1 /* 2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC 3 * 4 * PowerPC version 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Copyright (C) 2001 IBM 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 9 * 10 * Derived from "arch/i386/kernel/signal.c" 11 * Copyright (C) 1991, 1992 Linus Torvalds 12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 13 * 14 * This program is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU General Public License 16 * as published by the Free Software Foundation; either version 17 * 2 of the License, or (at your option) any later version. 18 */ 19 20 #include <linux/sched.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/kernel.h> 24 #include <linux/signal.h> 25 #include <linux/errno.h> 26 #include <linux/elf.h> 27 #include <linux/ptrace.h> 28 #include <linux/pagemap.h> 29 #include <linux/ratelimit.h> 30 #include <linux/syscalls.h> 31 #ifdef CONFIG_PPC64 32 #include <linux/compat.h> 33 #else 34 #include <linux/wait.h> 35 #include <linux/unistd.h> 36 #include <linux/stddef.h> 37 #include <linux/tty.h> 38 #include <linux/binfmts.h> 39 #endif 40 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <asm/syscalls.h> 44 #include <asm/sigcontext.h> 45 #include <asm/vdso.h> 46 #include <asm/switch_to.h> 47 #include <asm/tm.h> 48 #include <asm/asm-prototypes.h> 49 #ifdef CONFIG_PPC64 50 #include "ppc32.h" 51 #include <asm/unistd.h> 52 #else 53 #include <asm/ucontext.h> 54 #include <asm/pgtable.h> 55 #endif 56 57 #include "signal.h" 58 59 60 #ifdef CONFIG_PPC64 61 #define old_sigaction old_sigaction32 62 #define sigcontext sigcontext32 63 #define mcontext mcontext32 64 #define ucontext ucontext32 65 66 #define __save_altstack __compat_save_altstack 67 68 /* 69 * Userspace code may pass a ucontext which doesn't include VSX added 70 * at the end. We need to check for this case. 71 */ 72 #define UCONTEXTSIZEWITHOUTVSX \ 73 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) 74 75 /* 76 * Returning 0 means we return to userspace via 77 * ret_from_except and thus restore all user 78 * registers from *regs. This is what we need 79 * to do when a signal has been delivered. 80 */ 81 82 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) 83 #undef __SIGNAL_FRAMESIZE 84 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 85 #undef ELF_NVRREG 86 #define ELF_NVRREG ELF_NVRREG32 87 88 /* 89 * Functions for flipping sigsets (thanks to brain dead generic 90 * implementation that makes things simple for little endian only) 91 */ 92 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) 93 { 94 return put_compat_sigset(uset, set, sizeof(*uset)); 95 } 96 97 static inline int get_sigset_t(sigset_t *set, 98 const compat_sigset_t __user *uset) 99 { 100 return get_compat_sigset(set, uset); 101 } 102 103 #define to_user_ptr(p) ptr_to_compat(p) 104 #define from_user_ptr(p) compat_ptr(p) 105 106 static inline int save_general_regs(struct pt_regs *regs, 107 struct mcontext __user *frame) 108 { 109 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 110 int i; 111 /* Force usr to alway see softe as 1 (interrupts enabled) */ 112 elf_greg_t64 softe = 0x1; 113 114 WARN_ON(!FULL_REGS(regs)); 115 116 for (i = 0; i <= PT_RESULT; i ++) { 117 if (i == 14 && !FULL_REGS(regs)) 118 i = 32; 119 if ( i == PT_SOFTE) { 120 if(__put_user((unsigned int)softe, &frame->mc_gregs[i])) 121 return -EFAULT; 122 else 123 continue; 124 } 125 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) 126 return -EFAULT; 127 } 128 return 0; 129 } 130 131 static inline int restore_general_regs(struct pt_regs *regs, 132 struct mcontext __user *sr) 133 { 134 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 135 int i; 136 137 for (i = 0; i <= PT_RESULT; i++) { 138 if ((i == PT_MSR) || (i == PT_SOFTE)) 139 continue; 140 if (__get_user(gregs[i], &sr->mc_gregs[i])) 141 return -EFAULT; 142 } 143 return 0; 144 } 145 146 #else /* CONFIG_PPC64 */ 147 148 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) 149 150 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) 151 { 152 return copy_to_user(uset, set, sizeof(*uset)); 153 } 154 155 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) 