xref: /openbmc/linux/arch/powerpc/kernel/signal_32.c (revision 77d84ff8)
1 /*
2  * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3  *
4  *  PowerPC version
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  * Copyright (C) 2001 IBM
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9  *
10  *  Derived from "arch/i386/kernel/signal.c"
11  *    Copyright (C) 1991, 1992 Linus Torvalds
12  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  */
19 
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
39 
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
54 
55 #include "signal.h"
56 
57 #undef DEBUG_SIG
58 
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn	compat_sys_rt_sigreturn
61 #define sys_swapcontext	compat_sys_swapcontext
62 #define sys_sigreturn	compat_sys_sigreturn
63 
64 #define old_sigaction	old_sigaction32
65 #define sigcontext	sigcontext32
66 #define mcontext	mcontext32
67 #define ucontext	ucontext32
68 
69 #define __save_altstack __compat_save_altstack
70 
71 /*
72  * Userspace code may pass a ucontext which doesn't include VSX added
73  * at the end.  We need to check for this case.
74  */
75 #define UCONTEXTSIZEWITHOUTVSX \
76 		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77 
78 /*
79  * Returning 0 means we return to userspace via
80  * ret_from_except and thus restore all user
81  * registers from *regs.  This is what we need
82  * to do when a signal has been delivered.
83  */
84 
85 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG	ELF_NVRREG32
90 
91 /*
92  * Functions for flipping sigsets (thanks to brain dead generic
93  * implementation that makes things simple for little endian only)
94  */
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96 {
97 	compat_sigset_t	cset;
98 
99 	switch (_NSIG_WORDS) {
100 	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101 		cset.sig[7] = set->sig[3] >> 32;
102 	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103 		cset.sig[5] = set->sig[2] >> 32;
104 	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105 		cset.sig[3] = set->sig[1] >> 32;
106 	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107 		cset.sig[1] = set->sig[0] >> 32;
108 	}
109 	return copy_to_user(uset, &cset, sizeof(*uset));
110 }
111 
112 static inline int get_sigset_t(sigset_t *set,
113 			       const compat_sigset_t __user *uset)
114 {
115 	compat_sigset_t s32;
116 
117 	if (copy_from_user(&s32, uset, sizeof(*uset)))
118 		return -EFAULT;
119 
120 	/*
121 	 * Swap the 2 words of the 64-bit sigset_t (they are stored
122 	 * in the "wrong" endian in 32-bit user storage).
123 	 */
124 	switch (_NSIG_WORDS) {
125 	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126 	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127 	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128 	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129 	}
130 	return 0;
131 }
132 
133 #define to_user_ptr(p)		ptr_to_compat(p)
134 #define from_user_ptr(p)	compat_ptr(p)
135 
136 static inline int save_general_regs(struct pt_regs *regs,
137 		struct mcontext __user *frame)
138 {
139 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140 	int i;
141 
142 	WARN_ON(!FULL_REGS(regs));
143 
144 	for (i = 0; i <= PT_RESULT; i ++) {
145 		if (i == 14 && !FULL_REGS(regs))
146 			i = 32;
147 		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148 			return -EFAULT;
149 	}
150 	return 0;
151 }
152 
153 static inline int restore_general_regs(struct pt_regs *regs,
154 		struct mcontext __user *sr)
155 {
156 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157 	int i;
158 
159 	for (i = 0; i <= PT_RESULT; i++) {
160 		if ((i == PT_MSR) || (i == PT_SOFTE))
161 			continue;
162 		if (__get_user(gregs[i], &sr->mc_gregs[i]))
163 			return -EFAULT;
164 	}
165 	return 0;
166 }
167 
168 #else /* CONFIG_PPC64 */
169 
170 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171 
172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173 {
174 	return copy_to_user(uset, set, sizeof(*uset));
175 }
176 
177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178 {
179 	return copy_from_user(set, uset, sizeof(*uset));
180 }
181 
182 #define to_user_ptr(p)		((unsigned long)(p))
183 #define from_user_ptr(p)	((void __user *)(p))
184 
185 static inline int save_general_regs(struct pt_regs *regs,
186 		struct mcontext __user *frame)
187 {
188 	WARN_ON(!FULL_REGS(regs));
189 	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
190 }
191 
192 static inline int restore_general_regs(struct pt_regs *regs,
193 		struct mcontext __user *sr)
194 {
195 	/* copy up to but not including MSR */
196 	if (__copy_from_user(regs, &sr->mc_gregs,
197 				PT_MSR * sizeof(elf_greg_t)))
198 		return -EFAULT;
199 	/* copy from orig_r3 (the word after the MSR) up to the end */
200 	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201 				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202 		return -EFAULT;
203 	return 0;
204 }
205 #endif
206 
207 /*
208  * When we have signals to deliver, we set up on the
209  * user stack, going down from the original stack pointer:
210  *	an ABI gap of 56 words
211  *	an mcontext struct
212  *	a sigcontext struct
213  *	a gap of __SIGNAL_FRAMESIZE bytes
214  *
215  * Each of these things must be a multiple of 16 bytes in size. The following
216  * structure represent all of this except the __SIGNAL_FRAMESIZE gap
217  *
218  */
219 struct sigframe {
220 	struct sigcontext sctx;		/* the sigcontext */
221 	struct mcontext	mctx;		/* all the register values */
222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223 	struct sigcontext sctx_transact;
224 	struct mcontext	mctx_transact;
225 #endif
226 	/*
227 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
228 	 * regs and 18 fp regs below sp before decrementing it.
229 	 */
230 	int			abigap[56];
231 };
232 
233 /* We use the mc_pad field for the signal return trampoline. */
234 #define tramp	mc_pad
235 
236 /*
237  *  When we have rt signals to deliver, we set up on the
238  *  user stack, going down from the original stack pointer:
239  *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
240  *	a gap of __SIGNAL_FRAMESIZE+16 bytes
241  *  (the +16 is to get the siginfo and ucontext in the same
242  *  positions as in older kernels).
243  *
244  *  Each of these things must be a multiple of 16 bytes in size.
