1 /* 2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC 3 * 4 * PowerPC version 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Copyright (C) 2001 IBM 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 9 * 10 * Derived from "arch/i386/kernel/signal.c" 11 * Copyright (C) 1991, 1992 Linus Torvalds 12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 13 * 14 * This program is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU General Public License 16 * as published by the Free Software Foundation; either version 17 * 2 of the License, or (at your option) any later version. 18 */ 19 20 #include <linux/sched.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/kernel.h> 24 #include <linux/signal.h> 25 #include <linux/errno.h> 26 #include <linux/elf.h> 27 #include <linux/ptrace.h> 28 #include <linux/ratelimit.h> 29 #ifdef CONFIG_PPC64 30 #include <linux/syscalls.h> 31 #include <linux/compat.h> 32 #else 33 #include <linux/wait.h> 34 #include <linux/unistd.h> 35 #include <linux/stddef.h> 36 #include <linux/tty.h> 37 #include <linux/binfmts.h> 38 #endif 39 40 #include <asm/uaccess.h> 41 #include <asm/cacheflush.h> 42 #include <asm/syscalls.h> 43 #include <asm/sigcontext.h> 44 #include <asm/vdso.h> 45 #include <asm/switch_to.h> 46 #include <asm/tm.h> 47 #ifdef CONFIG_PPC64 48 #include "ppc32.h" 49 #include <asm/unistd.h> 50 #else 51 #include <asm/ucontext.h> 52 #include <asm/pgtable.h> 53 #endif 54 55 #include "signal.h" 56 57 #undef DEBUG_SIG 58 59 #ifdef CONFIG_PPC64 60 #define sys_rt_sigreturn compat_sys_rt_sigreturn 61 #define sys_swapcontext compat_sys_swapcontext 62 #define sys_sigreturn compat_sys_sigreturn 63 64 #define old_sigaction old_sigaction32 65 #define sigcontext sigcontext32 66 #define mcontext mcontext32 67 #define ucontext ucontext32 68 69 #define __save_altstack __compat_save_altstack 70 71 /* 72 * Userspace code may pass a ucontext which doesn't include VSX added 73 * at the end. We need to check for this case. 74 */ 75 #define UCONTEXTSIZEWITHOUTVSX \ 76 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) 77 78 /* 79 * Returning 0 means we return to userspace via 80 * ret_from_except and thus restore all user 81 * registers from *regs. This is what we need 82 * to do when a signal has been delivered. 83 */ 84 85 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) 86 #undef __SIGNAL_FRAMESIZE 87 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 88 #undef ELF_NVRREG 89 #define ELF_NVRREG ELF_NVRREG32 90 91 /* 92 * Functions for flipping sigsets (thanks to brain dead generic 93 * implementation that makes things simple for little endian only) 94 */ 95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) 96 { 97 compat_sigset_t cset; 98 99 switch (_NSIG_WORDS) { 100 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull; 101 cset.sig[7] = set->sig[3] >> 32; 102 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull; 103 cset.sig[5] = set->sig[2] >> 32; 104 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull; 105 cset.sig[3] = set->sig[1] >> 32; 106 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull; 107 cset.sig[1] = set->sig[0] >> 32; 108 } 109 return copy_to_user(uset, &cset, sizeof(*uset)); 110 } 111 112 static inline int get_sigset_t(sigset_t *set, 113 const compat_sigset_t __user *uset) 114 { 115 compat_sigset_t s32; 116 117 if (copy_from_user(&s32, uset, sizeof(*uset))) 118 return -EFAULT; 119 120 /* 121 * Swap the 2 words of the 64-bit sigset_t (they are stored 122 * in the "wrong" endian in 32-bit user storage). 123 */ 124 switch (_NSIG_WORDS) { 125 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32); 126 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32); 127 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32); 128 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32); 129 } 130 return 0; 131 } 132 133 #define to_user_ptr(p) ptr_to_compat(p) 134 #define from_user_ptr(p) compat_ptr(p) 135 136 static inline int save_general_regs(struct pt_regs *regs, 137 struct mcontext __user *frame) 138 { 139 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 140 int i; 141 142 WARN_ON(!FULL_REGS(regs)); 143 144 for (i = 0; i <= PT_RESULT; i ++) { 145 if (i == 14 && !FULL_REGS(regs)) 146 i = 32; 147 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) 148 return -EFAULT; 149 } 150 return 0; 151 } 152 153 static inline int restore_general_regs(struct pt_regs *regs, 154 struct mcontext __user *sr) 155 { 156 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 157 int i; 158 159 for (i = 0; i <= PT_RESULT; i++) { 160 if ((i == PT_MSR) || (i == PT_SOFTE)) 161 continue; 162 if (__get_user(gregs[i], &sr->mc_gregs[i])) 163 return -EFAULT; 164 } 165 return 0; 166 } 167 168 #else /* CONFIG_PPC64 */ 169 170 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) 171 172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) 173 { 174 return copy_to_user(uset, set, sizeof(*uset)); 175 } 176 177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) 178 { 179 return copy_from_user(set, uset, sizeof(*uset)); 180 } 181 182 #define to_user_ptr(p) ((unsigned long)(p)) 183 #define from_user_ptr(p) ((void __user *)(p)) 184 185 static inline int save_general_regs(struct pt_regs *regs, 186 struct mcontext __user *frame) 187 { 188 WARN_ON(!FULL_REGS(regs)); 189 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); 190 } 191 192 static inline int restore_general_regs(struct pt_regs *regs, 193 struct mcontext __user *sr) 194 { 195 /* copy up to but not including MSR */ 196 if (__copy_from_user(regs, &sr->mc_gregs, 197 PT_MSR * sizeof(elf_greg_t))) 198 return -EFAULT; 199 /* copy from orig_r3 (the word after the MSR) up to the end */ 200 if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], 201 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) 202 return -EFAULT; 203 return 0; 204 } 205 #endif 206 207 /* 208 * When we have signals to deliver, we set up on the 209 * user stack, going down from the original stack pointer: 210 * an ABI gap of 56 words 211 * an mcontext struct 212 * a sigcontext struct 213 * a gap of __SIGNAL_FRAMESIZE bytes 214 * 215 * Each of these things