xref: /openbmc/linux/arch/powerpc/kernel/signal_32.c (revision 5f32c314)
1 /*
2  * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3  *
4  *  PowerPC version
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  * Copyright (C) 2001 IBM
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9  *
10  *  Derived from "arch/i386/kernel/signal.c"
11  *    Copyright (C) 1991, 1992 Linus Torvalds
12  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  */
19 
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
39 
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
54 
55 #include "signal.h"
56 
57 #undef DEBUG_SIG
58 
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn	compat_sys_rt_sigreturn
61 #define sys_swapcontext	compat_sys_swapcontext
62 #define sys_sigreturn	compat_sys_sigreturn
63 
64 #define old_sigaction	old_sigaction32
65 #define sigcontext	sigcontext32
66 #define mcontext	mcontext32
67 #define ucontext	ucontext32
68 
69 #define __save_altstack __compat_save_altstack
70 
71 /*
72  * Userspace code may pass a ucontext which doesn't include VSX added
73  * at the end.  We need to check for this case.
74  */
75 #define UCONTEXTSIZEWITHOUTVSX \
76 		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77 
78 /*
79  * Returning 0 means we return to userspace via
80  * ret_from_except and thus restore all user
81  * registers from *regs.  This is what we need
82  * to do when a signal has been delivered.
83  */
84 
85 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG	ELF_NVRREG32
90 
91 /*
92  * Functions for flipping sigsets (thanks to brain dead generic
93  * implementation that makes things simple for little endian only)
94  */
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96 {
97 	compat_sigset_t	cset;
98 
99 	switch (_NSIG_WORDS) {
100 	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101 		cset.sig[7] = set->sig[3] >> 32;
102 	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103 		cset.sig[5] = set->sig[2] >> 32;
104 	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105 		cset.sig[3] = set->sig[1] >> 32;
106 	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107 		cset.sig[1] = set->sig[0] >> 32;
108 	}
109 	return copy_to_user(uset, &cset, sizeof(*uset));
110 }
111 
112 static inline int get_sigset_t(sigset_t *set,
113 			       const compat_sigset_t __user *uset)
114 {
115 	compat_sigset_t s32;
116 
117 	if (copy_from_user(&s32, uset, sizeof(*uset)))
118 		return -EFAULT;
119 
120 	/*
121 	 * Swap the 2 words of the 64-bit sigset_t (they are stored
122 	 * in the "wrong" endian in 32-bit user storage).
123 	 */
124 	switch (_NSIG_WORDS) {
125 	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126 	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127 	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128 	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
129 	}
130 	return 0;
131 }
132 
133 #define to_user_ptr(p)		ptr_to_compat(p)
134 #define from_user_ptr(p)	compat_ptr(p)
135 
136 static inline int save_general_regs(struct pt_regs *regs,
137 		struct mcontext __user *frame)
138 {
139 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140 	int i;
141 
142 	WARN_ON(!FULL_REGS(regs));
143 
144 	for (i = 0; i <= PT_RESULT; i ++) {
145 		if (i == 14 && !FULL_REGS(regs))
146 			i = 32;
147 		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148 			return -EFAULT;
149 	}
150 	return 0;
151 }
152 
153 static inline int restore_general_regs(struct pt_regs *regs,
154 		struct mcontext __user *sr)
155 {
156 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157 	int i;
158 
159 	for (i = 0; i <= PT_RESULT; i++) {
160 		if ((i == PT_MSR) || (i == PT_SOFTE))
161 			continue;
162 		if (__get_user(gregs[i], &sr->mc_gregs[i]))
163 			return -EFAULT;
164 	}
165 	return 0;
166 }
167 
168 #else /* CONFIG_PPC64 */
169 
170 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
171 
172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
173 {
174 	return copy_to_user(uset, set, sizeof(*uset));
175 }
176 
177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
178 {
179 	return copy_from_user(set, uset, sizeof(*uset));
180 }
181 
182 #define to_user_ptr(p)		((unsigned long)(p))
183 #define from_user_ptr(p)	((void __user *)(p))
184 
185 static inline int save_general_regs(struct pt_regs *regs,
186 		struct mcontext __user *frame)
187 {
188 	WARN_ON(!FULL_REGS(regs));
189 	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
190 }
191 
192 static inline int restore_general_regs(struct pt_regs *regs,
193 		struct mcontext __user *sr)
194 {
195 	/* copy up to but not including MSR */
196 	if (__copy_from_user(regs, &sr->mc_gregs,
197 				PT_MSR * sizeof(elf_greg_t)))
198 		return -EFAULT;
199 	/* copy from orig_r3 (the word after the MSR) up to the end */
200 	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201 				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202 		return -EFAULT;
203 	return 0;
204 }
205 #endif
206 
207 /*
208  * When we have signals to deliver, we set up on the
209  * user stack, going down from the original stack pointer:
210  *	an ABI gap of 56 words
211  *	an mcontext struct
212  *	a sigcontext struct
213  *	a gap of __SIGNAL_FRAMESIZE bytes
214  *
215  * Each of these things must be a multiple of 16 bytes in size. The following
216  * structure represent all of this except the __SIGNAL_FRAMESIZE gap
217  *
218  */
219 struct sigframe {
220 	struct sigcontext sctx;		/* the sigcontext */
221 	struct mcontext	mctx;		/* all the register values */
222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223 	struct sigcontext sctx_transact;
224 	struct mcontext	mctx_transact;
225 #endif
226 	/*
227 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
228 	 * regs and 18 fp regs below sp before decrementing it.
229 	 */
230 	int			abigap[56];
231 };
232 
233 /* We use the mc_pad field for the signal return trampoline. */
234 #define tramp	mc_pad
235 
236 /*
237  *  When we have rt signals to deliver, we set up on the
238  *  user stack, going down from the original stack pointer:
239  *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
240  *	a gap of __SIGNAL_FRAMESIZE+16 bytes
241  *  (the +16 is to get the siginfo and ucontext in the same
242  *  positions as in older kernels).
243  *
244  *  Each of these things must be a multiple of 16 bytes in size.
