uc_transact = (struct ucontext __user *)(uintptr_t)tmp; 1236 if (uc_transact) { 1237 u32 cmcp; 1238 struct mcontext __user *mcp; 1239 1240 if (__get_user(cmcp, &uc_transact->uc_regs)) 1241 return -EFAULT; 1242 mcp = (struct mcontext __user *)(u64)cmcp; 1243 /* The top 32 bits of the MSR are stashed in the transactional 1244 * ucontext. */ 1245 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) 1246 goto bad; 1247 1248 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1249 /* We only recheckpoint on return if we're 1250 * transaction. 1251 */ 1252 tm_restore = 1; 1253 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) 1254 goto bad; 1255 } 1256 } 1257 if (!tm_restore) 1258 /* Fall through, for non-TM restore */ 1259 #endif 1260 if (do_setcontext(&rt_sf->uc, regs, 1)) 1261 goto bad; 1262 1263 /* 1264 * It's not clear whether or why it is desirable to save the 1265 * sigaltstack setting on signal delivery and restore it on 1266 * signal return. But other architectures do this and we have 1267 * always done it up until now so it is probably better not to 1268 * change it. -- paulus 1269 */ 1270 #ifdef CONFIG_PPC64 1271 if (compat_restore_altstack(&rt_sf->uc.uc_stack)) 1272 goto bad; 1273 #else 1274 if (restore_altstack(&rt_sf->uc.uc_stack)) 1275 goto bad; 1276 #endif 1277 set_thread_flag(TIF_RESTOREALL); 1278 return 0; 1279 1280 bad: 1281 if (show_unhandled_signals) 1282 printk_ratelimited(KERN_INFO 1283 "%s[%d]: bad frame in sys_rt_sigreturn: " 1284 "%p nip %08lx lr %08lx\n", 1285 current->comm, current->pid, 1286 rt_sf, regs->nip, regs->link); 1287 1288 force_sig(SIGSEGV, current); 1289 return 0; 1290 } 1291 1292 #ifdef CONFIG_PPC32 1293 int sys_debug_setcontext(struct ucontext __user *ctx, 1294 int ndbg, struct sig_dbg_op __user *dbg, 1295 int r6, int r7, int r8, 1296 struct pt_regs *regs) 1297 { 1298 struct sig_dbg_op op; 1299 int i; 1300 unsigned char tmp; 1301 unsigned long new_msr = regs->msr; 1302 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1303 unsigned long new_dbcr0 = current->thread.dbcr0; 1304 #endif 1305 1306 for (i=0; i<ndbg; i++) { 1307 if (copy_from_user(&op, dbg + i, sizeof(op))) 1308 return -EFAULT; 1309 switch (op.dbg_type) { 1310 case SIG_DBG_SINGLE_STEPPING: 1311 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1312 if (op.dbg_value) { 1313 new_msr |= MSR_DE; 1314 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); 1315 } else { 1316 new_dbcr0 &= ~DBCR0_IC; 1317 if (!DBCR_ACTIVE_EVENTS(new_dbcr0, 1318 current->thread.dbcr1)) { 1319 new_msr &= ~MSR_DE; 1320 new_dbcr0 &= ~DBCR0_IDM; 1321 } 1322 } 1323 #else 1324 if (op.dbg_value) 1325 new_msr |= MSR_SE; 1326 else 1327 new_msr &= ~MSR_SE; 1328 #endif 1329 break; 1330 case SIG_DBG_BRANCH_TRACING: 1331 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1332 return -EINVAL; 1333 #else 1334 if (op.dbg_value) 1335 new_msr |= MSR_BE; 1336 else 1337 new_msr &= ~MSR_BE; 1338 #endif 1339 break; 1340 1341 default: 1342 return -EINVAL; 1343 } 1344 } 1345 1346 /* We wait until here to actually install the values in the 1347 registers so if we fail in the above loop, it will not 1348 affect the contents of these registers. After this point, 1349 failure is a problem, anyway, and it's very unlikely unless 1350 the user is really doing something wrong. */ 1351 regs->msr = new_msr; 1352 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1353 current->thread.dbcr0 = new_dbcr0; 1354 #endif 1355 1356 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx)) 1357 || __get_user(tmp, (u8 __user *) ctx) 1358 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1)) 1359 return -EFAULT; 1360 1361 /* 1362 * If we get a fault copying the context into the kernel's 1363 * image of the user's registers, we can't just return -EFAULT 1364 * because the user's registers will be corrupted. For instance 1365 * the NIP value may have been updated but not some of the 1366 * other registers. Given that we have done the access_ok 1367 * and successfully read the first and last bytes of the region 1368 * above, this should only happen in an out-of-memory situation 1369 * or if another thread unmaps the region containing the context. 1370 * We kill the task with a SIGSEGV in this situation. 1371 */ 1372 if (do_setcontext(ctx, regs, 1)) { 1373 if (show_unhandled_signals) 1374 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " 1375 "sys_debug_setcontext: %p nip %08lx " 1376 "lr %08lx\n", 1377 current->comm, current->pid, 1378 ctx, regs->nip, regs->link); 1379 1380 force_sig(SIGSEGV, current); 1381 goto out; 1382 } 1383 1384 /* 1385 * It's not clear whether or why it is desirable to save the 1386 * sigaltstack setting on signal delivery and restore it on 1387 * signal return. But other architectures do this and we have 1388 * always done it up until now so it is probably better not to 1389 * change it. -- paulus 1390 */ 1391 restore_altstack(&ctx->uc_stack); 1392 1393 set_thread_flag(TIF_RESTOREALL); 1394 out: 1395 return 0; 1396 } 1397 #endif 1398 1399 /* 1400 * OK, we're invoking a handler 1401 */ 