must be a multiple of 16 bytes in size. The following 216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap 217 * 218 */ 219 struct sigframe { 220 struct sigcontext sctx; /* the sigcontext */ 221 struct mcontext mctx; /* all the register values */ 222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 223 struct sigcontext sctx_transact; 224 struct mcontext mctx_transact; 225 #endif 226 /* 227 * Programs using the rs6000/xcoff abi can save up to 19 gp 228 * regs and 18 fp regs below sp before decrementing it. 229 */ 230 int abigap[56]; 231 }; 232 233 /* We use the mc_pad field for the signal return trampoline. */ 234 #define tramp mc_pad 235 236 /* 237 * When we have rt signals to deliver, we set up on the 238 * user stack, going down from the original stack pointer: 239 * one rt_sigframe struct (siginfo + ucontext + ABI gap) 240 * a gap of __SIGNAL_FRAMESIZE+16 bytes 241 * (the +16 is to get the siginfo and ucontext in the same 242 * positions as in older kernels). 243 * 244 * Each of these things must be a multiple of 16 bytes in size. 245 * 246 */ 247 struct rt_sigframe { 248 #ifdef CONFIG_PPC64 249 compat_siginfo_t info; 250 #else 251 struct siginfo info; 252 #endif 253 struct ucontext uc; 254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 255 struct ucontext uc_transact; 256 #endif 257 /* 258 * Programs using the rs6000/xcoff abi can save up to 19 gp 259 * regs and 18 fp regs below sp before decrementing it. 260 */ 261 int abigap[56]; 262 }; 263 264 #ifdef CONFIG_VSX 265 unsigned long copy_fpr_to_user(void __user *to, 266 struct task_struct *task) 267 { 268 u64 buf[ELF_NFPREG]; 269 int i; 270 271 /* save FPR copy to local buffer then write to the thread_struct */ 272 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 273 buf[i] = task->thread.TS_FPR(i); 274 buf[i] = task->thread.fp_state.fpscr; 275 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 276 } 277 278 unsigned long copy_fpr_from_user(struct task_struct *task, 279 void __user *from) 280 { 281 u64 buf[ELF_NFPREG]; 282 int i; 283 284 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 285 return 1; 286 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 287 task->thread.TS_FPR(i) = buf[i]; 288 task->thread.fp_state.fpscr = buf[i]; 289 290 return 0; 291 } 292 293 unsigned long copy_vsx_to_user(void __user *to, 294 struct task_struct *task) 295 { 296 u64 buf[ELF_NVSRHALFREG]; 297 int i; 298 299 /* save FPR copy to local buffer then write to the thread_struct */ 300 for (i = 0; i < ELF_NVSRHALFREG; i++) 301 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; 302 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 303 } 304 305 unsigned long copy_vsx_from_user(struct task_struct *task, 306 void __user *from) 307 { 308 u64 buf[ELF_NVSRHALFREG]; 309 int i; 310 311 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 312 return 1; 313 for (i = 0; i < ELF_NVSRHALFREG ; i++) 314 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 315 return 0; 316 } 317 318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 319 unsigned long copy_transact_fpr_to_user(void __user *to, 320 struct task_struct *task) 321 { 322 u64 buf[ELF_NFPREG]; 323 int i; 324 325 /* save FPR copy to local buffer then write to the thread_struct */ 326 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 327 buf[i] = task->thread.TS_TRANS_FPR(i); 328 buf[i] = task->thread.transact_fp.fpscr; 329 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 330 } 331 332 unsigned long copy_transact_fpr_from_user(struct task_struct *task, 333 void __user *from) 334 { 335 u64 buf[ELF_NFPREG]; 336 int i; 337 338 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 339 return 1; 340 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 341 task->thread.TS_TRANS_FPR(i) = buf[i]; 342 task->thread.transact_fp.fpscr = buf[i]; 343 344 return 0; 345 } 346 347 unsigned long copy_transact_vsx_to_user(void __user *to, 348 struct task_struct *task) 349 { 350 u64 buf[ELF_NVSRHALFREG]; 351 int i; 352 353 /* save FPR copy to local buffer then write to the thread_struct */ 354 for (i = 0; i < ELF_NVSRHALFREG; i++) 355 buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET]; 356 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 357 } 358 359 unsigned long copy_transact_vsx_from_user(struct task_struct *task, 360 void __user *from) 361 { 362 u64 buf[ELF_NVSRHALFREG]; 363 int i; 364 365 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 366 return 1; 367 for (i = 0; i < ELF_NVSRHALFREG ; i++) 368 task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 369 return 0; 370 } 371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 372 #else 373 inline unsigned long copy_fpr_to_user(void __user *to, 374 struct task_struct *task) 375 { 376 return __copy_to_user(to, task->thread.fp_state.fpr, 377 ELF_NFPREG * sizeof(double)); 378 } 379 380 inline unsigned long copy_fpr_from_user(struct task_struct *task, 381 void __user *from) 382 { 383 return __copy_from_user(task->thread.fp_state.fpr, from, 384 ELF_NFPREG * sizeof(double)); 385 } 386 387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 388 inline unsigned long copy_transact_fpr_to_user(void __user *to, 389 struct task_struct *task) 390 { 391 return __copy_to_user(to, task->thread.transact_fp.fpr, 392 ELF_NFPREG * sizeof(double)); 393 } 394 395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task, 396 void __user *from) 397 { 398 return __copy_from_user(task->thread.transact_fp.fpr, from, 399 ELF_NFPREG * sizeof(double)); 400 } 401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 402 #endif 403 404 /* 405 * Save the current user registers on the user stack. 406 * We only save the altivec/spe registers if the process has used 407 * altivec/spe instructions at some point. 