245  *
246  */
247 struct rt_sigframe {
248 #ifdef CONFIG_PPC64
249 	compat_siginfo_t info;
250 #else
251 	struct siginfo info;
252 #endif
253 	struct ucontext	uc;
254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255 	struct ucontext	uc_transact;
256 #endif
257 	/*
258 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
259 	 * regs and 18 fp regs below sp before decrementing it.
260 	 */
261 	int			abigap[56];
262 };
263 
264 #ifdef CONFIG_VSX
265 unsigned long copy_fpr_to_user(void __user *to,
266 			       struct task_struct *task)
267 {
268 	u64 buf[ELF_NFPREG];
269 	int i;
270 
271 	/* save FPR copy to local buffer then write to the thread_struct */
272 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273 		buf[i] = task->thread.TS_FPR(i);
274 	buf[i] = task->thread.fp_state.fpscr;
275 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
276 }
277 
278 unsigned long copy_fpr_from_user(struct task_struct *task,
279 				 void __user *from)
280 {
281 	u64 buf[ELF_NFPREG];
282 	int i;
283 
284 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285 		return 1;
286 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287 		task->thread.TS_FPR(i) = buf[i];
288 	task->thread.fp_state.fpscr = buf[i];
289 
290 	return 0;
291 }
292 
293 unsigned long copy_vsx_to_user(void __user *to,
294 			       struct task_struct *task)
295 {
296 	u64 buf[ELF_NVSRHALFREG];
297 	int i;
298 
299 	/* save FPR copy to local buffer then write to the thread_struct */
300 	for (i = 0; i < ELF_NVSRHALFREG; i++)
301 		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
302 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
303 }
304 
305 unsigned long copy_vsx_from_user(struct task_struct *task,
306 				 void __user *from)
307 {
308 	u64 buf[ELF_NVSRHALFREG];
309 	int i;
310 
311 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312 		return 1;
313 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
314 		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315 	return 0;
316 }
317 
318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319 unsigned long copy_transact_fpr_to_user(void __user *to,
320 				  struct task_struct *task)
321 {
322 	u64 buf[ELF_NFPREG];
323 	int i;
324 
325 	/* save FPR copy to local buffer then write to the thread_struct */
326 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327 		buf[i] = task->thread.TS_TRANS_FPR(i);
328 	buf[i] = task->thread.transact_fp.fpscr;
329 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
330 }
331 
332 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333 					  void __user *from)
334 {
335 	u64 buf[ELF_NFPREG];
336 	int i;
337 
338 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339 		return 1;
340 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341 		task->thread.TS_TRANS_FPR(i) = buf[i];
342 	task->thread.transact_fp.fpscr = buf[i];
343 
344 	return 0;
345 }
346 
347 unsigned long copy_transact_vsx_to_user(void __user *to,
348 				  struct task_struct *task)
349 {
350 	u64 buf[ELF_NVSRHALFREG];
351 	int i;
352 
353 	/* save FPR copy to local buffer then write to the thread_struct */
354 	for (i = 0; i < ELF_NVSRHALFREG; i++)
355 		buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
356 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
357 }
358 
359 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360 					  void __user *from)
361 {
362 	u64 buf[ELF_NVSRHALFREG];
363 	int i;
364 
365 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366 		return 1;
367 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
368 		task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
369 	return 0;
370 }
371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372 #else
373 inline unsigned long copy_fpr_to_user(void __user *to,
374 				      struct task_struct *task)
375 {
376 	return __copy_to_user(to, task->thread.fp_state.fpr,
377 			      ELF_NFPREG * sizeof(double));
378 }
379 
380 inline unsigned long copy_fpr_from_user(struct task_struct *task,
381 					void __user *from)
382 {
383 	return __copy_from_user(task->thread.fp_state.fpr, from,
384 			      ELF_NFPREG * sizeof(double));
385 }
386 
387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388 inline unsigned long copy_transact_fpr_to_user(void __user *to,
389 					 struct task_struct *task)
390 {
391 	return __copy_to_user(to, task->thread.transact_fp.fpr,
392 			      ELF_NFPREG * sizeof(double));
393 }
394 
395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396 						 void __user *from)
397 {
398 	return __copy_from_user(task->thread.transact_fp.fpr, from,
399 				ELF_NFPREG * sizeof(double));
400 }
401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402 #endif
403 
404 /*
405  * Save the current user registers on the user stack.
406  * We only save the altivec/spe registers if the process has used
407  * altivec/spe instructions at some point.
408  */
409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410 			  struct mcontext __user *tm_frame, int sigret,
411 			  int ctx_has_vsx_region)
412 {
413 	unsigned long msr = regs->msr;
414 
415 	/* Make sure floating point registers are stored in regs */
416 	flush_fp_to_thread(current);
417 
418 	/* save general registers */
419 	if (save_general_regs(regs, frame))
420 		return 1;
421 
422 #ifdef CONFIG_ALTIVEC
423 	/* save altivec registers */
424 	if (current->thread.used_vr) {
425 		flush_altivec_to_thread(current);
426 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
427 				   ELF_NVRREG * sizeof(vector128)))
428 			return 1;
429 		/* set MSR_VEC in the saved MSR value to indicate that
430 		   frame->mc_vregs contains valid data */
431 		msr |= MSR_VEC;
432 	}
433 	/* else assert((regs->msr & MSR_VEC) == 0) */
434 
435 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
436 	 * use altivec. Since VSCR only contains 32 bits saved in the least
437 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
438 	 * most significant bits of that same vector. --BenH
439 	 * Note that the current VRSAVE value is in the SPR at this point.
440 	 */
441 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
442 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
443 	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
444 		return 1;
445 #endif /* CONFIG_ALTIVEC */
446 	if (copy_fpr_to_user(&frame->mc_fregs, current))
447 		return 1;
448 
449 	/*
450 	 * Clear the MSR VSX bit to indicate there is no valid state attached
451 	 * to this context, except in the specific case below where we set it.