156 { 157 return copy_from_user(set, uset, sizeof(*uset)); 158 } 159 160 #define to_user_ptr(p) ((unsigned long)(p)) 161 #define from_user_ptr(p) ((void __user *)(p)) 162 163 static inline int save_general_regs(struct pt_regs *regs, 164 struct mcontext __user *frame) 165 { 166 WARN_ON(!FULL_REGS(regs)); 167 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); 168 } 169 170 static inline int restore_general_regs(struct pt_regs *regs, 171 struct mcontext __user *sr) 172 { 173 /* copy up to but not including MSR */ 174 if (__copy_from_user(regs, &sr->mc_gregs, 175 PT_MSR * sizeof(elf_greg_t))) 176 return -EFAULT; 177 /* copy from orig_r3 (the word after the MSR) up to the end */ 178 if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], 179 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) 180 return -EFAULT; 181 return 0; 182 } 183 #endif 184 185 /* 186 * When we have signals to deliver, we set up on the 187 * user stack, going down from the original stack pointer: 188 * an ABI gap of 56 words 189 * an mcontext struct 190 * a sigcontext struct 191 * a gap of __SIGNAL_FRAMESIZE bytes 192 * 193 * Each of these things must be a multiple of 16 bytes in size. The following 194 * structure represent all of this except the __SIGNAL_FRAMESIZE gap 195 * 196 */ 197 struct sigframe { 198 struct sigcontext sctx; /* the sigcontext */ 199 struct mcontext mctx; /* all the register values */ 200 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 201 struct sigcontext sctx_transact; 202 struct mcontext mctx_transact; 203 #endif 204 /* 205 * Programs using the rs6000/xcoff abi can save up to 19 gp 206 * regs and 18 fp regs below sp before decrementing it. 207 */ 208 int abigap[56]; 209 }; 210 211 /* We use the mc_pad field for the signal return trampoline. */ 212 #define tramp mc_pad 213 214 /* 215 * When we have rt signals to deliver, we set up on the 216 * user stack, going down from the original stack pointer: 217 * one rt_sigframe struct (siginfo + ucontext + ABI gap) 218 * a gap of __SIGNAL_FRAMESIZE+16 bytes 219 * (the +16 is to get the siginfo and ucontext in the same 220 * positions as in older kernels). 221 * 222 * Each of these things must be a multiple of 16 bytes in size. 223 * 224 */ 225 struct rt_sigframe { 226 #ifdef CONFIG_PPC64 227 compat_siginfo_t info; 228 #else 229 struct siginfo info; 230 #endif 231 struct ucontext uc; 232 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 233 struct ucontext uc_transact; 234 #endif 235 /* 236 * Programs using the rs6000/xcoff abi can save up to 19 gp 237 * regs and 18 fp regs below sp before decrementing it. 238 */ 239 int abigap[56]; 240 }; 241 242 #ifdef CONFIG_VSX 243 unsigned long copy_fpr_to_user(void __user *to, 244 struct task_struct *task) 245 { 246 u64 buf[ELF_NFPREG]; 247 int i; 248 249 /* save FPR copy to local buffer then write to the thread_struct */ 250 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 251 buf[i] = task->thread.TS_FPR(i); 252 buf[i] = task->thread.fp_state.fpscr; 253 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 254 } 255 256 unsigned long copy_fpr_from_user(struct task_struct *task, 257 void __user *from) 258 { 259 u64 buf[ELF_NFPREG]; 260 int i; 261 262 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 263 return 1; 264 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 265 task->thread.TS_FPR(i) = buf[i]; 266 task->thread.fp_state.fpscr = buf[i]; 267 268 return 0; 269 } 270 271 unsigned long copy_vsx_to_user(void __user *to, 272 struct task_struct *task) 273 { 274 u64 buf[ELF_NVSRHALFREG]; 275 int i; 276 277 /* save FPR copy to local buffer then write to the thread_struct */ 278 for (i = 0; i < ELF_NVSRHALFREG; i++) 279 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; 280 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 281 } 282 283 unsigned long copy_vsx_from_user(struct task_struct *task, 284 void __user *from) 285 { 286 u64 buf[ELF_NVSRHALFREG]; 287 int i; 288 289 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 290 return 1; 291 for (i = 0; i < ELF_NVSRHALFREG ; i++) 292 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 293 return 