408 */ 409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, 410 struct mcontext __user *tm_frame, int sigret, 411 int ctx_has_vsx_region) 412 { 413 unsigned long msr = regs->msr; 414 415 /* Make sure floating point registers are stored in regs */ 416 flush_fp_to_thread(current); 417 418 /* save general registers */ 419 if (save_general_regs(regs, frame)) 420 return 1; 421 422 #ifdef CONFIG_ALTIVEC 423 /* save altivec registers */ 424 if (current->thread.used_vr) { 425 flush_altivec_to_thread(current); 426 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 427 ELF_NVRREG * sizeof(vector128))) 428 return 1; 429 /* set MSR_VEC in the saved MSR value to indicate that 430 frame->mc_vregs contains valid data */ 431 msr |= MSR_VEC; 432 } 433 /* else assert((regs->msr & MSR_VEC) == 0) */ 434 435 /* We always copy to/from vrsave, it's 0 if we don't have or don't 436 * use altivec. Since VSCR only contains 32 bits saved in the least 437 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 438 * most significant bits of that same vector. --BenH 439 * Note that the current VRSAVE value is in the SPR at this point. 440 */ 441 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 442 current->thread.vrsave = mfspr(SPRN_VRSAVE); 443 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) 444 return 1; 445 #endif /* CONFIG_ALTIVEC */ 446 if (copy_fpr_to_user(&frame->mc_fregs, current)) 447 return 1; 448 449 /* 450 * Clear the MSR VSX bit to indicate there is no valid state attached 451 * to this context, except in the specific case below where we set it. 452 */ 453 msr &= ~MSR_VSX; 454 #ifdef CONFIG_VSX 455 /* 456 * Copy VSR 0-31 upper half from thread_struct to local 457 * buffer, then write that to userspace. Also set MSR_VSX in 458 * the saved MSR value to indicate that frame->mc_vregs 459 * contains valid data 460 */ 461 if (current->thread.used_vsr && ctx_has_vsx_region) { 462 __giveup_vsx(current); 463 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 464 return 1; 465 msr |= MSR_VSX; 466 } 467 #endif /* CONFIG_VSX */ 468 #ifdef CONFIG_SPE 469 /* save spe registers */ 470 if (current->thread.used_spe) { 471 flush_spe_to_thread(current); 472 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 473 ELF_NEVRREG * sizeof(u32))) 474 return 1; 475 /* set MSR_SPE in the saved MSR value to indicate that 476 frame->mc_vregs contains valid data */ 477 msr |= MSR_SPE; 478 } 479 /* else assert((regs->msr & MSR_SPE) == 0) */ 480 481 /* We always copy to/from spefscr */ 482 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 483 return 1; 484 #endif /* CONFIG_SPE */ 485 486 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 487 return 1; 488 /* We need to write 0 the MSR top 32 bits in the tm frame so that we 489 * can check it on the restore to see if TM is active 490 */ 491 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) 492 return 1; 493 494 if (sigret) { 495 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 496 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 497 || __put_user(0x44000002UL, &frame->tramp[1])) 498 return 1; 499 flush_icache_range((unsigned long) &frame->tramp[0], 500 (unsigned long) &frame->tramp[2]); 501 } 502 503 return 0; 504 } 505 506 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 507 /* 508 * Save the current user registers on the user stack. 509 * We only save the altivec/spe registers if the process has used 510 * altivec/spe instructions at some point. 511 * We also save the transactional registers to a second ucontext in the 512 * frame. 513 * 514 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). 515 */ 516 static int save_tm_user_regs(struct pt_regs *regs, 517 struct mcontext __user *frame, 518 struct mcontext __user *tm_frame, int sigret) 519 { 520 unsigned long msr = regs->msr; 521 522 /* Make sure floating point registers are stored in regs */ 523 flush_fp_to_thread(current); 524 525 /* Save both sets of general registers */ 526 if (save_general_regs(¤t->thread.ckpt_regs, frame) 527 || save_general_regs(regs, tm_frame)) 528 return 1; 529 530 /* Stash the top half of the 64bit MSR into the 32bit MSR word 531 * of the transactional mcontext. This way we have a backward-compatible 532 * MSR in the 'normal' (checkpointed) mcontext and additionally one can 533 * also look at what type of transaction (T or S) was active at the 534 * time of the signal. 535 */ 536 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) 537 return 1; 538 539 #ifdef CONFIG_ALTIVEC 540 /* save altivec registers */ 541 if (current->thread.used_vr) { 542 flush_altivec_to_thread(current); 543 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 544 ELF_NVRREG * sizeof(vector128))) 545 return 1; 546 if (msr & MSR_VEC) { 547 if (__copy_to_user(&tm_frame->mc_vregs, 548 ¤t->thread.transact_vr, 549 ELF_NVRREG * sizeof(vector128))) 550 return 1; 551 } else { 552 if (__copy_to_user(&tm_frame->mc_vregs, 553 ¤t->thread.vr_state, 554 ELF_NVRREG * sizeof(vector128))) 555 return 1; 556 } 557 558 /* set MSR_VEC in the saved MSR value to indicate that 559 * frame->mc_vregs contains valid data 560 */ 561 msr |= MSR_VEC; 562 } 563 564 /* We always copy to/from vrsave, it's 0 if we don't have or don't 565 * use altivec. Since VSCR only contains 32 bits saved in the least 566 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 567 * most significant bits of that same vector. --BenH 568 */ 569 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 570 current->thread.vrsave = mfspr(SPRN_VRSAVE); 571 if (__put_user(current->thread.vrsave, 572 (u32 __user *)&frame->mc_vregs[32])) 573 return 1; 574 if (msr & MSR_VEC) { 575 if (__put_user(current->thread.transact_vrsave, 576 (u32 __user *)&tm_frame->mc_vregs[32])) 577 return 1; 578 } else { 579 if (__put_user(current->thread.vrsave, 580 (u32 __user *)&tm_frame->mc_vregs[32])) 581 return 1; 582 } 583 #endif /* CONFIG_ALTIVEC */ 584 585 if (copy_fpr_to_user(&frame->mc_fregs, current)) 586 return 1; 587 if (msr & MSR_FP) { 588 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current)) 589 return 1; 590 } else { 591 if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) 592 return 1; 593 } 594 595 #ifdef CONFIG_VSX 596 /* 597 * Copy VSR 0-31 upper half from thread_struct to local 598 * buffer, then write that to userspace. Also set MSR_VSX in 599 * the saved MSR value to indicate that frame->mc_vregs 600 * contains valid data 601 */ 602 if (current->thread.used_vsr) { 603 __giveup_vsx(current); 604 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 605 return 1; 606 if (msr & MSR_VSX) { 607 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs, 608 current)) 609 return 1; 610 } else { 611 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current)) 612 return 1; 613 } 614 615 msr |= MSR_VSX; 616 } 617 #endif /* CONFIG_VSX */ 618 #ifdef CONFIG_SPE 619 /* SPE regs are not checkpointed with TM, so this section is 620 * simply the same as in save_user_regs(). 