245  *
246  */
247 struct rt_sigframe {
248 #ifdef CONFIG_PPC64
249 	compat_siginfo_t info;
250 #else
251 	struct siginfo info;
252 #endif
253 	struct ucontext	uc;
254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255 	struct ucontext	uc_transact;
256 #endif
257 	/*
258 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
259 	 * regs and 18 fp regs below sp before decrementing it.
260 	 */
261 	int			abigap[56];
262 };
263 
264 #ifdef CONFIG_VSX
265 unsigned long copy_fpr_to_user(void __user *to,
266 			       struct task_struct *task)
267 {
268 	u64 buf[ELF_NFPREG];
269 	int i;
270 
271 	/* save FPR copy to local buffer then write to the thread_struct */
272 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273 		buf[i] = task->thread.TS_FPR(i);
274 	buf[i] = task->thread.fp_state.fpscr;
275 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
276 }
277 
278 unsigned long copy_fpr_from_user(struct task_struct *task,
279 				 void __user *from)
280 {
281 	u64 buf[ELF_NFPREG];
282 	int i;
283 
284 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285 		return 1;
286 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287 		task->thread.TS_FPR(i) = buf[i];
288 	task->thread.fp_state.fpscr = buf[i];
289 
290 	return 0;
291 }
292 
293 unsigned long copy_vsx_to_user(void __user *to,
294 			       struct task_struct *task)
295 {
296 	u64 buf[ELF_NVSRHALFREG];
297 	int i;
298 
299 	/* save FPR copy to local buffer then write to the thread_struct */
300 	for (i = 0; i < ELF_NVSRHALFREG; i++)
301 		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
302 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
303 }
304 
305 unsigned long copy_vsx_from_user(struct task_struct *task,
306 				 void __user *from)
307 {
308 	u64 buf[ELF_NVSRHALFREG];
309 	int i;
310 
311 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312 		return 1;
313 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
314 		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315 	return 0;
316 }
317 
318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319 unsigned long copy_transact_fpr_to_user(void __user *to,
320 				  struct task_struct *task)
321 {
322 	u64 buf[ELF_NFPREG];
323 	int i;
324 
325 	/* save FPR copy to local buffer then write to the thread_struct */
326 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327 		buf[i] = task->thread.TS_TRANS_FPR(i);
328 	buf[i] = task->thread.transact_fp.fpscr;
329 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
330 }
331 
332 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333 					  void __user *from)
334 {
335 	u64 buf[ELF_NFPREG];
336 	int i;
337 
338 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339 		return 1;
340 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341 		task->thread.TS_TRANS_FPR(i) = buf[i];
342 	task->thread.transact_fp.fpscr = buf[i];
343 
344 	return 0;
345 }
346 
347 unsigned long copy_transact_vsx_to_user(void __user *to,
348 				  struct task_struct *task)
349 {
350 	u64 buf[ELF_NVSRHALFREG];
351 	int i;
352 
353 	/* save FPR copy to local buffer then write to the thread_struct */
354 	for (i = 0; i < ELF_NVSRHALFREG; i++)
355 		buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
356 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
357 }
358 
359 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360 					  void __user *from)
361 {
362 	u64 buf[ELF_NVSRHALFREG];
363 	int i;
364 
365 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366 		return 1;
367 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
368 		task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
369 	return 0;
370 }
371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372 #else
373 inline unsigned long copy_fpr_to_user(void __user *to,
374 				      struct task_struct *task)
375 {
376 	return __copy_to_user(to, task->thread.fp_state.fpr,
377 			      ELF_NFPREG * sizeof(double));
378 }
379 
380 inline unsigned long copy_fpr_from_user(struct task_struct *task,
381 					void __user *from)
382 {
383 	return __copy_from_user(task->thread.fp_state.fpr, from,
384 			      ELF_NFPREG * sizeof(double));
385 }
386 
387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388 inline unsigned long copy_transact_fpr_to_user(void __user *to,
389 					 struct task_struct *task)
390 {
391 	return __copy_to_user(to, task->thread.transact_fp.fpr,
392 			      ELF_NFPREG * sizeof(double));
393 }
394 
395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396 						 void __user *from)
397 {
398 	return __copy_from_user(task->thread.transact_fp.fpr, from,
399 				ELF_NFPREG * sizeof(double));
400 }
401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402 #endif
403 
404 /*
405  * Save the current user registers on the user stack.
406  * We only save the altivec/spe registers if the process has used
407  * altivec/spe instructions at some point.
408  */
409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410 			  struct mcontext __user *tm_frame, int sigret,
411 			  int ctx_has_vsx_region)
412 {
413 	unsigned long msr = regs->msr;
414 
415 	/* Make sure floating point registers are stored in regs */
416 	flush_fp_to_thread(current);
417 
418 	/* save general registers */
419 	if (save_general_regs(regs, frame))
420 		return 1;
421 
422 #ifdef CONFIG_ALTIVEC
423 	/* save altivec registers */
424 	if (current->thread.used_vr) {
425 		flush_altivec_to_thread(current);
426 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
427 				   ELF_NVRREG * sizeof(vector128)))
428 			return 1;
429 		/* set MSR_VEC in the saved MSR value to indicate that
430 		   frame->mc_vregs contains valid data */
431 		msr |= MSR_VEC;
432 	}
433 	/* else assert((regs->msr & MSR_VEC) == 0) */
434 
435 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
436 	 * use altivec. Since VSCR only contains 32 bits saved in the least
437 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438 	 * most significant bits of that same vector. --BenH
439 	 * Note that the current VRSAVE value is in the SPR at this point.
440 	 */
441 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
442 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
443 	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
444 		return 1;
445 #endif /* CONFIG_ALTIVEC */
446 	if (copy_fpr_to_user(&frame->mc_fregs, current))
447 		return 1;
448 
449 	/*
450 	 * Clear the MSR VSX bit to indicate there is no valid state attached
451 	 * to this context, except in the specific case below where we set it.