0; 294 } 295 296 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 297 unsigned long copy_ckfpr_to_user(void __user *to, 298 struct task_struct *task) 299 { 300 u64 buf[ELF_NFPREG]; 301 int i; 302 303 /* save FPR copy to local buffer then write to the thread_struct */ 304 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 305 buf[i] = task->thread.TS_CKFPR(i); 306 buf[i] = task->thread.ckfp_state.fpscr; 307 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 308 } 309 310 unsigned long copy_ckfpr_from_user(struct task_struct *task, 311 void __user *from) 312 { 313 u64 buf[ELF_NFPREG]; 314 int i; 315 316 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 317 return 1; 318 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 319 task->thread.TS_CKFPR(i) = buf[i]; 320 task->thread.ckfp_state.fpscr = buf[i]; 321 322 return 0; 323 } 324 325 unsigned long copy_ckvsx_to_user(void __user *to, 326 struct task_struct *task) 327 { 328 u64 buf[ELF_NVSRHALFREG]; 329 int i; 330 331 /* save FPR copy to local buffer then write to the thread_struct */ 332 for (i = 0; i < ELF_NVSRHALFREG; i++) 333 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET]; 334 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 335 } 336 337 unsigned long copy_ckvsx_from_user(struct task_struct *task, 338 void __user *from) 339 { 340 u64 buf[ELF_NVSRHALFREG]; 341 int i; 342 343 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 344 return 1; 345 for (i = 0; i < ELF_NVSRHALFREG ; i++) 346 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 347 return 0; 348 } 349 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 350 #else 351 inline unsigned long copy_fpr_to_user(void __user *to, 352 struct task_struct *task) 353 { 354 return __copy_to_user(to, task->thread.fp_state.fpr, 355 ELF_NFPREG * sizeof(double)); 356 } 357 358 inline unsigned long copy_fpr_from_user(struct task_struct *task, 359 void __user *from) 360 { 361 return __copy_from_user(task->thread.fp_state.fpr, from, 362 ELF_NFPREG * sizeof(double)); 363 } 364 365 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 366 inline unsigned long copy_ckfpr_to_user(void __user *to, 367 struct task_struct *task) 368 { 369 return __copy_to_user(to, task->thread.ckfp_state.fpr, 370 ELF_NFPREG * sizeof(double)); 371 } 372 373 inline unsigned long copy_ckfpr_from_user(struct task_struct *task, 374 void __user *from) 375 { 376 return __copy_from_user(task->thread.ckfp_state.fpr, from, 377 ELF_NFPREG * sizeof(double)); 378 } 379 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 380 #endif 381 382 /* 383 * Save the current user registers on the user stack. 384 * We only save the altivec/spe registers if the process has used 385 * altivec/spe instructions at some point. 386 */ 387 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, 388 struct mcontext __user *tm_frame, int sigret, 389 int ctx_has_vsx_region) 390 { 391 unsigned long msr = regs->msr; 392 393 /* Make sure floating point registers are stored in regs */ 394 flush_fp_to_thread(current); 395 396 /* save general registers */ 397 if (save_general_regs(regs, frame)) 398 return 1; 399 400 #ifdef CONFIG_ALTIVEC 401 /* save altivec registers */ 402 if (current->thread.used_vr) { 403 flush_altivec_to_thread(current); 404 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 405 ELF_NVRREG * sizeof(vector128))) 406 return 1; 407 /* set MSR_VEC in the saved MSR value to indicate that 408 frame->mc_vregs contains valid data */ 409 msr |= MSR_VEC; 410 } 411 /* else assert((regs->msr & MSR_VEC) == 0) */ 412 413 /* We always copy to/from vrsave, it's 0 if we don't have or don't 414 * use altivec. Since VSCR only contains 32 bits saved in the least 415 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 416 * most significant bits of that same vector. --BenH 417 * Note that the current VRSAVE value is in the SPR at this point. 