452 	 */
453 	msr &= ~MSR_VSX;
454 #ifdef CONFIG_VSX
455 	/*
456 	 * Copy VSR 0-31 upper half from thread_struct to local
457 	 * buffer, then write that to userspace.  Also set MSR_VSX in
458 	 * the saved MSR value to indicate that frame->mc_vregs
459 	 * contains valid data
460 	 */
461 	if (current->thread.used_vsr && ctx_has_vsx_region) {
462 		__giveup_vsx(current);
463 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
464 			return 1;
465 		msr |= MSR_VSX;
466 	}
467 #endif /* CONFIG_VSX */
468 #ifdef CONFIG_SPE
469 	/* save spe registers */
470 	if (current->thread.used_spe) {
471 		flush_spe_to_thread(current);
472 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
473 				   ELF_NEVRREG * sizeof(u32)))
474 			return 1;
475 		/* set MSR_SPE in the saved MSR value to indicate that
476 		   frame->mc_vregs contains valid data */
477 		msr |= MSR_SPE;
478 	}
479 	/* else assert((regs->msr & MSR_SPE) == 0) */
480 
481 	/* We always copy to/from spefscr */
482 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
483 		return 1;
484 #endif /* CONFIG_SPE */
485 
486 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
487 		return 1;
488 	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
489 	 * can check it on the restore to see if TM is active
490 	 */
491 	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
492 		return 1;
493 
494 	if (sigret) {
495 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
496 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
497 		    || __put_user(0x44000002UL, &frame->tramp[1]))
498 			return 1;
499 		flush_icache_range((unsigned long) &frame->tramp[0],
500 				   (unsigned long) &frame->tramp[2]);
501 	}
502 
503 	return 0;
504 }
505 
506 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
507 /*
508  * Save the current user registers on the user stack.
509  * We only save the altivec/spe registers if the process has used
510  * altivec/spe instructions at some point.
511  * We also save the transactional registers to a second ucontext in the
512  * frame.
513  *
514  * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
515  */
516 static int save_tm_user_regs(struct pt_regs *regs,
517 			     struct mcontext __user *frame,
518 			     struct mcontext __user *tm_frame, int sigret)
519 {
520 	unsigned long msr = regs->msr;
521 
522 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
523 	 * just indicates to userland that we were doing a transaction, but we
524 	 * don't want to return in transactional state.  This also ensures
525 	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
526 	 */
527 	regs->msr &= ~MSR_TS_MASK;
528 
529 	/* Make sure floating point registers are stored in regs */
530 	flush_fp_to_thread(current);
531 
532 	/* Save both sets of general registers */
533 	if (save_general_regs(&current->thread.ckpt_regs, frame)
534 	    || save_general_regs(regs, tm_frame))
535 		return 1;
536 
537 	/* Stash the top half of the 64bit MSR into the 32bit MSR word
538 	 * of the transactional mcontext.  This way we have a backward-compatible
539 	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
540 	 * also look at what type of transaction (T or S) was active at the
541 	 * time of the signal.
542 	 */
543 	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
544 		return 1;
545 
546 #ifdef CONFIG_ALTIVEC
547 	/* save altivec registers */
548 	if (current->thread.used_vr) {
549 		flush_altivec_to_thread(current);
550 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
551 				   ELF_NVRREG * sizeof(vector128)))
552 			return 1;
553 		if (msr & MSR_VEC) {
554 			if (__copy_to_user(&tm_frame->mc_vregs,
555 					   &current->thread.transact_vr,
556 					   ELF_NVRREG * sizeof(vector128)))
557 				return 1;
558 		} else {
559 			if (__copy_to_user(&tm_frame->mc_vregs,
560 					   &current->thread.vr_state,
561 					   ELF_NVRREG * sizeof(vector128)))
562 				return 1;
563 		}
564 
565 		/* set MSR_VEC in the saved MSR value to indicate that
566 		 * frame->mc_vregs contains valid data
567 		 */
568 		msr |= MSR_VEC;
569 	}
570 
571 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
572 	 * use altivec. Since VSCR only contains 32 bits saved in the least
573 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
574 	 * most significant bits of that same vector. --BenH
575 	 */
576 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
577 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
578 	if (__put_user(current->thread.vrsave,
579 		       (u32 __user *)&frame->mc_vregs[32]))
580 		return 1;
581 	if (msr & MSR_VEC) {
582 		if (__put_user(current->thread.transact_vrsave,
583 			       (u32 __user *)&tm_frame->mc_vregs[32]))
584 			return 1;
585 	} else {
586 		if (__put_user(current->thread.vrsave,
587 			       (u32 __user *)&tm_frame->mc_vregs[32]))
588 			return 1;
589 	}
590 #endif /* CONFIG_ALTIVEC */
591 
592 	if (copy_fpr_to_user(&frame->mc_fregs, current))
593 		return 1;
594 	if (msr & MSR_FP) {
595 		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
596 			return 1;
597 	} else {
598 		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
599 			return 1;
600 	}
601 
602 #ifdef CONFIG_VSX
603 	/*
604 	 * Copy VSR 0-31 upper half from thread_struct to local
605 	 * buffer, then write that to userspace.  Also set MSR_VSX in
606 	 * the saved MSR value to indicate that frame->mc_vregs
607 	 * contains valid data
608 	 */
609 	if (current->thread.used_vsr) {
610 		__giveup_vsx(current);
611 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
612 			return 1;
613 		if (msr & MSR_VSX) {
614 			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
615 						      current))
616 				return 1;
617 		} else {
618 			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
619 				return 1;
620 		}
621 
622 		msr |= MSR_VSX;
623 	}
624 #endif /* CONFIG_VSX */
625 #ifdef CONFIG_SPE
626 	/* SPE regs are not checkpointed with TM, so this section is
627 	 * simply the same as in save_user_regs().
628 	 */
629 	if (current->thread.used_spe) {
630 		flush_spe_to_thread(current);
631 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
632 				   ELF_NEVRREG * sizeof(u32)))
633 			return 1;
634 		/* set MSR_SPE in the saved MSR value to indicate that
635 		 * frame->mc_vregs contains valid data */
636 		msr |= MSR_SPE;
637 	}
638 
639 	/* We always copy to/from spefscr */
640 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
641 		return 1;
642 #endif /* CONFIG_SPE */
643 
644 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
645 		return 1;
646 	if (sigret) {
647 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
648 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
649 		    || __put_user(0x44000002UL, &frame->tramp[1]))
650 			return 1;
651 		flush_icache_range((unsigned long) &frame->tramp[0],
652 				   (unsigned long) &frame->tramp[2]);
653 	}
654 
655 	return 0;
656 }
657 #endif
658 
659 /*
660  * Restore the current user register values from the user stack,
661  * (except for MSR).