452 	 */
453 	msr &= ~MSR_VSX;
454 #ifdef CONFIG_VSX
455 	/*
456 	 * Copy VSR 0-31 upper half from thread_struct to local
457 	 * buffer, then write that to userspace.  Also set MSR_VSX in
458 	 * the saved MSR value to indicate that frame->mc_vregs
459 	 * contains valid data
460 	 */
461 	if (current->thread.used_vsr && ctx_has_vsx_region) {
462 		__giveup_vsx(current);
463 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
464 			return 1;
465 		msr |= MSR_VSX;
466 	}
467 #endif /* CONFIG_VSX */
468 #ifdef CONFIG_SPE
469 	/* save spe registers */
470 	if (current->thread.used_spe) {
471 		flush_spe_to_thread(current);
472 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
473 				   ELF_NEVRREG * sizeof(u32)))
474 			return 1;
475 		/* set MSR_SPE in the saved MSR value to indicate that
476 		   frame->mc_vregs contains valid data */
477 		msr |= MSR_SPE;
478 	}
479 	/* else assert((regs->msr & MSR_SPE) == 0) */
480 
481 	/* We always copy to/from spefscr */
482 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
483 		return 1;
484 #endif /* CONFIG_SPE */
485 
486 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
487 		return 1;
488 	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
489 	 * can check it on the restore to see if TM is active
490 	 */
491 	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
492 		return 1;
493 
494 	if (sigret) {
495 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
496 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
497 		    || __put_user(0x44000002UL, &frame->tramp[1]))
498 			return 1;
499 		flush_icache_range((unsigned long) &frame->tramp[0],
500 				   (unsigned long) &frame->tramp[2]);
501 	}
502 
503 	return 0;
504 }
505 
506 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
507 /*
508  * Save the current user registers on the user stack.
509  * We only save the altivec/spe registers if the process has used
510  * altivec/spe instructions at some point.
511  * We also save the transactional registers to a second ucontext in the
512  * frame.
513  *
514  * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
515  */
516 static int save_tm_user_regs(struct pt_regs *regs,
517 			     struct mcontext __user *frame,
518 			     struct mcontext __user *tm_frame, int sigret)
519 {
520 	unsigned long msr = regs->msr;
521 
522 	/* Make sure floating point registers are stored in regs */
523 	flush_fp_to_thread(current);
524 
525 	/* Save both sets of general registers */
526 	if (save_general_regs(&current->thread.ckpt_regs, frame)
527 	    || save_general_regs(regs, tm_frame))
528 		return 1;
529 
530 	/* Stash the top half of the 64bit MSR into the 32bit MSR word
531 	 * of the transactional mcontext.  This way we have a backward-compatible
532 	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
533 	 * also look at what type of transaction (T or S) was active at the
534 	 * time of the signal.
535 	 */
536 	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
537 		return 1;
538 
539 #ifdef CONFIG_ALTIVEC
540 	/* save altivec registers */
541 	if (current->thread.used_vr) {
542 		flush_altivec_to_thread(current);
543 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
544 				   ELF_NVRREG * sizeof(vector128)))
545 			return 1;
546 		if (msr & MSR_VEC) {
547 			if (__copy_to_user(&tm_frame->mc_vregs,
548 					   &current->thread.transact_vr,
549 					   ELF_NVRREG * sizeof(vector128)))
550 				return 1;
551 		} else {
552 			if (__copy_to_user(&tm_frame->mc_vregs,
553 					   &current->thread.vr_state,
554 					   ELF_NVRREG * sizeof(vector128)))
555 				return 1;
556 		}
557 
558 		/* set MSR_VEC in the saved MSR value to indicate that
559 		 * frame->mc_vregs contains valid data
560 		 */
561 		msr |= MSR_VEC;
562 	}
563 
564 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
565 	 * use altivec. Since VSCR only contains 32 bits saved in the least
566 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
567 	 * most significant bits of that same vector. --BenH
568 	 */
569 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
570 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
571 	if (__put_user(current->thread.vrsave,
572 		       (u32 __user *)&frame->mc_vregs[32]))
573 		return 1;
574 	if (msr & MSR_VEC) {
575 		if (__put_user(current->thread.transact_vrsave,
576 			       (u32 __user *)&tm_frame->mc_vregs[32]))
577 			return 1;
578 	} else {
579 		if (__put_user(current->thread.vrsave,
580 			       (u32 __user *)&tm_frame->mc_vregs[32]))
581 			return 1;
582 	}
583 #endif /* CONFIG_ALTIVEC */
584 
585 	if (copy_fpr_to_user(&frame->mc_fregs, current))
586 		return 1;
587 	if (msr & MSR_FP) {
588 		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
589 			return 1;
590 	} else {
591 		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
592 			return 1;
593 	}
594 
595 #ifdef CONFIG_VSX
596 	/*
597 	 * Copy VSR 0-31 upper half from thread_struct to local
598 	 * buffer, then write that to userspace.  Also set MSR_VSX in
599 	 * the saved MSR value to indicate that frame->mc_vregs
600 	 * contains valid data
601 	 */
602 	if (current->thread.used_vsr) {
603 		__giveup_vsx(current);
604 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
605 			return 1;
606 		if (msr & MSR_VSX) {
607 			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
608 						      current))
609 				return 1;
610 		} else {
611 			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
612 				return 1;
613 		}
614 
615 		msr |= MSR_VSX;
616 	}
617 #endif /* CONFIG_VSX */
618 #ifdef CONFIG_SPE
619 	/* SPE regs are not checkpointed with TM, so this section is
620 	 * simply the same as in save_user_regs().
621 	 */
622 	if (current->thread.used_spe) {
623 		flush_spe_to_thread(current);
624 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
625 				   ELF_NEVRREG * sizeof(u32)))
626 			return 1;
627 		/* set MSR_SPE in the saved MSR value to indicate that
628 		 * frame->mc_vregs contains valid data */
629 		msr |= MSR_SPE;
630 	}
631 
632 	/* We always copy to/from spefscr */
633 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
634 		return 1;
635 #endif /* CONFIG_SPE */
636 
637 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
638 		return 1;
639 	if (sigret) {
640 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
641 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
642 		    || __put_user(0x44000002UL, &frame->tramp[1]))
643 			return 1;
644 		flush_icache_range((unsigned long) &frame->tramp[0],
645 				   (unsigned long) &frame->tramp[2]);
646 	}
647 
648 	return 0;
649 }
650 #endif
651 
652 /*
653  * Restore the current user register values from the user stack,
654  * (except for MSR).