1402 int handle_signal32(unsigned long sig, struct k_sigaction *ka, 1403 siginfo_t *info, sigset_t *oldset, struct pt_regs *regs) 1404 { 1405 struct sigcontext __user *sc; 1406 struct sigframe __user *frame; 1407 struct mcontext __user *tm_mctx = NULL; 1408 unsigned long newsp = 0; 1409 int sigret; 1410 unsigned long tramp; 1411 1412 /* Set up Signal Frame */ 1413 frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1); 1414 if (unlikely(frame == NULL)) 1415 goto badframe; 1416 sc = (struct sigcontext __user *) &frame->sctx; 1417 1418 #if _NSIG != 64 1419 #error "Please adjust handle_signal()" 1420 #endif 1421 if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler) 1422 || __put_user(oldset->sig[0], &sc->oldmask) 1423 #ifdef CONFIG_PPC64 1424 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) 1425 #else 1426 || __put_user(oldset->sig[1], &sc->_unused[3]) 1427 #endif 1428 || __put_user(to_user_ptr(&frame->mctx), &sc->regs) 1429 || __put_user(sig, &sc->signal)) 1430 goto badframe; 1431 1432 if (vdso32_sigtramp && current->mm->context.vdso_base) { 1433 sigret = 0; 1434 tramp = current->mm->context.vdso_base + vdso32_sigtramp; 1435 } else { 1436 sigret = __NR_sigreturn; 1437 tramp = (unsigned long) frame->mctx.tramp; 1438 } 1439 1440 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1441 tm_mctx = &frame->mctx_transact; 1442 if (MSR_TM_ACTIVE(regs->msr)) { 1443 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, 1444 sigret)) 1445 goto badframe; 1446 } 1447 else 1448 #endif 1449 { 1450 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) 1451 goto badframe; 1452 } 1453 1454 regs->link = tramp; 1455 1456 current->thread.fpscr.val = 0; /* turn off all fp exceptions */ 1457 1458 /* create a stack frame for the caller of the handler */ 1459 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; 1460 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1461 goto badframe; 1462 1463 regs->gpr[1] = newsp; 1464 regs->gpr[3] = sig; 1465 regs->gpr[4] = (unsigned long) sc; 1466 regs->nip = (unsigned long) ka->sa.sa_handler; 1467 /* enter the signal handler in big-endian mode */ 1468 regs->msr &= ~MSR_LE; 1469 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1470 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 1471 * just indicates to userland that we were doing a transaction, but we 1472 * don't want to return in transactional state: 1473 */ 1474 regs->msr &= ~MSR_TS_MASK; 1475 #endif 1476 return 1; 1477 1478 badframe: 1479 #ifdef DEBUG_SIG 1480 printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n", 1481 regs, frame, newsp); 1482 #endif 1483 if (show_unhandled_signals) 1484 printk_ratelimited(KERN_INFO 1485 "%s[%d]: bad frame in handle_signal32: " 1486 "%p nip %08lx lr %08lx\n", 1487 current->comm, current->pid, 1488 frame, regs->nip, regs->link); 1489 1490 force_sigsegv(sig, current); 1491 return 0; 1492 } 1493 1494 /* 1495 * Do a signal return; undo the signal stack. 1496 */ 1497 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1498 struct pt_regs *regs) 1499 { 1500 struct sigframe __user *sf; 1501 struct sigcontext __user *sc; 1502 struct sigcontext sigctx; 1503 struct mcontext __user *sr; 1504 void __user *addr; 1505 sigset_t set; 1506 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1507 struct mcontext __user *mcp, *tm_mcp; 1508 unsigned long msr_hi; 1509 #endif 1510 1511 /* Always make any pending restarted system calls return -EINTR */ 1512 current_thread_info()->restart_block.fn = do_no_restart_syscall; 1513 1514 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); 1515 sc = &sf->sctx; 1516 addr = sc; 1517 if (copy_from_user(&sigctx, sc, sizeof(sigctx))) 1518 goto badframe; 1519 1520 #ifdef CONFIG_PPC64 1521 /* 1522 * Note that PPC32 puts the upper 32 bits of the sigmask in the 1523 * unused part of the signal stackframe 1524 */ 1525 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); 1526 #else 1527 set.sig[0] = sigctx.oldmask; 1528 set.sig[1] = sigctx._unused[3]; 1529 #endif 1530 set_current_blocked(&set); 1531 1532 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1533 mcp = (struct mcontext __user *)&sf->mctx; 1534 tm_mcp = (struct mcontext __user *)&sf->mctx_transact; 1535 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) 1536 goto badframe; 1537 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1538 if (!cpu_has_feature(CPU_FTR_TM)) 1539 goto badframe; 1540 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1541 goto badframe; 1542 } else 1543 #endif 1544 { 1545 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); 1546 addr = sr; 1547 if (!access_ok(VERIFY_READ, sr, sizeof(*sr)) 1548 || restore_user_regs(regs, sr, 1)) 1549 goto badframe; 1550 } 1551 1552 set_thread_flag(TIF_RESTOREALL); 1553 return 0; 1554 1555 badframe: 1556 if (show_unhandled_signals) 1557 printk_ratelimited(KERN_INFO 1558 "%s[%d]: bad frame in sys_sigreturn: " 1559 "%p nip %08lx lr %08lx\n", 1560 current->comm, current->pid, 1561 addr, regs->nip, regs->link); 1562 1563 force_sig(SIGSEGV, current); 1564 return 0; 1565 } 1566