662  */
663 static long restore_user_regs(struct pt_regs *regs,
664 			      struct mcontext __user *sr, int sig)
665 {
666 	long err;
667 	unsigned int save_r2 = 0;
668 	unsigned long msr;
669 #ifdef CONFIG_VSX
670 	int i;
671 #endif
672 
673 	/*
674 	 * restore general registers but not including MSR or SOFTE. Also
675 	 * take care of keeping r2 (TLS) intact if not a signal
676 	 */
677 	if (!sig)
678 		save_r2 = (unsigned int)regs->gpr[2];
679 	err = restore_general_regs(regs, sr);
680 	regs->trap = 0;
681 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
682 	if (!sig)
683 		regs->gpr[2] = (unsigned long) save_r2;
684 	if (err)
685 		return 1;
686 
687 	/* if doing signal return, restore the previous little-endian mode */
688 	if (sig)
689 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
690 
691 	/*
692 	 * Do this before updating the thread state in
693 	 * current->thread.fpr/vr/evr.  That way, if we get preempted
694 	 * and another task grabs the FPU/Altivec/SPE, it won't be
695 	 * tempted to save the current CPU state into the thread_struct
696 	 * and corrupt what we are writing there.
697 	 */
698 	discard_lazy_cpu_state();
699 
700 #ifdef CONFIG_ALTIVEC
701 	/*
702 	 * Force the process to reload the altivec registers from
703 	 * current->thread when it next does altivec instructions
704 	 */
705 	regs->msr &= ~MSR_VEC;
706 	if (msr & MSR_VEC) {
707 		/* restore altivec registers from the stack */
708 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
709 				     sizeof(sr->mc_vregs)))
710 			return 1;
711 	} else if (current->thread.used_vr)
712 		memset(&current->thread.vr_state, 0,
713 		       ELF_NVRREG * sizeof(vector128));
714 
715 	/* Always get VRSAVE back */
716 	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
717 		return 1;
718 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
719 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
720 #endif /* CONFIG_ALTIVEC */
721 	if (copy_fpr_from_user(current, &sr->mc_fregs))
722 		return 1;
723 
724 #ifdef CONFIG_VSX
725 	/*
726 	 * Force the process to reload the VSX registers from
727 	 * current->thread when it next does VSX instruction.
728 	 */
729 	regs->msr &= ~MSR_VSX;
730 	if (msr & MSR_VSX) {
731 		/*
732 		 * Restore altivec registers from the stack to a local
733 		 * buffer, then write this out to the thread_struct
734 		 */
735 		if (copy_vsx_from_user(current, &sr->mc_vsregs))
736 			return 1;
737 	} else if (current->thread.used_vsr)
738 		for (i = 0; i < 32 ; i++)
739 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
740 #endif /* CONFIG_VSX */
741 	/*
742 	 * force the process to reload the FP registers from
743 	 * current->thread when it next does FP instructions
744 	 */
745 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
746 
747 #ifdef CONFIG_SPE
748 	/* force the process to reload the spe registers from
749 	   current->thread when it next does spe instructions */
750 	regs->msr &= ~MSR_SPE;
751 	if (msr & MSR_SPE) {
752 		/* restore spe registers from the stack */
753 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
754 				     ELF_NEVRREG * sizeof(u32)))
755 			return 1;
756 	} else if (current->thread.used_spe)
757 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
758 
759 	/* Always get SPEFSCR back */
760 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
761 		return 1;
762 #endif /* CONFIG_SPE */
763 
764 	return 0;
765 }
766 
767 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
768 /*
769  * Restore the current user register values from the user stack, except for
770  * MSR, and recheckpoint the original checkpointed register state for processes
771  * in transactions.
772  */
773 static long restore_tm_user_regs(struct pt_regs *regs,
774 				 struct mcontext __user *sr,
775 				 struct mcontext __user *tm_sr)
776 {
777 	long err;
778 	unsigned long msr, msr_hi;
779 #ifdef CONFIG_VSX
780 	int i;
781 #endif
782 
783 	/*
784 	 * restore general registers but not including MSR or SOFTE. Also
785 	 * take care of keeping r2 (TLS) intact if not a signal.
786 	 * See comment in signal_64.c:restore_tm_sigcontexts();
787 	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
788 	 * were set by the signal delivery.
789 	 */
790 	err = restore_general_regs(regs, tm_sr);
791 	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
792 
793 	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
794 
795 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
796 	if (err)
797 		return 1;
798 
799 	/* Restore the previous little-endian mode */
800 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
801 
802 	/*
803 	 * Do this before updating the thread state in
804 	 * current->thread.fpr/vr/evr.  That way, if we get preempted
805 	 * and another task grabs the FPU/Altivec/SPE, it won't be
806 	 * tempted to save the current CPU state into the thread_struct
807 	 * and corrupt what we are writing there.
808 	 */
809 	discard_lazy_cpu_state();
810 
811 #ifdef CONFIG_ALTIVEC
812 	regs->msr &= ~MSR_VEC;
813 	if (msr & MSR_VEC) {
814 		/* restore altivec registers from the stack */
815 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
816 				     sizeof(sr->mc_vregs)) ||
817 		    __copy_from_user(&current->thread.transact_vr,
818 				     &tm_sr->mc_vregs,
819 				     sizeof(sr->mc_vregs)))
820 			return 1;
821 	} else if (current->thread.used_vr) {
822 		memset(&current->thread.vr_state, 0,
823 		       ELF_NVRREG * sizeof(vector128));
824 		memset(&current->thread.transact_vr, 0,
825 		       ELF_NVRREG * sizeof(vector128));
826 	}
827 
828 	/* Always get VRSAVE back */
829 	if (__get_user(current->thread.vrsave,
830 		       (u32 __user *)&sr->mc_vregs[32]) ||
831 	    __get_user(current->thread.transact_vrsave,
832 		       (u32 __user *)&tm_sr->mc_vregs[32]))
833 		return 1;
834 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
835 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
836 #endif /* CONFIG_ALTIVEC */
837 
838 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
839 
840 	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
841 	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
842 		return 1;
843 
844 #ifdef CONFIG_VSX
845 	regs->msr &= ~MSR_VSX;
846 	if (msr & MSR_VSX) {
847 		/*
848 		 * Restore altivec registers from the stack to a local
849 		 * buffer, then write this out to the thread_struct
850 		 */
851 		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
852 		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
853 			return 1;
854 	} else if (current->thread.used_vsr)
855 		for (i = 0; i < 32 ; i++) {
856 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
857 			current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
858 		}
859 #endif /* CONFIG_VSX */
860 
861 #ifdef CONFIG_SPE
862 	/* SPE regs are not checkpointed with TM, so this section is
863 	 * simply the same as in restore_user_regs().