655  */
656 static long restore_user_regs(struct pt_regs *regs,
657 			      struct mcontext __user *sr, int sig)
658 {
659 	long err;
660 	unsigned int save_r2 = 0;
661 	unsigned long msr;
662 #ifdef CONFIG_VSX
663 	int i;
664 #endif
665 
666 	/*
667 	 * restore general registers but not including MSR or SOFTE. Also
668 	 * take care of keeping r2 (TLS) intact if not a signal
669 	 */
670 	if (!sig)
671 		save_r2 = (unsigned int)regs->gpr[2];
672 	err = restore_general_regs(regs, sr);
673 	regs->trap = 0;
674 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
675 	if (!sig)
676 		regs->gpr[2] = (unsigned long) save_r2;
677 	if (err)
678 		return 1;
679 
680 	/* if doing signal return, restore the previous little-endian mode */
681 	if (sig)
682 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
683 
684 	/*
685 	 * Do this before updating the thread state in
686 	 * current->thread.fpr/vr/evr.  That way, if we get preempted
687 	 * and another task grabs the FPU/Altivec/SPE, it won't be
688 	 * tempted to save the current CPU state into the thread_struct
689 	 * and corrupt what we are writing there.
690 	 */
691 	discard_lazy_cpu_state();
692 
693 #ifdef CONFIG_ALTIVEC
694 	/*
695 	 * Force the process to reload the altivec registers from
696 	 * current->thread when it next does altivec instructions
697 	 */
698 	regs->msr &= ~MSR_VEC;
699 	if (msr & MSR_VEC) {
700 		/* restore altivec registers from the stack */
701 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
702 				     sizeof(sr->mc_vregs)))
703 			return 1;
704 	} else if (current->thread.used_vr)
705 		memset(&current->thread.vr_state, 0,
706 		       ELF_NVRREG * sizeof(vector128));
707 
708 	/* Always get VRSAVE back */
709 	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
710 		return 1;
711 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
712 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
713 #endif /* CONFIG_ALTIVEC */
714 	if (copy_fpr_from_user(current, &sr->mc_fregs))
715 		return 1;
716 
717 #ifdef CONFIG_VSX
718 	/*
719 	 * Force the process to reload the VSX registers from
720 	 * current->thread when it next does VSX instruction.
721 	 */
722 	regs->msr &= ~MSR_VSX;
723 	if (msr & MSR_VSX) {
724 		/*
725 		 * Restore altivec registers from the stack to a local
726 		 * buffer, then write this out to the thread_struct
727 		 */
728 		if (copy_vsx_from_user(current, &sr->mc_vsregs))
729 			return 1;
730 	} else if (current->thread.used_vsr)
731 		for (i = 0; i < 32 ; i++)
732 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
733 #endif /* CONFIG_VSX */
734 	/*
735 	 * force the process to reload the FP registers from
736 	 * current->thread when it next does FP instructions
737 	 */
738 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
739 
740 #ifdef CONFIG_SPE
741 	/* force the process to reload the spe registers from
742 	   current->thread when it next does spe instructions */
743 	regs->msr &= ~MSR_SPE;
744 	if (msr & MSR_SPE) {
745 		/* restore spe registers from the stack */
746 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
747 				     ELF_NEVRREG * sizeof(u32)))
748 			return 1;
749 	} else if (current->thread.used_spe)
750 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
751 
752 	/* Always get SPEFSCR back */
753 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
754 		return 1;
755 #endif /* CONFIG_SPE */
756 
757 	return 0;
758 }
759 
760 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
761 /*
762  * Restore the current user register values from the user stack, except for
763  * MSR, and recheckpoint the original checkpointed register state for processes
764  * in transactions.
765  */
766 static long restore_tm_user_regs(struct pt_regs *regs,
767 				 struct mcontext __user *sr,
768 				 struct mcontext __user *tm_sr)
769 {
770 	long err;
771 	unsigned long msr, msr_hi;
772 #ifdef CONFIG_VSX
773 	int i;
774 #endif
775 
776 	/*
777 	 * restore general registers but not including MSR or SOFTE. Also
778 	 * take care of keeping r2 (TLS) intact if not a signal.
779 	 * See comment in signal_64.c:restore_tm_sigcontexts();
780 	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
781 	 * were set by the signal delivery.
782 	 */
783 	err = restore_general_regs(regs, tm_sr);
784 	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
785 
786 	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
787 
788 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
789 	if (err)
790 		return 1;
791 
792 	/* Restore the previous little-endian mode */
793 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
794 
795 	/*
796 	 * Do this before updating the thread state in
797 	 * current->thread.fpr/vr/evr.  That way, if we get preempted
798 	 * and another task grabs the FPU/Altivec/SPE, it won't be
799 	 * tempted to save the current CPU state into the thread_struct
800 	 * and corrupt what we are writing there.
801 	 */
802 	discard_lazy_cpu_state();
803 
804 #ifdef CONFIG_ALTIVEC
805 	regs->msr &= ~MSR_VEC;
806 	if (msr & MSR_VEC) {
807 		/* restore altivec registers from the stack */
808 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
809 				     sizeof(sr->mc_vregs)) ||
810 		    __copy_from_user(&current->thread.transact_vr,
811 				     &tm_sr->mc_vregs,
812 				     sizeof(sr->mc_vregs)))
813 			return 1;
814 	} else if (current->thread.used_vr) {
815 		memset(&current->thread.vr_state, 0,
816 		       ELF_NVRREG * sizeof(vector128));
817 		memset(&current->thread.transact_vr, 0,
818 		       ELF_NVRREG * sizeof(vector128));
819 	}
820 
821 	/* Always get VRSAVE back */
822 	if (__get_user(current->thread.vrsave,
823 		       (u32 __user *)&sr->mc_vregs[32]) ||
824 	    __get_user(current->thread.transact_vrsave,
825 		       (u32 __user *)&tm_sr->mc_vregs[32]))
826 		return 1;
827 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
828 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
829 #endif /* CONFIG_ALTIVEC */
830 
831 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
832 
833 	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
834 	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
835 		return 1;
836 
837 #ifdef CONFIG_VSX
838 	regs->msr &= ~MSR_VSX;
839 	if (msr & MSR_VSX) {
840 		/*
841 		 * Restore altivec registers from the stack to a local
842 		 * buffer, then write this out to the thread_struct
843 		 */
844 		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
845 		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
846 			return 1;
847 	} else if (current->thread.used_vsr)
848 		for (i = 0; i < 32 ; i++) {
849 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
850 			current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
851 		}
852 #endif /* CONFIG_VSX */
853 
854 #ifdef CONFIG_SPE
855 	/* SPE regs are not checkpointed with TM, so this section is
856 	 * simply the same as in restore_user_regs().