418 */ 419 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 420 current->thread.vrsave = mfspr(SPRN_VRSAVE); 421 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) 422 return 1; 423 #endif /* CONFIG_ALTIVEC */ 424 if (copy_fpr_to_user(&frame->mc_fregs, current)) 425 return 1; 426 427 /* 428 * Clear the MSR VSX bit to indicate there is no valid state attached 429 * to this context, except in the specific case below where we set it. 430 */ 431 msr &= ~MSR_VSX; 432 #ifdef CONFIG_VSX 433 /* 434 * Copy VSR 0-31 upper half from thread_struct to local 435 * buffer, then write that to userspace. Also set MSR_VSX in 436 * the saved MSR value to indicate that frame->mc_vregs 437 * contains valid data 438 */ 439 if (current->thread.used_vsr && ctx_has_vsx_region) { 440 flush_vsx_to_thread(current); 441 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 442 return 1; 443 msr |= MSR_VSX; 444 } 445 #endif /* CONFIG_VSX */ 446 #ifdef CONFIG_SPE 447 /* save spe registers */ 448 if (current->thread.used_spe) { 449 flush_spe_to_thread(current); 450 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 451 ELF_NEVRREG * sizeof(u32))) 452 return 1; 453 /* set MSR_SPE in the saved MSR value to indicate that 454 frame->mc_vregs contains valid data */ 455 msr |= MSR_SPE; 456 } 457 /* else assert((regs->msr & MSR_SPE) == 0) */ 458 459 /* We always copy to/from spefscr */ 460 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 461 return 1; 462 #endif /* CONFIG_SPE */ 463 464 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 465 return 1; 466 /* We need to write 0 the MSR top 32 bits in the tm frame so that we 467 * can check it on the restore to see if TM is active 468 */ 469 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) 470 return 1; 471 472 if (sigret) { 473 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 474 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 475 || __put_user(0x44000002UL, &frame->tramp[1])) 476 return 1; 477 flush_icache_range((unsigned long) &frame->tramp[0], 478 (unsigned long) &frame->tramp[2]); 479 } 480 481 return 0; 482 } 483 484 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 485 /* 486 * Save the current user registers on the user stack. 487 * We only save the altivec/spe registers if the process has used 488 * altivec/spe instructions at some point. 489 * We also save the transactional registers to a second ucontext in the 490 * frame. 491 * 492 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). 493 */ 494 static int save_tm_user_regs(struct pt_regs *regs, 495 struct mcontext __user *frame, 496 struct mcontext __user *tm_frame, int sigret) 497 { 498 unsigned long msr = regs->msr; 499 500 WARN_ON(tm_suspend_disabled); 501 502 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 503 * just indicates to userland that we were doing a transaction, but we 504 * don't want to return in transactional state. This also ensures 505 * that flush_fp_to_thread won't set TIF_RESTORE_TM again. 506 */ 507 regs->msr &= ~MSR_TS_MASK; 508 509 /* Save both sets of general registers */ 510 if (save_general_regs(¤t->thread.ckpt_regs, frame) 511 || save_general_regs(regs, tm_frame)) 512 return 1; 513 514 /* Stash the top half of the 64bit MSR into the 32bit MSR word 515 * of the transactional mcontext. This way we have a backward-compatible 516 * MSR in the 'normal' (checkpointed) mcontext and additionally one can 517 * also look at what type of transaction (T or S) was active at the 518 * time of the signal. 519 */ 520 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) 521 return 1; 522 523 #ifdef CONFIG_ALTIVEC 524 /* save altivec registers */ 525 if (current->thread.used_vr) { 526 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.ckvr_state, 527 ELF_NVRREG * sizeof(vector128))) 528 return 1; 529 if (msr & MSR_VEC) { 530 if (__copy_to_user(&tm_frame->mc_vregs, 531 ¤t->thread.vr_state, 532 ELF_NVRREG * sizeof(vector128))) 533 return 1; 534 } else { 535 if (__copy_to_user(&tm_frame->mc_vregs, 536 ¤t->thread.ckvr_state, 537 ELF_NVRREG * sizeof(vector128))) 538 return 1; 539 } 540 541 /* set MSR_VEC in the saved MSR value to indicate that 542 * frame->mc_vregs contains valid data 543 */ 544 msr |= MSR_VEC; 545 } 546 547 /* We always copy to/from vrsave, it's 0 if we don't have or don't 548 * use altivec. Since VSCR only contains 32 bits saved in the least 549 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 