621 */ 622 if (current->thread.used_spe) { 623 flush_spe_to_thread(current); 624 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 625 ELF_NEVRREG * sizeof(u32))) 626 return 1; 627 /* set MSR_SPE in the saved MSR value to indicate that 628 * frame->mc_vregs contains valid data */ 629 msr |= MSR_SPE; 630 } 631 632 /* We always copy to/from spefscr */ 633 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 634 return 1; 635 #endif /* CONFIG_SPE */ 636 637 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 638 return 1; 639 if (sigret) { 640 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 641 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 642 || __put_user(0x44000002UL, &frame->tramp[1])) 643 return 1; 644 flush_icache_range((unsigned long) &frame->tramp[0], 645 (unsigned long) &frame->tramp[2]); 646 } 647 648 return 0; 649 } 650 #endif 651 652 /* 653 * Restore the current user register values from the user stack, 654 * (except for MSR). 655 */ 656 static long restore_user_regs(struct pt_regs *regs, 657 struct mcontext __user *sr, int sig) 658 { 659 long err; 660 unsigned int save_r2 = 0; 661 unsigned long msr; 662 #ifdef CONFIG_VSX 663 int i; 664 #endif 665 666 /* 667 * restore general registers but not including MSR or SOFTE. Also 668 * take care of keeping r2 (TLS) intact if not a signal 669 */ 670 if (!sig) 671 save_r2 = (unsigned int)regs->gpr[2]; 672 err = restore_general_regs(regs, sr); 673 regs->trap = 0; 674 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 675 if (!sig) 676 regs->gpr[2] = (unsigned long) save_r2; 677 if (err) 678 return 1; 679 680 /* if doing signal return, restore the previous little-endian mode */ 681 if (sig) 682 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 683 684 /* 685 * Do this before updating the thread state in 686 * current->thread.fpr/vr/evr. That way, if we get preempted 687 * and another task grabs the FPU/Altivec/SPE, it won't be 688 * tempted to save the current CPU state into the thread_struct 689 * and corrupt what we are writing there. 690 */ 691 discard_lazy_cpu_state(); 692 693 #ifdef CONFIG_ALTIVEC 694 /* 695 * Force the process to reload the altivec registers from 696 * current->thread when it next does altivec instructions 697 */ 698 regs->msr &= ~MSR_VEC; 699 if (msr & MSR_VEC) { 700 /* restore altivec registers from the stack */ 701 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 702 sizeof(sr->mc_vregs))) 703 return 1; 704 } else if (current->thread.used_vr) 705 memset(¤t->thread.vr_state, 0, 706 ELF_NVRREG * sizeof(vector128)); 707 708 /* Always get VRSAVE back */ 709 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) 710 return 1; 711 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 712 mtspr(SPRN_VRSAVE, current->thread.vrsave); 713 #endif /* CONFIG_ALTIVEC */ 714 if (copy_fpr_from_user(current, &sr->mc_fregs)) 715 return 1; 716 717 #ifdef CONFIG_VSX 718 /* 719 * Force the process to reload the VSX registers from 720 * current->thread when it next does VSX instruction. 721 */ 722 regs->msr &= ~MSR_VSX; 723 if (msr & MSR_VSX) { 724 /* 725 * Restore altivec registers from the stack to a local 726 * buffer, then write this out to the thread_struct 727 */ 728 if (copy_vsx_from_user(current, &sr->mc_vsregs)) 729 return 1; 730 } else if (current->thread.used_vsr) 731 for (i = 0; i < 32 ; i++) 732 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 733 #endif /* CONFIG_VSX */ 734 /* 735 * force the process to reload the FP registers from 736 * current->thread when it next does FP instructions 737 */ 738 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 739 740 #ifdef CONFIG_SPE 741 /* force the process to reload the spe registers from 742 current->thread when it next does spe instructions */ 743 regs->msr &= ~MSR_SPE; 744 if (msr & MSR_SPE) { 745 /* restore spe registers from the stack */ 746 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 747 ELF_NEVRREG * sizeof(u32))) 748 return 1; 749 } else if (current->thread.used_spe) 750 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 751 752 /* Always get SPEFSCR back */ 753 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) 754 return 1; 755 #endif /* CONFIG_SPE */ 756 757 return 0; 758 } 759 760 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 761 /* 762 * Restore the current user register values from the user stack, except for 763 * MSR, and recheckpoint the original checkpointed register state for processes 764 * in transactions. 765 */ 766 static long restore_tm_user_regs(struct pt_regs *regs, 767 struct mcontext __user *sr, 768 struct mcontext __user *tm_sr) 769 { 770 long err; 771 unsigned long msr, msr_hi; 772 #ifdef CONFIG_VSX 773 int i; 774 #endif 775 776 /* 777 * restore general registers but not including MSR or SOFTE. Also 778 * take care of keeping r2 (TLS) intact if not a signal. 779 * See comment in signal_64.c:restore_tm_sigcontexts(); 780 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR 781 * were set by the signal delivery. 782 */ 783 err = restore_general_regs(regs, tm_sr); 784 err |= restore_general_regs(¤t->thread.ckpt_regs, sr); 785 786 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); 787 788 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 789 if (err) 790 return 1; 791 792 /* Restore the previous little-endian mode */ 793 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 794 795 /* 796 * Do this before updating the thread state in 797 * current->thread.fpr/vr/evr. That way, if we get preempted 798 * and another task grabs the FPU/Altivec/SPE, it won't be 799 * tempted to save the current CPU state into the thread_struct 800 * and corrupt what we are writing there. 