857 	 */
858 	regs->msr &= ~MSR_SPE;
859 	if (msr & MSR_SPE) {
860 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
861 				     ELF_NEVRREG * sizeof(u32)))
862 			return 1;
863 	} else if (current->thread.used_spe)
864 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
865 
866 	/* Always get SPEFSCR back */
867 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
868 		       + ELF_NEVRREG))
869 		return 1;
870 #endif /* CONFIG_SPE */
871 
872 	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
873 	 * registers, including FP and V[S]Rs.  After recheckpointing, the
874 	 * transactional versions should be loaded.
875 	 */
876 	tm_enable();
877 	/* This loads the checkpointed FP/VEC state, if used */
878 	tm_recheckpoint(&current->thread, msr);
879 	/* Get the top half of the MSR */
880 	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
881 		return 1;
882 	/* Pull in MSR TM from user context */
883 	regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
884 
885 	/* This loads the speculative FP/VEC state, if used */
886 	if (msr & MSR_FP) {
887 		do_load_up_transact_fpu(&current->thread);
888 		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
889 	}
890 #ifdef CONFIG_ALTIVEC
891 	if (msr & MSR_VEC) {
892 		do_load_up_transact_altivec(&current->thread);
893 		regs->msr |= MSR_VEC;
894 	}
895 #endif
896 
897 	return 0;
898 }
899 #endif
900 
901 #ifdef CONFIG_PPC64
902 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
903 {
904 	int err;
905 
906 	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
907 		return -EFAULT;
908 
909 	/* If you change siginfo_t structure, please be sure
910 	 * this code is fixed accordingly.
911 	 * It should never copy any pad contained in the structure
912 	 * to avoid security leaks, but must copy the generic
913 	 * 3 ints plus the relevant union member.
914 	 * This routine must convert siginfo from 64bit to 32bit as well
915 	 * at the same time.
916 	 */
917 	err = __put_user(s->si_signo, &d->si_signo);
918 	err |= __put_user(s->si_errno, &d->si_errno);
919 	err |= __put_user((short)s->si_code, &d->si_code);
920 	if (s->si_code < 0)
921 		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
922 				      SI_PAD_SIZE32);
923 	else switch(s->si_code >> 16) {
924 	case __SI_CHLD >> 16:
925 		err |= __put_user(s->si_pid, &d->si_pid);
926 		err |= __put_user(s->si_uid, &d->si_uid);
927 		err |= __put_user(s->si_utime, &d->si_utime);
928 		err |= __put_user(s->si_stime, &d->si_stime);
929 		err |= __put_user(s->si_status, &d->si_status);
930 		break;
931 	case __SI_FAULT >> 16:
932 		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
933 				  &d->si_addr);
934 		break;
935 	case __SI_POLL >> 16:
936 		err |= __put_user(s->si_band, &d->si_band);
937 		err |= __put_user(s->si_fd, &d->si_fd);
938 		break;
939 	case __SI_TIMER >> 16:
940 		err |= __put_user(s->si_tid, &d->si_tid);
941 		err |= __put_user(s->si_overrun, &d->si_overrun);
942 		err |= __put_user(s->si_int, &d->si_int);
943 		break;
944 	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
945 	case __SI_MESGQ >> 16:
946 		err |= __put_user(s->si_int, &d->si_int);
947 		/* fallthrough */
948 	case __SI_KILL >> 16:
949 	default:
950 		err |= __put_user(s->si_pid, &d->si_pid);
951 		err |= __put_user(s->si_uid, &d->si_uid);
952 		break;
953 	}
954 	return err;
955 }
956 
957 #define copy_siginfo_to_user	copy_siginfo_to_user32
958 
959 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
960 {
961 	memset(to, 0, sizeof *to);
962 
963 	if (copy_from_user(to, from, 3*sizeof(int)) ||
964 	    copy_from_user(to->_sifields._pad,
965 			   from->_sifields._pad, SI_PAD_SIZE32))
966 		return -EFAULT;
967 
968 	return 0;
969 }
970 #endif /* CONFIG_PPC64 */
971 
972 /*
973  * Set up a signal frame for a "real-time" signal handler
974  * (one which gets siginfo).