550 * most significant bits of that same vector. --BenH 551 */ 552 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 553 current->thread.ckvrsave = mfspr(SPRN_VRSAVE); 554 if (__put_user(current->thread.ckvrsave, 555 (u32 __user *)&frame->mc_vregs[32])) 556 return 1; 557 if (msr & MSR_VEC) { 558 if (__put_user(current->thread.vrsave, 559 (u32 __user *)&tm_frame->mc_vregs[32])) 560 return 1; 561 } else { 562 if (__put_user(current->thread.ckvrsave, 563 (u32 __user *)&tm_frame->mc_vregs[32])) 564 return 1; 565 } 566 #endif /* CONFIG_ALTIVEC */ 567 568 if (copy_ckfpr_to_user(&frame->mc_fregs, current)) 569 return 1; 570 if (msr & MSR_FP) { 571 if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) 572 return 1; 573 } else { 574 if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current)) 575 return 1; 576 } 577 578 #ifdef CONFIG_VSX 579 /* 580 * Copy VSR 0-31 upper half from thread_struct to local 581 * buffer, then write that to userspace. Also set MSR_VSX in 582 * the saved MSR value to indicate that frame->mc_vregs 583 * contains valid data 584 */ 585 if (current->thread.used_vsr) { 586 if (copy_ckvsx_to_user(&frame->mc_vsregs, current)) 587 return 1; 588 if (msr & MSR_VSX) { 589 if (copy_vsx_to_user(&tm_frame->mc_vsregs, 590 current)) 591 return 1; 592 } else { 593 if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current)) 594 return 1; 595 } 596 597 msr |= MSR_VSX; 598 } 599 #endif /* CONFIG_VSX */ 600 #ifdef CONFIG_SPE 601 /* SPE regs are not checkpointed with TM, so this section is 602 * simply the same as in save_user_regs(). 603 */ 604 if (current->thread.used_spe) { 605 flush_spe_to_thread(current); 606 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 607 ELF_NEVRREG * sizeof(u32))) 608 return 1; 609 /* set MSR_SPE in the saved MSR value to indicate that 610 * frame->mc_vregs contains valid data */ 611 msr |= MSR_SPE; 612 } 613 614 /* We always copy to/from spefscr */ 615 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 616 return 1; 617 #endif /* CONFIG_SPE */ 618 619 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 620 return 1; 621 if (sigret) { 622 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 623 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 624 || __put_user(0x44000002UL, &frame->tramp[1])) 625 return 1; 626 flush_icache_range((unsigned long) &frame->tramp[0], 627 (unsigned long) &frame->tramp[2]); 628 } 629 630 return 0; 631 } 632 #endif 633 634 /* 635 * Restore the current user register values from the user stack, 636 * (except for MSR). 637 */ 638 static long restore_user_regs(struct pt_regs *regs, 639 struct mcontext __user *sr, int sig) 640 { 641 long err; 642 unsigned int save_r2 = 0; 643 unsigned long msr; 644 #ifdef CONFIG_VSX 645 int i; 646 #endif 647 648 /* 649 * restore general registers but not including MSR or SOFTE. Also 650 * take care of keeping r2 (TLS) intact if not a signal 651 */ 652 if (!sig) 653 save_r2 = (unsigned int)regs->gpr[2]; 654 err = restore_general_regs(regs, sr); 655 regs->trap = 0; 656 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 657 if (!sig) 658 regs->gpr[2] = (unsigned long) save_r2; 659 if (err) 660 return 1; 661 662 /* if doing signal return, restore the previous little-endian mode */ 663 if (sig) 664 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 665 666 #ifdef CONFIG_ALTIVEC 667 /* 668 * Force the process to reload the altivec registers from 669 * current->thread when it next does altivec instructions 670 */ 671 regs->msr &= ~MSR_VEC; 672 if (msr & MSR_VEC) { 673 /* restore altivec registers from the stack */ 674 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 675 sizeof(sr->mc_vregs))) 676 return 1; 677 current->thread.used_vr = true; 678 } else if (current->thread.used_vr) 679 memset(¤t->thread.vr_state, 0, 680 ELF_NVRREG * sizeof(vector128)); 681 682 /* Always get VRSAVE back */ 683 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) 684 return 1; 685 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 686 mtspr(SPRN_VRSAVE, current->thread.vrsave); 687 #endif /* CONFIG_ALTIVEC */ 688 if (copy_fpr_from_user(current, &sr->mc_fregs)) 689 return 1; 690 691 #ifdef CONFIG_VSX 692 /* 693 * Force the process to reload the VSX registers from 694 * current->thread when it next does VSX instruction. 