864 	 */
865 	regs->msr &= ~MSR_SPE;
866 	if (msr & MSR_SPE) {
867 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
868 				     ELF_NEVRREG * sizeof(u32)))
869 			return 1;
870 	} else if (current->thread.used_spe)
871 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
872 
873 	/* Always get SPEFSCR back */
874 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
875 		       + ELF_NEVRREG))
876 		return 1;
877 #endif /* CONFIG_SPE */
878 
879 	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
880 	 * registers, including FP and V[S]Rs.  After recheckpointing, the
881 	 * transactional versions should be loaded.
882 	 */
883 	tm_enable();
884 	/* This loads the checkpointed FP/VEC state, if used */
885 	tm_recheckpoint(&current->thread, msr);
886 	/* Get the top half of the MSR */
887 	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
888 		return 1;
889 	/* Pull in MSR TM from user context */
890 	regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
891 
892 	/* This loads the speculative FP/VEC state, if used */
893 	if (msr & MSR_FP) {
894 		do_load_up_transact_fpu(&current->thread);
895 		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
896 	}
897 #ifdef CONFIG_ALTIVEC
898 	if (msr & MSR_VEC) {
899 		do_load_up_transact_altivec(&current->thread);
900 		regs->msr |= MSR_VEC;
901 	}
902 #endif
903 
904 	return 0;
905 }
906 #endif
907 
908 #ifdef CONFIG_PPC64
909 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
910 {
911 	int err;
912 
913 	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
914 		return -EFAULT;
915 
916 	/* If you change siginfo_t structure, please be sure
917 	 * this code is fixed accordingly.
918 	 * It should never copy any pad contained in the structure
919 	 * to avoid security leaks, but must copy the generic
920 	 * 3 ints plus the relevant union member.
921 	 * This routine must convert siginfo from 64bit to 32bit as well
922 	 * at the same time.
923 	 */
924 	err = __put_user(s->si_signo, &d->si_signo);
925 	err |= __put_user(s->si_errno, &d->si_errno);
926 	err |= __put_user((short)s->si_code, &d->si_code);
927 	if (s->si_code < 0)
928 		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
929 				      SI_PAD_SIZE32);
930 	else switch(s->si_code >> 16) {
931 	case __SI_CHLD >> 16:
932 		err |= __put_user(s->si_pid, &d->si_pid);
933 		err |= __put_user(s->si_uid, &d->si_uid);
934 		err |= __put_user(s->si_utime, &d->si_utime);
935 		err |= __put_user(s->si_stime, &d->si_stime);
936 		err |= __put_user(s->si_status, &d->si_status);
937 		break;
938 	case __SI_FAULT >> 16:
939 		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
940 				  &d->si_addr);
941 		break;
942 	case __SI_POLL >> 16:
943 		err |= __put_user(s->si_band, &d->si_band);
944 		err |= __put_user(s->si_fd, &d->si_fd);
945 		break;
946 	case __SI_TIMER >> 16:
947 		err |= __put_user(s->si_tid, &d->si_tid);
948 		err |= __put_user(s->si_overrun, &d->si_overrun);
949 		err |= __put_user(s->si_int, &d->si_int);
950 		break;
951 	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
952 	case __SI_MESGQ >> 16:
953 		err |= __put_user(s->si_int, &d->si_int);
954 		/* fallthrough */
955 	case __SI_KILL >> 16:
956 	default:
957 		err |= __put_user(s->si_pid, &d->si_pid);
958 		err |= __put_user(s->si_uid, &d->si_uid);
959 		break;
960 	}
961 	return err;
962 }
963 
964 #define copy_siginfo_to_user	copy_siginfo_to_user32
965 
966 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
967 {
968 	memset(to, 0, sizeof *to);
969 
970 	if (copy_from_user(to, from, 3*sizeof(int)) ||
971 	    copy_from_user(to->_sifields._pad,
972 			   from->_sifields._pad, SI_PAD_SIZE32))
973 		return -EFAULT;
974 
975 	return 0;
976 }
977 #endif /* CONFIG_PPC64 */
978 
979 /*
980  * Set up a signal frame for a "real-time" signal handler
981  * (one which gets siginfo).