975  */
976 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
977 		siginfo_t *info, sigset_t *oldset,
978 		struct pt_regs *regs)
979 {
980 	struct rt_sigframe __user *rt_sf;
981 	struct mcontext __user *frame;
982 	struct mcontext __user *tm_frame = NULL;
983 	void __user *addr;
984 	unsigned long newsp = 0;
985 	int sigret;
986 	unsigned long tramp;
987 
988 	/* Set up Signal Frame */
989 	/* Put a Real Time Context onto stack */
990 	rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
991 	addr = rt_sf;
992 	if (unlikely(rt_sf == NULL))
993 		goto badframe;
994 
995 	/* Put the siginfo & fill in most of the ucontext */
996 	if (copy_siginfo_to_user(&rt_sf->info, info)
997 	    || __put_user(0, &rt_sf->uc.uc_flags)
998 	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
999 	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1000 		    &rt_sf->uc.uc_regs)
1001 	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1002 		goto badframe;
1003 
1004 	/* Save user registers on the stack */
1005 	frame = &rt_sf->uc.uc_mcontext;
1006 	addr = frame;
1007 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1008 		sigret = 0;
1009 		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1010 	} else {
1011 		sigret = __NR_rt_sigreturn;
1012 		tramp = (unsigned long) frame->tramp;
1013 	}
1014 
1015 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1016 	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1017 	if (MSR_TM_ACTIVE(regs->msr)) {
1018 		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1019 			goto badframe;
1020 	}
1021 	else
1022 #endif
1023 	{
1024 		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1025 			goto badframe;
1026 	}
1027 	regs->link = tramp;
1028 
1029 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1030 	if (MSR_TM_ACTIVE(regs->msr)) {
1031 		if (__put_user((unsigned long)&rt_sf->uc_transact,
1032 			       &rt_sf->uc.uc_link)
1033 		    || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs))
1034 			goto badframe;
1035 	}
1036 	else
1037 #endif
1038 		if (__put_user(0, &rt_sf->uc.uc_link))
1039 			goto badframe;
1040 
1041 	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1042 
1043 	/* create a stack frame for the caller of the handler */
1044 	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1045 	addr = (void __user *)regs->gpr[1];
1046 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1047 		goto badframe;
1048 
1049 	/* Fill registers for signal handler */
1050 	regs->gpr[1] = newsp;
1051 	regs->gpr[3] = sig;
1052 	regs->gpr[4] = (unsigned long) &rt_sf->info;
1053 	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1054 	regs->gpr[6] = (unsigned long) rt_sf;
1055 	regs->nip = (unsigned long) ka->sa.sa_handler;
1056 	/* enter the signal handler in native-endian mode */
1057 	regs->msr &= ~MSR_LE;
1058 	regs->msr |= (MSR_KERNEL & MSR_LE);
1059 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1060 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1061 	 * just indicates to userland that we were doing a transaction, but we
1062 	 * don't want to return in transactional state:
1063 	 */
1064 	regs->msr &= ~MSR_TS_MASK;
1065 #endif
1066 	return 1;
1067 
1068 badframe:
1069 #ifdef DEBUG_SIG
1070 	printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1071 	       regs, frame, newsp);
1072 #endif
1073 	if (show_unhandled_signals)
1074 		printk_ratelimited(KERN_INFO
1075 				   "%s[%d]: bad frame in handle_rt_signal32: "
1076 				   "%p nip %08lx lr %08lx\n",
1077 				   current->comm, current->pid,
1078 				   addr, regs->nip, regs->link);
1079 
1080 	force_sigsegv(sig, current);
1081 	return 0;
1082 }
1083 
1084 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1085 {
1086 	sigset_t set;
1087 	struct mcontext __user *mcp;
1088 
1089 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1090 		return -EFAULT;
1091 #ifdef CONFIG_PPC64
1092 	{
1093 		u32 cmcp;
1094 
1095 		if (__get_user(cmcp, &ucp->uc_regs))
1096 			return -EFAULT;
1097 		mcp = (struct mcontext __user *)(u64)cmcp;
1098 		/* no need to check access_ok(mcp), since mcp < 4GB */
1099 	}
1100 #else
1101 	if (__get_user(mcp, &ucp->uc_regs))
1102 		return -EFAULT;
1103 	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1104 		return -EFAULT;
1105 #endif
1106 	set_current_blocked(&set);
1107 	if (restore_user_regs(regs, mcp, sig))
1108 		return -EFAULT;
1109 
1110 	return 0;
1111 }
1112 
1113 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1114 static int do_setcontext_tm(struct ucontext __user *ucp,
1115 			    struct ucontext __user *tm_ucp,
1116 			    struct pt_regs *regs)
1117 {
1118 	sigset_t set;
1119 	struct mcontext __user *mcp;
1120 	struct mcontext __user *tm_mcp;
1121 	u32 cmcp;
1122 	u32 tm_cmcp;
1123 
1124 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1125 		return -EFAULT;
1126 
1127 	if (__get_user(cmcp, &ucp->uc_regs) ||
1128 	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1129 		return -EFAULT;
1130 	mcp = (struct mcontext __user *)(u64)cmcp;
1131 	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1132 	/* no need to check access_ok(mcp), since mcp < 4GB */
1133 
1134 	set_current_blocked(&set);
1135 	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1136 		return -EFAULT;
1137 
1138 	return 0;
1139 }
1140 #endif
1141 
1142 long sys_swapcontext(struct ucontext __user *old_ctx,
1143 		     struct ucontext __user *new_ctx,
1144 		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1145 {
1146 	unsigned char tmp;
1147 	int ctx_has_vsx_region = 0;
1148 
1149 #ifdef CONFIG_PPC64
1150 	unsigned long new_msr = 0;
1151 
1152 	if (new_ctx) {
1153 		struct mcontext __user *mcp;
1154 		u32 cmcp;
1155 
1156 		/*
1157 		 * Get pointer to the real mcontext.  No need for
1158 		 * access_ok since we are dealing with compat
1159 		 * pointers.
1160 		 */
1161 		if (__get_user(cmcp, &new_ctx->uc_regs))
1162 			return -EFAULT;
1163 		mcp = (struct mcontext __user *)(u64)cmcp;
1164 		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1165 			return -EFAULT;
1166 	}
1167 	/*
1168 	 * Check that the context is not smaller than the original
1169 	 * size (with VMX but without VSX)
1170 	 */
1171 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1172 		return -EINVAL;
1173 	/*
1174 	 * If the new context state sets the MSR VSX bits but
1175 	 * it doesn't provide VSX state.
1176 	 */
1177 	if ((ctx_size < sizeof(struct ucontext)) &&
1178 	    (new_msr & MSR_VSX))
1179 		return -EINVAL;
1180 	/* Does the context have enough room to store VSX data? */
1181 	if (ctx_size >= sizeof(struct ucontext))
1182 		ctx_has_vsx_region = 1;
1183 #else
1184 	/* Context size is for future use. Right now, we only make sure
1185 	 * we are passed something we understand
1186 	 */
1187 	if (ctx_size < sizeof(struct ucontext))
1188 		return -EINVAL;
1189 #endif
1190 	if (old_ctx != NULL) {
1191 		struct mcontext __user *mctx;
1192 
1193 		/*
1194 		 * old_ctx might not be 16-byte aligned, in which
1195 		 * case old_ctx->uc_mcontext won't be either.