695 */ 696 regs->msr &= ~MSR_VSX; 697 if (msr & MSR_VSX) { 698 /* 699 * Restore altivec registers from the stack to a local 700 * buffer, then write this out to the thread_struct 701 */ 702 if (copy_vsx_from_user(current, &sr->mc_vsregs)) 703 return 1; 704 current->thread.used_vsr = true; 705 } else if (current->thread.used_vsr) 706 for (i = 0; i < 32 ; i++) 707 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 708 #endif /* CONFIG_VSX */ 709 /* 710 * force the process to reload the FP registers from 711 * current->thread when it next does FP instructions 712 */ 713 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 714 715 #ifdef CONFIG_SPE 716 /* force the process to reload the spe registers from 717 current->thread when it next does spe instructions */ 718 regs->msr &= ~MSR_SPE; 719 if (msr & MSR_SPE) { 720 /* restore spe registers from the stack */ 721 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 722 ELF_NEVRREG * sizeof(u32))) 723 return 1; 724 current->thread.used_spe = true; 725 } else if (current->thread.used_spe) 726 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 727 728 /* Always get SPEFSCR back */ 729 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) 730 return 1; 731 #endif /* CONFIG_SPE */ 732 733 return 0; 734 } 735 736 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 737 /* 738 * Restore the current user register values from the user stack, except for 739 * MSR, and recheckpoint the original checkpointed register state for processes 740 * in transactions. 741 */ 742 static long restore_tm_user_regs(struct pt_regs *regs, 743 struct mcontext __user *sr, 744 struct mcontext __user *tm_sr) 745 { 746 long err; 747 unsigned long msr, msr_hi; 748 #ifdef CONFIG_VSX 749 int i; 750 #endif 751 752 if (tm_suspend_disabled) 753 return 1; 754 /* 755 * restore general registers but not including MSR or SOFTE. Also 756 * take care of keeping r2 (TLS) intact if not a signal. 757 * See comment in signal_64.c:restore_tm_sigcontexts(); 758 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR 759 * were set by the signal delivery. 760 */ 761 err = restore_general_regs(regs, tm_sr); 762 err |= restore_general_regs(¤t->thread.ckpt_regs, sr); 763 764 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); 765 766 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 767 if (err) 768 return 1; 769 770 /* Restore the previous little-endian mode */ 771 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 772 773 #ifdef CONFIG_ALTIVEC 774 regs->msr &= ~MSR_VEC; 775 if (msr & MSR_VEC) { 776 /* restore altivec registers from the stack */ 777 if (__copy_from_user(¤t->thread.ckvr_state, &sr->mc_vregs, 778 sizeof(sr->mc_vregs)) || 779 __copy_from_user(¤t->thread.vr_state, 780 &tm_sr->mc_vregs, 781 sizeof(sr->mc_vregs))) 782 return 1; 783 current->thread.used_vr = true; 784 } else if (current->thread.used_vr) { 785 memset(¤t->thread.vr_state, 0, 786 ELF_NVRREG * sizeof(vector128)); 787 memset(¤t->thread.ckvr_state, 0, 788 ELF_NVRREG * sizeof(vector128)); 789 } 790 791 /* Always get VRSAVE back */ 792 if (__get_user(current->thread.ckvrsave, 793 (u32 __user *)&sr->mc_vregs[32]) || 794 __get_user(current->thread.vrsave, 795 (u32 __user *)&tm_sr->mc_vregs[32])) 796 return 1; 797 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 798 mtspr(SPRN_VRSAVE, current->thread.ckvrsave); 799 #endif /* CONFIG_ALTIVEC */ 800 801 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 802 803 if (copy_fpr_from_user(current, &sr->mc_fregs) || 804 copy_ckfpr_from_user(current, &tm_sr->mc_fregs)) 805 return 1; 806 807 #ifdef CONFIG_VSX 808 regs->msr &= ~MSR_VSX; 809 if (msr & MSR_VSX) { 810 /* 811 * Restore altivec registers from the stack to a local 812 * buffer, then write this out to the thread_struct 813 */ 814 if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) || 815 copy_ckvsx_from_user(current, &sr->mc_vsregs)) 816 return 1; 817 current->thread.used_vsr = true; 818 } else if (current->thread.used_vsr) 819 for (i = 0; i < 32 ; i++) { 820 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 821 current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 822 } 823 #endif /* CONFIG_VSX */ 824 825 #ifdef CONFIG_SPE 826 /* SPE regs are not checkpointed with TM, so this section is 827 * simply the same as in restore_user_regs(). 