801 */ 802 discard_lazy_cpu_state(); 803 804 #ifdef CONFIG_ALTIVEC 805 regs->msr &= ~MSR_VEC; 806 if (msr & MSR_VEC) { 807 /* restore altivec registers from the stack */ 808 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 809 sizeof(sr->mc_vregs)) || 810 __copy_from_user(¤t->thread.transact_vr, 811 &tm_sr->mc_vregs, 812 sizeof(sr->mc_vregs))) 813 return 1; 814 } else if (current->thread.used_vr) { 815 memset(¤t->thread.vr_state, 0, 816 ELF_NVRREG * sizeof(vector128)); 817 memset(¤t->thread.transact_vr, 0, 818 ELF_NVRREG * sizeof(vector128)); 819 } 820 821 /* Always get VRSAVE back */ 822 if (__get_user(current->thread.vrsave, 823 (u32 __user *)&sr->mc_vregs[32]) || 824 __get_user(current->thread.transact_vrsave, 825 (u32 __user *)&tm_sr->mc_vregs[32])) 826 return 1; 827 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 828 mtspr(SPRN_VRSAVE, current->thread.vrsave); 829 #endif /* CONFIG_ALTIVEC */ 830 831 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 832 833 if (copy_fpr_from_user(current, &sr->mc_fregs) || 834 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs)) 835 return 1; 836 837 #ifdef CONFIG_VSX 838 regs->msr &= ~MSR_VSX; 839 if (msr & MSR_VSX) { 840 /* 841 * Restore altivec registers from the stack to a local 842 * buffer, then write this out to the thread_struct 843 */ 844 if (copy_vsx_from_user(current, &sr->mc_vsregs) || 845 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs)) 846 return 1; 847 } else if (current->thread.used_vsr) 848 for (i = 0; i < 32 ; i++) { 849 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 850 current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0; 851 } 852 #endif /* CONFIG_VSX */ 853 854 #ifdef CONFIG_SPE 855 /* SPE regs are not checkpointed with TM, so this section is 856 * simply the same as in restore_user_regs(). 857 */ 858 regs->msr &= ~MSR_SPE; 859 if (msr & MSR_SPE) { 860 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 861 ELF_NEVRREG * sizeof(u32))) 862 return 1; 863 } else if (current->thread.used_spe) 864 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 865 866 /* Always get SPEFSCR back */ 867 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs 868 + ELF_NEVRREG)) 869 return 1; 870 #endif /* CONFIG_SPE */ 871 872 /* Now, recheckpoint. This loads up all of the checkpointed (older) 873 * registers, including FP and V[S]Rs. After recheckpointing, the 874 * transactional versions should be loaded. 875 */ 876 tm_enable(); 877 /* This loads the checkpointed FP/VEC state, if used */ 878 tm_recheckpoint(¤t->thread, msr); 879 /* Get the top half of the MSR */ 880 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) 881 return 1; 882 /* Pull in MSR TM from user context */ 883 regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK); 884 885 /* This loads the speculative FP/VEC state, if used */ 886 if (msr & MSR_FP) { 887 do_load_up_transact_fpu(¤t->thread); 888 regs->msr |= (MSR_FP | current->thread.fpexc_mode); 889 } 890 #ifdef CONFIG_ALTIVEC 891 if (msr & MSR_VEC) { 892 do_load_up_transact_altivec(¤t->thread); 893 regs->msr |= MSR_VEC; 894 } 895 #endif 896 897 return 0; 898 } 899 #endif 900 901 #ifdef CONFIG_PPC64 902 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s) 903 { 904 int err; 905 906 if (!access_ok (VERIFY_WRITE, d, sizeof(*d))) 907 return -EFAULT; 908 909 /* If you change siginfo_t structure, please be sure 910 * this code is fixed accordingly. 911 * It should never copy any pad contained in the structure 912 * to avoid security leaks, but must copy the generic 913 * 3 ints plus the relevant union member. 914 * This routine must convert siginfo from 64bit to 32bit as well 915 * at the same time. 916 */ 917 err = __put_user(s->si_signo, &d->si_signo); 918 err |= __put_user(s->si_errno, &d->si_errno); 919 err |= __put_user((short)s->si_code, &d->si_code); 920 if (s->si_code < 0) 921 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad, 922 SI_PAD_SIZE32); 923 else switch(s->si_code >> 16) { 924 case __SI_CHLD >> 16: 925 err |= __put_user(s->si_pid, &d->si_pid); 926 err |= __put_user(s->si_uid, &d->si_uid); 927 err |= __put_user(s->si_utime, &d->si_utime); 928 err |= __put_user(s->si_stime, &d->si_stime); 929 err |= __put_user(s->si_status, &d->si_status); 930 break; 931 case __SI_FAULT >> 16: 932 err |= __put_user((unsigned int)(unsigned long)s->si_addr, 933 &d->si_addr); 934 break; 935 case __SI_POLL >> 16: 936 err |= __put_user(s->si_band, &d->si_band); 937 err |= __put_user(s->si_fd, &d->si_fd); 938 break; 939 case __SI_TIMER >> 16: 940 err |= __put_user(s->si_tid, &d->si_tid); 941 err |= __put_user(s->si_overrun, &d->si_overrun); 942 err |= __put_user(s->si_int, &d->si_int); 943 break; 944 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */ 945 case __SI_MESGQ >> 16: 946 err |= __put_user(s->si_int, &d->si_int); 947 /* fallthrough */ 948 case __SI_KILL >> 16: 949 default: 950 err |= __put_user(s->si_pid, &d->si_pid); 951 err |= __put_user(s->si_uid, &d->si_uid); 952 break; 953 } 954 return err; 955 } 956 957 #define copy_siginfo_to_user copy_siginfo_to_user32 958 959 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from) 960 { 961 memset(to, 0, sizeof *to); 962 963 if (copy_from_user(to, from, 3*sizeof(int)) || 964 copy_from_user(to->_sifields._pad, 965 from->_sifields._pad, SI_PAD_SIZE32)) 966 return -EFAULT; 967 968 return 0; 969 } 970 #endif /* CONFIG_PPC64 */ 971 972 /* 973 * Set up a signal frame for a "real-time" signal handler 974 * (one which gets siginfo). 