1196 		 * Because we have the old_ctx->uc_pad2 field
1197 		 * before old_ctx->uc_mcontext, we need to round down
1198 		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1199 		 */
1200 		mctx = (struct mcontext __user *)
1201 			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1202 		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1203 		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1204 		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1205 		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1206 			return -EFAULT;
1207 	}
1208 	if (new_ctx == NULL)
1209 		return 0;
1210 	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1211 	    || __get_user(tmp, (u8 __user *) new_ctx)
1212 	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1213 		return -EFAULT;
1214 
1215 	/*
1216 	 * If we get a fault copying the context into the kernel's
1217 	 * image of the user's registers, we can't just return -EFAULT
1218 	 * because the user's registers will be corrupted.  For instance
1219 	 * the NIP value may have been updated but not some of the
1220 	 * other registers.  Given that we have done the access_ok
1221 	 * and successfully read the first and last bytes of the region
1222 	 * above, this should only happen in an out-of-memory situation
1223 	 * or if another thread unmaps the region containing the context.
1224 	 * We kill the task with a SIGSEGV in this situation.
1225 	 */
1226 	if (do_setcontext(new_ctx, regs, 0))
1227 		do_exit(SIGSEGV);
1228 
1229 	set_thread_flag(TIF_RESTOREALL);
1230 	return 0;
1231 }
1232 
1233 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1234 		     struct pt_regs *regs)
1235 {
1236 	struct rt_sigframe __user *rt_sf;
1237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1238 	struct ucontext __user *uc_transact;
1239 	unsigned long msr_hi;
1240 	unsigned long tmp;
1241 	int tm_restore = 0;
1242 #endif
1243 	/* Always make any pending restarted system calls return -EINTR */
1244 	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1245 
1246 	rt_sf = (struct rt_sigframe __user *)
1247 		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1248 	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1249 		goto bad;
1250 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1251 	if (__get_user(tmp, &rt_sf->uc.uc_link))
1252 		goto bad;
1253 	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1254 	if (uc_transact) {
1255 		u32 cmcp;
1256 		struct mcontext __user *mcp;
1257 
1258 		if (__get_user(cmcp, &uc_transact->uc_regs))
1259 			return -EFAULT;
1260 		mcp = (struct mcontext __user *)(u64)cmcp;
1261 		/* The top 32 bits of the MSR are stashed in the transactional
1262 		 * ucontext. */
1263 		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1264 			goto bad;
1265 
1266 		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1267 			/* We only recheckpoint on return if we're
1268 			 * transaction.
1269 			 */
1270 			tm_restore = 1;
1271 			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1272 				goto bad;
1273 		}
1274 	}
1275 	if (!tm_restore)
1276 		/* Fall through, for non-TM restore */
1277 #endif
1278 	if (do_setcontext(&rt_sf->uc, regs, 1))
1279 		goto bad;
1280 
1281 	/*
1282 	 * It's not clear whether or why it is desirable to save the
1283 	 * sigaltstack setting on signal delivery and restore it on
1284 	 * signal return.  But other architectures do this and we have
1285 	 * always done it up until now so it is probably better not to
1286 	 * change it.  -- paulus
1287 	 */
1288 #ifdef CONFIG_PPC64
1289 	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1290 		goto bad;
1291 #else
1292 	if (restore_altstack(&rt_sf->uc.uc_stack))
1293 		goto bad;
1294 #endif
1295 	set_thread_flag(TIF_RESTOREALL);
1296 	return 0;
1297 
1298  bad:
1299 	if (show_unhandled_signals)
1300 		printk_ratelimited(KERN_INFO
1301 				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1302 				   "%p nip %08lx lr %08lx\n",
1303 				   current->comm, current->pid,
1304 				   rt_sf, regs->nip, regs->link);
1305 
1306 	force_sig(SIGSEGV, current);
1307 	return 0;
1308 }
1309 
1310 #ifdef CONFIG_PPC32
1311 int sys_debug_setcontext(struct ucontext __user *ctx,
1312 			 int ndbg, struct sig_dbg_op __user *dbg,
1313 			 int r6, int r7, int r8,
1314 			 struct pt_regs *regs)
1315 {
1316 	struct sig_dbg_op op;
1317 	int i;
1318 	unsigned char tmp;
1319 	unsigned long new_msr = regs->msr;
1320 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1321 	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1322 #endif
1323 
1324 	for (i=0; i<ndbg; i++) {
1325 		if (copy_from_user(&op, dbg + i, sizeof(op)))
1326 			return -EFAULT;
1327 		switch (op.dbg_type) {
1328 		case SIG_DBG_SINGLE_STEPPING:
1329 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1330 			if (op.dbg_value) {
1331 				new_msr |= MSR_DE;
1332 				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1333 			} else {
1334 				new_dbcr0 &= ~DBCR0_IC;
1335 				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1336 						current->thread.debug.dbcr1)) {
1337 					new_msr &= ~MSR_DE;
1338 					new_dbcr0 &= ~DBCR0_IDM;
1339 				}
1340 			}
1341 #else
1342 			if (op.dbg_value)
1343 				new_msr |= MSR_SE;
1344 			else
1345 				new_msr &= ~MSR_SE;
1346 #endif
1347 			break;
1348 		case SIG_DBG_BRANCH_TRACING:
1349 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1350 			return -EINVAL;
1351 #else
1352 			if (op.dbg_value)
1353 				new_msr |= MSR_BE;
1354 			else
1355 				new_msr &= ~MSR_BE;
1356 #endif
1357 			break;
1358 
1359 		default:
1360 			return -EINVAL;
1361 		}
1362 	}
1363 
1364 	/* We wait until here to actually install the values in the
1365 	   registers so if we fail in the above loop, it will not
1366 	   affect the contents of these registers.  After this point,
1367 	   failure is a problem, anyway, and it's very unlikely unless
1368 	   the user is really doing something wrong. */
1369 	regs->msr = new_msr;
1370 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1371 	current->thread.debug.dbcr0 = new_dbcr0;
1372 #endif
1373 
1374 	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1375 	    || __get_user(tmp, (u8 __user *) ctx)
1376 	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1377 		return -EFAULT;
1378 
1379 	/*
1380 	 * If we get a fault copying the context into the kernel's
1381 	 * image of the user's registers, we can't just return -EFAULT
1382 	 * because the user's registers will be corrupted.  For instance
1383 	 * the NIP value may have been updated but not some of the
1384 	 * other registers.  Given that we have done the access_ok
1385 	 * and successfully read the first and last bytes of the region
1386 	 * above, this should only happen in an out-of-memory situation
1387 	 * or if another thread unmaps the region containing the context.