982  */
983 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
984 		siginfo_t *info, sigset_t *oldset,
985 		struct pt_regs *regs)
986 {
987 	struct rt_sigframe __user *rt_sf;
988 	struct mcontext __user *frame;
989 	struct mcontext __user *tm_frame = NULL;
990 	void __user *addr;
991 	unsigned long newsp = 0;
992 	int sigret;
993 	unsigned long tramp;
994 
995 	/* Set up Signal Frame */
996 	/* Put a Real Time Context onto stack */
997 	rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
998 	addr = rt_sf;
999 	if (unlikely(rt_sf == NULL))
1000 		goto badframe;
1001 
1002 	/* Put the siginfo & fill in most of the ucontext */
1003 	if (copy_siginfo_to_user(&rt_sf->info, info)
1004 	    || __put_user(0, &rt_sf->uc.uc_flags)
1005 	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1006 	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1007 		    &rt_sf->uc.uc_regs)
1008 	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1009 		goto badframe;
1010 
1011 	/* Save user registers on the stack */
1012 	frame = &rt_sf->uc.uc_mcontext;
1013 	addr = frame;
1014 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1015 		sigret = 0;
1016 		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1017 	} else {
1018 		sigret = __NR_rt_sigreturn;
1019 		tramp = (unsigned long) frame->tramp;
1020 	}
1021 
1022 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1023 	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1024 	if (MSR_TM_ACTIVE(regs->msr)) {
1025 		if (__put_user((unsigned long)&rt_sf->uc_transact,
1026 			       &rt_sf->uc.uc_link) ||
1027 		    __put_user((unsigned long)tm_frame,
1028 			       &rt_sf->uc_transact.uc_regs))
1029 			goto badframe;
1030 		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1031 			goto badframe;
1032 	}
1033 	else
1034 #endif
1035 	{
1036 		if (__put_user(0, &rt_sf->uc.uc_link))
1037 			goto badframe;
1038 		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1039 			goto badframe;
1040 	}
1041 	regs->link = tramp;
1042 
1043 	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1044 
1045 	/* create a stack frame for the caller of the handler */
1046 	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1047 	addr = (void __user *)regs->gpr[1];
1048 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1049 		goto badframe;
1050 
1051 	/* Fill registers for signal handler */
1052 	regs->gpr[1] = newsp;
1053 	regs->gpr[3] = sig;
1054 	regs->gpr[4] = (unsigned long) &rt_sf->info;
1055 	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1056 	regs->gpr[6] = (unsigned long) rt_sf;
1057 	regs->nip = (unsigned long) ka->sa.sa_handler;
1058 	/* enter the signal handler in native-endian mode */
1059 	regs->msr &= ~MSR_LE;
1060 	regs->msr |= (MSR_KERNEL & MSR_LE);
1061 	return 1;
1062 
1063 badframe:
1064 #ifdef DEBUG_SIG
1065 	printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1066 	       regs, frame, newsp);
1067 #endif
1068 	if (show_unhandled_signals)
1069 		printk_ratelimited(KERN_INFO
1070 				   "%s[%d]: bad frame in handle_rt_signal32: "
1071 				   "%p nip %08lx lr %08lx\n",
1072 				   current->comm, current->pid,
1073 				   addr, regs->nip, regs->link);
1074 
1075 	force_sigsegv(sig, current);
1076 	return 0;
1077 }
1078 
1079 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1080 {
1081 	sigset_t set;
1082 	struct mcontext __user *mcp;
1083 
1084 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1085 		return -EFAULT;
1086 #ifdef CONFIG_PPC64
1087 	{
1088 		u32 cmcp;
1089 
1090 		if (__get_user(cmcp, &ucp->uc_regs))
1091 			return -EFAULT;
1092 		mcp = (struct mcontext __user *)(u64)cmcp;
1093 		/* no need to check access_ok(mcp), since mcp < 4GB */
1094 	}
1095 #else
1096 	if (__get_user(mcp, &ucp->uc_regs))
1097 		return -EFAULT;
1098 	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1099 		return -EFAULT;
1100 #endif
1101 	set_current_blocked(&set);
1102 	if (restore_user_regs(regs, mcp, sig))
1103 		return -EFAULT;
1104 
1105 	return 0;
1106 }
1107 
1108 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1109 static int do_setcontext_tm(struct ucontext __user *ucp,
1110 			    struct ucontext __user *tm_ucp,
1111 			    struct pt_regs *regs)
1112 {
1113 	sigset_t set;
1114 	struct mcontext __user *mcp;
1115 	struct mcontext __user *tm_mcp;
1116 	u32 cmcp;
1117 	u32 tm_cmcp;
1118 
1119 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1120 		return -EFAULT;
1121 
1122 	if (__get_user(cmcp, &ucp->uc_regs) ||
1123 	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1124 		return -EFAULT;
1125 	mcp = (struct mcontext __user *)(u64)cmcp;
1126 	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1127 	/* no need to check access_ok(mcp), since mcp < 4GB */
1128 
1129 	set_current_blocked(&set);
1130 	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1131 		return -EFAULT;
1132 
1133 	return 0;
1134 }
1135 #endif
1136 
1137 long sys_swapcontext(struct ucontext __user *old_ctx,
1138 		     struct ucontext __user *new_ctx,
1139 		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1140 {
1141 	unsigned char tmp;
1142 	int ctx_has_vsx_region = 0;
1143 
1144 #ifdef CONFIG_PPC64
1145 	unsigned long new_msr = 0;
1146 
1147 	if (new_ctx) {
1148 		struct mcontext __user *mcp;
1149 		u32 cmcp;
1150 
1151 		/*
1152 		 * Get pointer to the real mcontext.  No need for
1153 		 * access_ok since we are dealing with compat
1154 		 * pointers.
1155 		 */
1156 		if (__get_user(cmcp, &new_ctx->uc_regs))
1157 			return -EFAULT;
1158 		mcp = (struct mcontext __user *)(u64)cmcp;
1159 		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1160 			return -EFAULT;
1161 	}
1162 	/*
1163 	 * Check that the context is not smaller than the original
1164 	 * size (with VMX but without VSX)
1165 	 */
1166 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1167 		return -EINVAL;
1168 	/*
1169 	 * If the new context state sets the MSR VSX bits but
1170 	 * it doesn't provide VSX state.
1171 	 */
1172 	if ((ctx_size < sizeof(struct ucontext)) &&
1173 	    (new_msr & MSR_VSX))
1174 		return -EINVAL;
1175 	/* Does the context have enough room to store VSX data? */
1176 	if (ctx_size >= sizeof(struct ucontext))
1177 		ctx_has_vsx_region = 1;
1178 #else
1179 	/* Context size is for future use. Right now, we only make sure
1180 	 * we are passed something we understand
1181 	 */
1182 	if (ctx_size < sizeof(struct ucontext))
1183 		return -EINVAL;
1184 #endif
1185 	if (old_ctx != NULL) {
1186 		struct mcontext __user *mctx;
1187 
1188 		/*
1189 		 * old_ctx might not be 16-byte aligned, in which
1190 		 * case old_ctx->uc_mcontext won't be either.