975 */ 976 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka, 977 siginfo_t *info, sigset_t *oldset, 978 struct pt_regs *regs) 979 { 980 struct rt_sigframe __user *rt_sf; 981 struct mcontext __user *frame; 982 struct mcontext __user *tm_frame = NULL; 983 void __user *addr; 984 unsigned long newsp = 0; 985 int sigret; 986 unsigned long tramp; 987 988 /* Set up Signal Frame */ 989 /* Put a Real Time Context onto stack */ 990 rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1); 991 addr = rt_sf; 992 if (unlikely(rt_sf == NULL)) 993 goto badframe; 994 995 /* Put the siginfo & fill in most of the ucontext */ 996 if (copy_siginfo_to_user(&rt_sf->info, info) 997 || __put_user(0, &rt_sf->uc.uc_flags) 998 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) 999 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), 1000 &rt_sf->uc.uc_regs) 1001 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) 1002 goto badframe; 1003 1004 /* Save user registers on the stack */ 1005 frame = &rt_sf->uc.uc_mcontext; 1006 addr = frame; 1007 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) { 1008 sigret = 0; 1009 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp; 1010 } else { 1011 sigret = __NR_rt_sigreturn; 1012 tramp = (unsigned long) frame->tramp; 1013 } 1014 1015 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1016 tm_frame = &rt_sf->uc_transact.uc_mcontext; 1017 if (MSR_TM_ACTIVE(regs->msr)) { 1018 if (save_tm_user_regs(regs, frame, tm_frame, sigret)) 1019 goto badframe; 1020 } 1021 else 1022 #endif 1023 { 1024 if (save_user_regs(regs, frame, tm_frame, sigret, 1)) 1025 goto badframe; 1026 } 1027 regs->link = tramp; 1028 1029 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1030 if (MSR_TM_ACTIVE(regs->msr)) { 1031 if (__put_user((unsigned long)&rt_sf->uc_transact, 1032 &rt_sf->uc.uc_link) 1033 || __put_user((unsigned long)tm_frame, &rt_sf->uc_transact.uc_regs)) 1034 goto badframe; 1035 } 1036 else 1037 #endif 1038 if (__put_user(0, &rt_sf->uc.uc_link)) 1039 goto badframe; 1040 1041 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1042 1043 /* create a stack frame for the caller of the handler */ 1044 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); 1045 addr = (void __user *)regs->gpr[1]; 1046 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1047 goto badframe; 1048 1049 /* Fill registers for signal handler */ 1050 regs->gpr[1] = newsp; 1051 regs->gpr[3] = sig; 1052 regs->gpr[4] = (unsigned long) &rt_sf->info; 1053 regs->gpr[5] = (unsigned long) &rt_sf->uc; 1054 regs->gpr[6] = (unsigned long) rt_sf; 1055 regs->nip = (unsigned long) ka->sa.sa_handler; 1056 /* enter the signal handler in native-endian mode */ 1057 regs->msr &= ~MSR_LE; 1058 regs->msr |= (MSR_KERNEL & MSR_LE); 1059 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1060 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 1061 * just indicates to userland that we were doing a transaction, but we 1062 * don't want to return in transactional state: 1063 */ 1064 regs->msr &= ~MSR_TS_MASK; 1065 #endif 1066 return 1; 1067 1068 badframe: 1069 #ifdef DEBUG_SIG 1070 printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n", 1071 regs, frame, newsp); 1072 #endif 1073 if (show_unhandled_signals) 1074 printk_ratelimited(KERN_INFO 1075 "%s[%d]: bad frame in handle_rt_signal32: " 1076 "%p nip %08lx lr %08lx\n", 1077 current->comm, current->pid, 1078 addr, regs->nip, regs->link); 1079 1080 force_sigsegv(sig, current); 1081 return 0; 1082 } 1083 1084 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) 1085 { 1086 sigset_t set; 1087 struct mcontext __user *mcp; 1088 1089 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1090 return -EFAULT; 1091 #ifdef CONFIG_PPC64 1092 { 1093 u32 cmcp; 1094 1095 if (__get_user(cmcp, &ucp->uc_regs)) 1096 return -EFAULT; 1097 mcp = (struct mcontext __user *)(u64)cmcp; 1098 /* no need to check access_ok(mcp), since mcp < 4GB */ 1099 } 1100 #else 1101 if (__get_user(mcp, &ucp->uc_regs)) 1102 return -EFAULT; 1103 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp))) 1104 return -EFAULT; 1105 #endif 1106 set_current_blocked(&set); 1107 if (restore_user_regs(regs, mcp, sig)) 1108 return -EFAULT; 1109 1110 return 0; 1111 } 1112 1113 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1114 static int do_setcontext_tm(struct ucontext __user *ucp, 1115 struct ucontext __user *tm_ucp, 1116 struct pt_regs *regs) 1117 { 1118 sigset_t set; 1119 struct mcontext __user *mcp; 1120 struct mcontext __user *tm_mcp; 1121 u32 cmcp; 1122 u32 tm_cmcp; 1123 1124 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1125 return -EFAULT; 1126 1127 if (__get_user(cmcp, &ucp->uc_regs) || 1128 __get_user(tm_cmcp, &tm_ucp->uc_regs)) 1129 return -EFAULT; 1130 mcp = (struct mcontext __user *)(u64)cmcp; 1131 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; 1132 /* no need to check access_ok(mcp), since mcp < 4GB */ 1133 1134 set_current_blocked(&set); 1135 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1136 return -EFAULT; 1137 1138 return 0; 1139 } 1140 #endif 1141 1142 long sys_swapcontext(struct ucontext __user *old_ctx, 1143 struct ucontext __user *new_ctx, 1144 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs) 1145 { 1146 unsigned char tmp; 1147 int ctx_has_vsx_region = 0; 1148 1149 #ifdef CONFIG_PPC64 1150 unsigned long new_msr = 0; 1151 1152 if (new_ctx) { 1153 struct mcontext __user *mcp; 1154 u32 cmcp; 1155 1156 /* 1157 * Get pointer to the real mcontext. No need for 1158 * access_ok since we are dealing with compat 1159 * pointers. 1160 */ 1161 if (__get_user(cmcp, &new_ctx->uc_regs)) 1162 return -EFAULT; 1163 mcp = (struct mcontext __user *)(u64)cmcp; 1164 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) 1165 return -EFAULT; 1166 } 1167 /* 1168 * Check that the context is not smaller than the original 1169 * size (with VMX but without VSX) 1170 */ 1171 if (ctx_size < UCONTEXTSIZEWITHOUTVSX) 1172 return -EINVAL; 1173 /* 1174 * If the new context state sets the MSR VSX bits but 1175 * it doesn't provide VSX state. 1176 */ 1177 if ((ctx_size < sizeof(struct ucontext)) && 1178 (new_msr & MSR_VSX)) 1179 return -EINVAL; 1180 /* Does the context have enough room to store VSX data? */ 1181 if (ctx_size >= sizeof(struct ucontext)) 1182 ctx_has_vsx_region = 1; 1183 #else 1184 /* Context size is for future use. Right now, we only make sure 1185 * we are passed something we understand 1186 */ 1187 if (ctx_size < sizeof(struct ucontext)) 1188 return -EINVAL; 1189 #endif 1190 if (old_ctx != NULL) { 1191 struct mcontext __user *mctx; 1192 1193 /* 1194 * old_ctx might not be 16-byte aligned, in which 1195 * case old_ctx->uc_mcontext won't be either. 1196 * Because we have the old_ctx->uc_pad2 field 1197 * before old_ctx->uc_mcontext, we need to round down 1198 * from &old_ctx->uc_mcontext to a 16-byte boundary. 