1388 	 * We kill the task with a SIGSEGV in this situation.
1389 	 */
1390 	if (do_setcontext(ctx, regs, 1)) {
1391 		if (show_unhandled_signals)
1392 			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1393 					   "sys_debug_setcontext: %p nip %08lx "
1394 					   "lr %08lx\n",
1395 					   current->comm, current->pid,
1396 					   ctx, regs->nip, regs->link);
1397 
1398 		force_sig(SIGSEGV, current);
1399 		goto out;
1400 	}
1401 
1402 	/*
1403 	 * It's not clear whether or why it is desirable to save the
1404 	 * sigaltstack setting on signal delivery and restore it on
1405 	 * signal return.  But other architectures do this and we have
1406 	 * always done it up until now so it is probably better not to
1407 	 * change it.  -- paulus
1408 	 */
1409 	restore_altstack(&ctx->uc_stack);
1410 
1411 	set_thread_flag(TIF_RESTOREALL);
1412  out:
1413 	return 0;
1414 }
1415 #endif
1416 
1417 /*
1418  * OK, we're invoking a handler
1419  */
1420 int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1421 		    siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1422 {
1423 	struct sigcontext __user *sc;
1424 	struct sigframe __user *frame;
1425 	struct mcontext __user *tm_mctx = NULL;
1426 	unsigned long newsp = 0;
1427 	int sigret;
1428 	unsigned long tramp;
1429 
1430 	/* Set up Signal Frame */
1431 	frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1432 	if (unlikely(frame == NULL))
1433 		goto badframe;
1434 	sc = (struct sigcontext __user *) &frame->sctx;
1435 
1436 #if _NSIG != 64
1437 #error "Please adjust handle_signal()"
1438 #endif
1439 	if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1440 	    || __put_user(oldset->sig[0], &sc->oldmask)
1441 #ifdef CONFIG_PPC64
1442 	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1443 #else
1444 	    || __put_user(oldset->sig[1], &sc->_unused[3])
1445 #endif
1446 	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1447 	    || __put_user(sig, &sc->signal))
1448 		goto badframe;
1449 
1450 	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1451 		sigret = 0;
1452 		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1453 	} else {
1454 		sigret = __NR_sigreturn;
1455 		tramp = (unsigned long) frame->mctx.tramp;
1456 	}
1457 
1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459 	tm_mctx = &frame->mctx_transact;
1460 	if (MSR_TM_ACTIVE(regs->msr)) {
1461 		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1462 				      sigret))
1463 			goto badframe;
1464 	}
1465 	else
1466 #endif
1467 	{
1468 		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1469 			goto badframe;
1470 	}
1471 
1472 	regs->link = tramp;
1473 
1474 	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1475 
1476 	/* create a stack frame for the caller of the handler */
1477 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1478 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1479 		goto badframe;
1480 
1481 	regs->gpr[1] = newsp;
1482 	regs->gpr[3] = sig;
1483 	regs->gpr[4] = (unsigned long) sc;
1484 	regs->nip = (unsigned long) ka->sa.sa_handler;
1485 	/* enter the signal handler in big-endian mode */
1486 	regs->msr &= ~MSR_LE;
1487 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1488 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
1489 	 * just indicates to userland that we were doing a transaction, but we
1490 	 * don't want to return in transactional state:
1491 	 */
1492 	regs->msr &= ~MSR_TS_MASK;
1493 #endif
1494 	return 1;
1495 
1496 badframe:
1497 #ifdef DEBUG_SIG
1498 	printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1499 	       regs, frame, newsp);
1500 #endif
1501 	if (show_unhandled_signals)
1502 		printk_ratelimited(KERN_INFO
1503 				   "%s[%d]: bad frame in handle_signal32: "
1504 				   "%p nip %08lx lr %08lx\n",
1505 				   current->comm, current->pid,
1506 				   frame, regs->nip, regs->link);
1507 
1508 	force_sigsegv(sig, current);
1509 	return 0;
1510 }
1511 
1512 /*
1513  * Do a signal return; undo the signal stack.
1514  */
1515 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1516 		       struct pt_regs *regs)
1517 {
1518 	struct sigframe __user *sf;
1519 	struct sigcontext __user *sc;
1520 	struct sigcontext sigctx;
1521 	struct mcontext __user *sr;
1522 	void __user *addr;
1523 	sigset_t set;
1524 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1525 	struct mcontext __user *mcp, *tm_mcp;
1526 	unsigned long msr_hi;
1527 #endif
1528 
1529 	/* Always make any pending restarted system calls return -EINTR */
1530 	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1531 
1532 	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1533 	sc = &sf->sctx;
1534 	addr = sc;
1535 	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1536 		goto badframe;
1537 
1538 #ifdef CONFIG_PPC64
1539 	/*
1540 	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1541 	 * unused part of the signal stackframe
1542 	 */
1543 	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1544 #else
1545 	set.sig[0] = sigctx.oldmask;
1546 	set.sig[1] = sigctx._unused[3];
1547 #endif
1548 	set_current_blocked(&set);
1549 
1550 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1551 	mcp = (struct mcontext __user *)&sf->mctx;
1552 	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1553 	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1554 		goto badframe;
1555 	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1556 		if (!cpu_has_feature(CPU_FTR_TM))
1557 			goto badframe;
1558 		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1559 			goto badframe;
1560 	} else
1561 #endif
1562 	{
1563 		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1564 		addr = sr;
1565 		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1566 		    || restore_user_regs(regs, sr, 1))
1567 			goto badframe;
1568 	}
1569 
1570 	set_thread_flag(TIF_RESTOREALL);
1571 	return 0;
1572 
1573 badframe:
1574 	if (show_unhandled_signals)
1575 		printk_ratelimited(KERN_INFO
1576 				   "%s[%d]: bad frame in sys_sigreturn: "
1577 				   "%p nip %08lx lr %08lx\n",
1578 				   current->comm, current->pid,
1579 				   addr, regs->nip, regs->link);
1580 
1581 	force_sig(SIGSEGV, current);
1582 	return 0;
1583 }
1584