1191 		 * Because we have the old_ctx->uc_pad2 field
1192 		 * before old_ctx->uc_mcontext, we need to round down
1193 		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1194 		 */
1195 		mctx = (struct mcontext __user *)
1196 			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1197 		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1198 		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1199 		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1200 		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1201 			return -EFAULT;
1202 	}
1203 	if (new_ctx == NULL)
1204 		return 0;
1205 	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1206 	    || __get_user(tmp, (u8 __user *) new_ctx)
1207 	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1208 		return -EFAULT;
1209 
1210 	/*
1211 	 * If we get a fault copying the context into the kernel's
1212 	 * image of the user's registers, we can't just return -EFAULT
1213 	 * because the user's registers will be corrupted.  For instance
1214 	 * the NIP value may have been updated but not some of the
1215 	 * other registers.  Given that we have done the access_ok
1216 	 * and successfully read the first and last bytes of the region
1217 	 * above, this should only happen in an out-of-memory situation
1218 	 * or if another thread unmaps the region containing the context.
1219 	 * We kill the task with a SIGSEGV in this situation.
1220 	 */
1221 	if (do_setcontext(new_ctx, regs, 0))
1222 		do_exit(SIGSEGV);
1223 
1224 	set_thread_flag(TIF_RESTOREALL);
1225 	return 0;
1226 }
1227 
1228 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1229 		     struct pt_regs *regs)
1230 {
1231 	struct rt_sigframe __user *rt_sf;
1232 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1233 	struct ucontext __user *uc_transact;
1234 	unsigned long msr_hi;
1235 	unsigned long tmp;
1236 	int tm_restore = 0;
1237 #endif
1238 	/* Always make any pending restarted system calls return -EINTR */
1239 	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1240 
1241 	rt_sf = (struct rt_sigframe __user *)
1242 		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1243 	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1244 		goto bad;
1245 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1246 	if (__get_user(tmp, &rt_sf->uc.uc_link))
1247 		goto bad;
1248 	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1249 	if (uc_transact) {
1250 		u32 cmcp;
1251 		struct mcontext __user *mcp;
1252 
1253 		if (__get_user(cmcp, &uc_transact->uc_regs))
1254 			return -EFAULT;
1255 		mcp = (struct mcontext __user *)(u64)cmcp;
1256 		/* The top 32 bits of the MSR are stashed in the transactional
1257 		 * ucontext. */
1258 		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1259 			goto bad;
1260 
1261 		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1262 			/* We only recheckpoint on return if we're
1263 			 * transaction.
1264 			 */
1265 			tm_restore = 1;
1266 			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1267 				goto bad;
1268 		}
1269 	}
1270 	if (!tm_restore)
1271 		/* Fall through, for non-TM restore */
1272 #endif
1273 	if (do_setcontext(&rt_sf->uc, regs, 1))
1274 		goto bad;
1275 
1276 	/*
1277 	 * It's not clear whether or why it is desirable to save the
1278 	 * sigaltstack setting on signal delivery and restore it on
1279 	 * signal return.  But other architectures do this and we have
1280 	 * always done it up until now so it is probably better not to
1281 	 * change it.  -- paulus
1282 	 */
1283 #ifdef CONFIG_PPC64
1284 	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1285 		goto bad;
1286 #else
1287 	if (restore_altstack(&rt_sf->uc.uc_stack))
1288 		goto bad;
1289 #endif
1290 	set_thread_flag(TIF_RESTOREALL);
1291 	return 0;
1292 
1293  bad:
1294 	if (show_unhandled_signals)
1295 		printk_ratelimited(KERN_INFO
1296 				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1297 				   "%p nip %08lx lr %08lx\n",
1298 				   current->comm, current->pid,
1299 				   rt_sf, regs->nip, regs->link);
1300 
1301 	force_sig(SIGSEGV, current);
1302 	return 0;
1303 }
1304 
1305 #ifdef CONFIG_PPC32
1306 int sys_debug_setcontext(struct ucontext __user *ctx,
1307 			 int ndbg, struct sig_dbg_op __user *dbg,
1308 			 int r6, int r7, int r8,
1309 			 struct pt_regs *regs)
1310 {
1311 	struct sig_dbg_op op;
1312 	int i;
1313 	unsigned char tmp;
1314 	unsigned long new_msr = regs->msr;
1315 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1316 	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1317 #endif
1318 
1319 	for (i=0; i<ndbg; i++) {
1320 		if (copy_from_user(&op, dbg + i, sizeof(op)))
1321 			return -EFAULT;
1322 		switch (op.dbg_type) {
1323 		case SIG_DBG_SINGLE_STEPPING:
1324 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1325 			if (op.dbg_value) {
1326 				new_msr |= MSR_DE;
1327 				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1328 			} else {
1329 				new_dbcr0 &= ~DBCR0_IC;
1330 				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1331 						current->thread.debug.dbcr1)) {
1332 					new_msr &= ~MSR_DE;
1333 					new_dbcr0 &= ~DBCR0_IDM;
1334 				}
1335 			}
1336 #else
1337 			if (op.dbg_value)
1338 				new_msr |= MSR_SE;
1339 			else
1340 				new_msr &= ~MSR_SE;
1341 #endif
1342 			break;
1343 		case SIG_DBG_BRANCH_TRACING:
1344 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1345 			return -EINVAL;
1346 #else
1347 			if (op.dbg_value)
1348 				new_msr |= MSR_BE;
1349 			else
1350 				new_msr &= ~MSR_BE;
1351 #endif
1352 			break;
1353 
1354 		default:
1355 			return -EINVAL;
1356 		}
1357 	}
1358 
1359 	/* We wait until here to actually install the values in the
1360 	   registers so if we fail in the above loop, it will not
1361 	   affect the contents of these registers.  After this point,
1362 	   failure is a problem, anyway, and it's very unlikely unless
1363 	   the user is really doing something wrong. */
1364 	regs->msr = new_msr;
1365 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1366 	current->thread.debug.dbcr0 = new_dbcr0;
1367 #endif
1368 
1369 	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1370 	    || __get_user(tmp, (u8 __user *) ctx)
1371 	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1372 		return -EFAULT;
1373 
1374 	/*
1375 	 * If we get a fault copying the context into the kernel's
1376 	 * image of the user's registers, we can't just return -EFAULT
1377 	 * because the user's registers will be corrupted.  For instance
1378 	 * the NIP value may have been updated but not some of the
1379 	 * other registers.  Given that we have done the access_ok
1380 	 * and successfully read the first and last bytes of the region
1381 	 * above, this should only happen in an out-of-memory situation
1382 	 * or if another thread unmaps the region containing the context.