1199 */ 1200 mctx = (struct mcontext __user *) 1201 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); 1202 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size) 1203 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) 1204 || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) 1205 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) 1206 return -EFAULT; 1207 } 1208 if (new_ctx == NULL) 1209 return 0; 1210 if (!access_ok(VERIFY_READ, new_ctx, ctx_size) 1211 || __get_user(tmp, (u8 __user *) new_ctx) 1212 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1)) 1213 return -EFAULT; 1214 1215 /* 1216 * If we get a fault copying the context into the kernel's 1217 * image of the user's registers, we can't just return -EFAULT 1218 * because the user's registers will be corrupted. For instance 1219 * the NIP value may have been updated but not some of the 1220 * other registers. Given that we have done the access_ok 1221 * and successfully read the first and last bytes of the region 1222 * above, this should only happen in an out-of-memory situation 1223 * or if another thread unmaps the region containing the context. 1224 * We kill the task with a SIGSEGV in this situation. 1225 */ 1226 if (do_setcontext(new_ctx, regs, 0)) 1227 do_exit(SIGSEGV); 1228 1229 set_thread_flag(TIF_RESTOREALL); 1230 return 0; 1231 } 1232 1233 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1234 struct pt_regs *regs) 1235 { 1236 struct rt_sigframe __user *rt_sf; 1237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1238 struct ucontext __user *uc_transact; 1239 unsigned long msr_hi; 1240 unsigned long tmp; 1241 int tm_restore = 0; 1242 #endif 1243 /* Always make any pending restarted system calls return -EINTR */ 1244 current_thread_info()->restart_block.fn = do_no_restart_syscall; 1245 1246 rt_sf = (struct rt_sigframe __user *) 1247 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); 1248 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf))) 1249 goto bad; 1250 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1251 if (__get_user(tmp, &rt_sf->uc.uc_link)) 1252 goto bad; 1253 uc_transact = (struct ucontext __user *)(uintptr_t)tmp; 1254 if (uc_transact) { 1255 u32 cmcp; 1256 struct mcontext __user *mcp; 1257 1258 if (__get_user(cmcp, &uc_transact->uc_regs)) 1259 return -EFAULT; 1260 mcp = (struct mcontext __user *)(u64)cmcp; 1261 /* The top 32 bits of the MSR are stashed in the transactional 1262 * ucontext. */ 1263 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) 1264 goto bad; 1265 1266 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1267 /* We only recheckpoint on return if we're 1268 * transaction. 1269 */ 1270 tm_restore = 1; 1271 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) 1272 goto bad; 1273 } 1274 } 1275 if (!tm_restore) 1276 /* Fall through, for non-TM restore */ 1277 #endif 1278 if (do_setcontext(&rt_sf->uc, regs, 1)) 1279 goto bad; 1280 1281 /* 1282 * It's not clear whether or why it is desirable to save the 1283 * sigaltstack setting on signal delivery and restore it on 1284 * signal return. But other architectures do this and we have 1285 * always done it up until now so it is probably better not to 1286 * change it. -- paulus 1287 */ 1288 #ifdef CONFIG_PPC64 1289 if (compat_restore_altstack(&rt_sf->uc.uc_stack)) 1290 goto bad; 1291 #else 1292 if (restore_altstack(&rt_sf->uc.uc_stack)) 1293 goto bad; 1294 #endif 1295 set_thread_flag(TIF_RESTOREALL); 1296 return 0; 1297 1298 bad: 1299 if (show_unhandled_signals) 1300 printk_ratelimited(KERN_INFO 1301 "%s[%d]: bad frame in sys_rt_sigreturn: " 1302 "%p nip %08lx lr %08lx\n", 1303 current->comm, current->pid, 1304 rt_sf, regs->nip, regs->link); 1305 1306 force_sig(SIGSEGV, current); 1307 return 0; 1308 } 1309 1310 #ifdef CONFIG_PPC32 1311 int sys_debug_setcontext(struct ucontext __user *ctx, 1312 int ndbg, struct sig_dbg_op __user *dbg, 1313 int r6, int r7, int r8, 1314 struct pt_regs *regs) 1315 { 1316 struct sig_dbg_op op; 1317 int i; 1318 unsigned char tmp; 1319 unsigned long new_msr = regs->msr; 1320 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1321 unsigned long new_dbcr0 = current->thread.debug.dbcr0; 1322 #endif 1323 1324 for (i=0; i<ndbg; i++) { 1325 if (copy_from_user(&op, dbg + i, sizeof(op))) 1326 return -EFAULT; 1327 switch (op.dbg_type) { 1328 case SIG_DBG_SINGLE_STEPPING: 1329 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1330 if (op.dbg_value) { 1331 new_msr |= MSR_DE; 1332 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); 1333 } else { 1334 new_dbcr0 &= ~DBCR0_IC; 1335 if (!DBCR_ACTIVE_EVENTS(new_dbcr0, 1336 current->thread.debug.dbcr1)) { 1337 new_msr &= ~MSR_DE; 1338 new_dbcr0 &= ~DBCR0_IDM; 1339 } 1340 } 1341 #else 1342 if (op.dbg_value) 1343 new_msr |= MSR_SE; 1344 else 1345 new_msr &= ~MSR_SE; 1346 #endif 1347 break; 1348 case SIG_DBG_BRANCH_TRACING: 1349 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1350 return -EINVAL; 1351 #else 1352 if (op.dbg_value) 1353 new_msr |= MSR_BE; 1354 else 1355 new_msr &= ~MSR_BE; 1356 #endif 1357 break; 1358 1359 default: 1360 return -EINVAL; 1361 } 1362 } 1363 1364 /* We wait until here to actually install the values in the 1365 registers so if we fail in the above loop, it will not 1366 affect the contents of these registers. After this point, 1367 failure is a problem, anyway, and it's very unlikely unless 1368 the user is really doing something wrong. */ 1369 regs->msr = new_msr; 1370 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1371 current->thread.debug.dbcr0 = new_dbcr0; 1372 #endif 1373 1374 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx)) 1375 || __get_user(tmp, (u8 __user *) ctx) 1376 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1)) 1377 return -EFAULT; 1378 1379 /* 1380 * If we get a fault copying the context into the kernel's 1381 * image of the user's registers, we can't just return -EFAULT 1382 * because the user's registers will be corrupted. For instance 1383 * the NIP value may have been updated but not some of the 1384 * other registers. Given that we have done the access_ok 1385 * and successfully read the first and last bytes of the region 1386 * above, this should only happen in an out-of-memory situation 1387 * or if another thread unmaps the region containing the context. 