1383 	 * We kill the task with a SIGSEGV in this situation.
1384 	 */
1385 	if (do_setcontext(ctx, regs, 1)) {
1386 		if (show_unhandled_signals)
1387 			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1388 					   "sys_debug_setcontext: %p nip %08lx "
1389 					   "lr %08lx\n",
1390 					   current->comm, current->pid,
1391 					   ctx, regs->nip, regs->link);
1392 
1393 		force_sig(SIGSEGV, current);
1394 		goto out;
1395 	}
1396 
1397 	/*
1398 	 * It's not clear whether or why it is desirable to save the
1399 	 * sigaltstack setting on signal delivery and restore it on
1400 	 * signal return.  But other architectures do this and we have
1401 	 * always done it up until now so it is probably better not to
1402 	 * change it.  -- paulus
1403 	 */
1404 	restore_altstack(&ctx->uc_stack);
1405 
1406 	set_thread_flag(TIF_RESTOREALL);
1407  out:
1408 	return 0;
1409 }
1410 #endif
1411 
1412 /*
1413  * OK, we're invoking a handler
1414  */
1415 int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1416 		    siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1417 {
1418 	struct sigcontext __user *sc;
1419 	struct sigframe __user *frame;
1420 	struct mcontext __user *tm_mctx = NULL;
1421 	unsigned long newsp = 0;
1422 	int sigret;
1423 	unsigned long tramp;
1424 
1425 	/* Set up Signal Frame */
1426 	frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1427 	if (unlikely(frame == NULL))
1428 		goto badframe;
1429 	sc = (struct sigcontext __user *) &frame->sctx;
1430 
1431 #if _NSIG != 64
1432 #error "Please adjust handle_signal()"
1433 #endif
1434 	if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1435 	    || __put_user(oldset->sig[0], &sc->oldmask)
1436 #ifdef CONFIG_PPC64
1437 	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1438 #else
1439 	    || __put_user(oldset->sig[1], &sc->_unused[3])
1440 #endif
1441 	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1442 	    || __put_user(sig, &sc->signal))
1443 		goto badframe;
1444 
1445 	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1446 		sigret = 0;
1447 		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1448 	} else {
1449 		sigret = __NR_sigreturn;
1450 		tramp = (unsigned long) frame->mctx.tramp;
1451 	}
1452 
1453 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1454 	tm_mctx = &frame->mctx_transact;
1455 	if (MSR_TM_ACTIVE(regs->msr)) {
1456 		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1457 				      sigret))
1458 			goto badframe;
1459 	}
1460 	else
1461 #endif
1462 	{
1463 		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1464 			goto badframe;
1465 	}
1466 
1467 	regs->link = tramp;
1468 
1469 	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1470 
1471 	/* create a stack frame for the caller of the handler */
1472 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1473 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1474 		goto badframe;
1475 
1476 	regs->gpr[1] = newsp;
1477 	regs->gpr[3] = sig;
1478 	regs->gpr[4] = (unsigned long) sc;
1479 	regs->nip = (unsigned long) ka->sa.sa_handler;
1480 	/* enter the signal handler in big-endian mode */
1481 	regs->msr &= ~MSR_LE;
1482 	return 1;
1483 
1484 badframe:
1485 #ifdef DEBUG_SIG
1486 	printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1487 	       regs, frame, newsp);
1488 #endif
1489 	if (show_unhandled_signals)
1490 		printk_ratelimited(KERN_INFO
1491 				   "%s[%d]: bad frame in handle_signal32: "
1492 				   "%p nip %08lx lr %08lx\n",
1493 				   current->comm, current->pid,
1494 				   frame, regs->nip, regs->link);
1495 
1496 	force_sigsegv(sig, current);
1497 	return 0;
1498 }
1499 
1500 /*
1501  * Do a signal return; undo the signal stack.
1502  */
1503 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1504 		       struct pt_regs *regs)
1505 {
1506 	struct sigframe __user *sf;
1507 	struct sigcontext __user *sc;
1508 	struct sigcontext sigctx;
1509 	struct mcontext __user *sr;
1510 	void __user *addr;
1511 	sigset_t set;
1512 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1513 	struct mcontext __user *mcp, *tm_mcp;
1514 	unsigned long msr_hi;
1515 #endif
1516 
1517 	/* Always make any pending restarted system calls return -EINTR */
1518 	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1519 
1520 	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1521 	sc = &sf->sctx;
1522 	addr = sc;
1523 	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1524 		goto badframe;
1525 
1526 #ifdef CONFIG_PPC64
1527 	/*
1528 	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1529 	 * unused part of the signal stackframe
1530 	 */
1531 	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1532 #else
1533 	set.sig[0] = sigctx.oldmask;
1534 	set.sig[1] = sigctx._unused[3];
1535 #endif
1536 	set_current_blocked(&set);
1537 
1538 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1539 	mcp = (struct mcontext __user *)&sf->mctx;
1540 	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1541 	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1542 		goto badframe;
1543 	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1544 		if (!cpu_has_feature(CPU_FTR_TM))
1545 			goto badframe;
1546 		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1547 			goto badframe;
1548 	} else
1549 #endif
1550 	{
1551 		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1552 		addr = sr;
1553 		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1554 		    || restore_user_regs(regs, sr, 1))
1555 			goto badframe;
1556 	}
1557 
1558 	set_thread_flag(TIF_RESTOREALL);
1559 	return 0;
1560 
1561 badframe:
1562 	if (show_unhandled_signals)
1563 		printk_ratelimited(KERN_INFO
1564 				   "%s[%d]: bad frame in sys_sigreturn: "
1565 				   "%p nip %08lx lr %08lx\n",
1566 				   current->comm, current->pid,
1567 				   addr, regs->nip, regs->link);
1568 
1569 	force_sig(SIGSEGV, current);
1570 	return 0;
1571 }
1572