1388 * We kill the task with a SIGSEGV in this situation. 1389 */ 1390 if (do_setcontext(ctx, regs, 1)) { 1391 if (show_unhandled_signals) 1392 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " 1393 "sys_debug_setcontext: %p nip %08lx " 1394 "lr %08lx\n", 1395 current->comm, current->pid, 1396 ctx, regs->nip, regs->link); 1397 1398 force_sig(SIGSEGV, current); 1399 goto out; 1400 } 1401 1402 /* 1403 * It's not clear whether or why it is desirable to save the 1404 * sigaltstack setting on signal delivery and restore it on 1405 * signal return. But other architectures do this and we have 1406 * always done it up until now so it is probably better not to 1407 * change it. -- paulus 1408 */ 1409 restore_altstack(&ctx->uc_stack); 1410 1411 set_thread_flag(TIF_RESTOREALL); 1412 out: 1413 return 0; 1414 } 1415 #endif 1416 1417 /* 1418 * OK, we're invoking a handler 1419 */ 1420 int handle_signal32(unsigned long sig, struct k_sigaction *ka, 1421 siginfo_t *info, sigset_t *oldset, struct pt_regs *regs) 1422 { 1423 struct sigcontext __user *sc; 1424 struct sigframe __user *frame; 1425 struct mcontext __user *tm_mctx = NULL; 1426 unsigned long newsp = 0; 1427 int sigret; 1428 unsigned long tramp; 1429 1430 /* Set up Signal Frame */ 1431 frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1); 1432 if (unlikely(frame == NULL)) 1433 goto badframe; 1434 sc = (struct sigcontext __user *) &frame->sctx; 1435 1436 #if _NSIG != 64 1437 #error "Please adjust handle_signal()" 1438 #endif 1439 if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler) 1440 || __put_user(oldset->sig[0], &sc->oldmask) 1441 #ifdef CONFIG_PPC64 1442 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) 1443 #else 1444 || __put_user(oldset->sig[1], &sc->_unused[3]) 1445 #endif 1446 || __put_user(to_user_ptr(&frame->mctx), &sc->regs) 1447 || __put_user(sig, &sc->signal)) 1448 goto badframe; 1449 1450 if (vdso32_sigtramp && current->mm->context.vdso_base) { 1451 sigret = 0; 1452 tramp = current->mm->context.vdso_base + vdso32_sigtramp; 1453 } else { 1454 sigret = __NR_sigreturn; 1455 tramp = (unsigned long) frame->mctx.tramp; 1456 } 1457 1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1459 tm_mctx = &frame->mctx_transact; 1460 if (MSR_TM_ACTIVE(regs->msr)) { 1461 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, 1462 sigret)) 1463 goto badframe; 1464 } 1465 else 1466 #endif 1467 { 1468 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) 1469 goto badframe; 1470 } 1471 1472 regs->link = tramp; 1473 1474 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1475 1476 /* create a stack frame for the caller of the handler */ 1477 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; 1478 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1479 goto badframe; 1480 1481 regs->gpr[1] = newsp; 1482 regs->gpr[3] = sig; 1483 regs->gpr[4] = (unsigned long) sc; 1484 regs->nip = (unsigned long) ka->sa.sa_handler; 1485 /* enter the signal handler in big-endian mode */ 1486 regs->msr &= ~MSR_LE; 1487 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1488 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 1489 * just indicates to userland that we were doing a transaction, but we 1490 * don't want to return in transactional state: 1491 */ 1492 regs->msr &= ~MSR_TS_MASK; 1493 #endif 1494 return 1; 1495 1496 badframe: 1497 #ifdef DEBUG_SIG 1498 printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n", 1499 regs, frame, newsp); 1500 #endif 1501 if (show_unhandled_signals) 1502 printk_ratelimited(KERN_INFO 1503 "%s[%d]: bad frame in handle_signal32: " 1504 "%p nip %08lx lr %08lx\n", 1505 current->comm, current->pid, 1506 frame, regs->nip, regs->link); 1507 1508 force_sigsegv(sig, current); 1509 return 0; 1510 } 1511 1512 /* 1513 * Do a signal return; undo the signal stack. 1514 */ 1515 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1516 struct pt_regs *regs) 1517 { 1518 struct sigframe __user *sf; 1519 struct sigcontext __user *sc; 1520 struct sigcontext sigctx; 1521 struct mcontext __user *sr; 1522 void __user *addr; 1523 sigset_t set; 1524 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1525 struct mcontext __user *mcp, *tm_mcp; 1526 unsigned long msr_hi; 1527 #endif 1528 1529 /* Always make any pending restarted system calls return -EINTR */ 1530 current_thread_info()->restart_block.fn = do_no_restart_syscall; 1531 1532 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); 1533 sc = &sf->sctx; 1534 addr = sc; 1535 if (copy_from_user(&sigctx, sc, sizeof(sigctx))) 1536 goto badframe; 1537 1538 #ifdef CONFIG_PPC64 1539 /* 1540 * Note that PPC32 puts the upper 32 bits of the sigmask in the 1541 * unused part of the signal stackframe 1542 */ 1543 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); 1544 #else 1545 set.sig[0] = sigctx.oldmask; 1546 set.sig[1] = sigctx._unused[3]; 1547 #endif 1548 set_current_blocked(&set); 1549 1550 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1551 mcp = (struct mcontext __user *)&sf->mctx; 1552 tm_mcp = (struct mcontext __user *)&sf->mctx_transact; 1553 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) 1554 goto badframe; 1555 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1556 if (!cpu_has_feature(CPU_FTR_TM)) 1557 goto badframe; 1558 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1559 goto badframe; 1560 } else 1561 #endif 1562 { 1563 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); 1564 addr = sr; 1565 if (!access_ok(VERIFY_READ, sr, sizeof(*sr)) 1566 || restore_user_regs(regs, sr, 1)) 1567 goto badframe; 1568 } 1569 1570 set_thread_flag(TIF_RESTOREALL); 1571 return 0; 1572 1573 badframe: 1574 if (show_unhandled_signals) 1575 printk_ratelimited(KERN_INFO 1576 "%s[%d]: bad frame in sys_sigreturn: " 1577 "%p nip %08lx lr %08lx\n", 1578 current->comm, current->pid, 1579 addr, regs->nip, regs->link); 1580 1581 force_sig(SIGSEGV, current); 1582 return 0; 1583 } 1584