828 */ 829 regs->msr &= ~MSR_SPE; 830 if (msr & MSR_SPE) { 831 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 832 ELF_NEVRREG * sizeof(u32))) 833 return 1; 834 current->thread.used_spe = true; 835 } else if (current->thread.used_spe) 836 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 837 838 /* Always get SPEFSCR back */ 839 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs 840 + ELF_NEVRREG)) 841 return 1; 842 #endif /* CONFIG_SPE */ 843 844 /* Get the top half of the MSR from the user context */ 845 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) 846 return 1; 847 msr_hi <<= 32; 848 /* If TM bits are set to the reserved value, it's an invalid context */ 849 if (MSR_TM_RESV(msr_hi)) 850 return 1; 851 /* Pull in the MSR TM bits from the user context */ 852 regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK); 853 /* Now, recheckpoint. This loads up all of the checkpointed (older) 854 * registers, including FP and V[S]Rs. After recheckpointing, the 855 * transactional versions should be loaded. 856 */ 857 tm_enable(); 858 /* Make sure the transaction is marked as failed */ 859 current->thread.tm_texasr |= TEXASR_FS; 860 /* This loads the checkpointed FP/VEC state, if used */ 861 tm_recheckpoint(¤t->thread); 862 863 /* This loads the speculative FP/VEC state, if used */ 864 msr_check_and_set(msr & (MSR_FP | MSR_VEC)); 865 if (msr & MSR_FP) { 866 load_fp_state(¤t->thread.fp_state); 867 regs->msr |= (MSR_FP | current->thread.fpexc_mode); 868 } 869 #ifdef CONFIG_ALTIVEC 870 if (msr & MSR_VEC) { 871 load_vr_state(¤t->thread.vr_state); 872 regs->msr |= MSR_VEC; 873 } 874 #endif 875 876 return 0; 877 } 878 #endif 879 880 #ifdef CONFIG_PPC64 881 882 #define copy_siginfo_to_user copy_siginfo_to_user32 883 884 #endif /* CONFIG_PPC64 */ 885 886 /* 887 * Set up a signal frame for a "real-time" signal handler 888 * (one which gets siginfo). 889 */ 890 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset, 891 struct task_struct *tsk) 892 { 893 struct rt_sigframe __user *rt_sf; 894 struct mcontext __user *frame; 895 struct mcontext __user *tm_frame = NULL; 896 void __user *addr; 897 unsigned long newsp = 0; 898 int sigret; 899 unsigned long tramp; 900 struct pt_regs *regs = tsk->thread.regs; 901 902 BUG_ON(tsk != current); 903 904 /* Set up Signal Frame */ 905 /* Put a Real Time Context onto stack */ 906 rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1); 907 addr = rt_sf; 908 if (unlikely(rt_sf == NULL)) 909 goto badframe; 910 911 /* Put the siginfo & fill in most of the ucontext */ 912 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info) 913 || __put_user(0, &rt_sf->uc.uc_flags) 914 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) 915 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), 916 &rt_sf->uc.uc_regs) 917 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) 918 goto badframe; 919 920 /* Save user registers on the stack */ 921 frame = &rt_sf->uc.uc_mcontext; 922 addr = frame; 923 if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) { 924 sigret = 0; 925 tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp; 926 } else { 927 sigret = __NR_rt_sigreturn; 928 tramp = (unsigned long) frame->tramp; 929 } 930 931 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 932 tm_frame = &rt_sf->uc_transact.uc_mcontext; 933 if (MSR_TM_ACTIVE(regs->msr)) { 934 if (__put_user((unsigned long)&rt_sf->uc_transact, 935 &rt_sf->uc.uc_link) || 936 __put_user((unsigned long)tm_frame, 937 &rt_sf->uc_transact.uc_regs)) 938 goto badframe; 939 if (save_tm_user_regs(regs, frame, tm_frame, sigret)) 940 goto badframe; 941 } 942 else 943 #endif 944 { 945 if (__put_user(0, &rt_sf->uc.uc_link)) 946 goto badframe; 947 if (save_user_regs(regs, frame, tm_frame, sigret, 1)) 948 goto badframe; 949 } 950 regs->link = tramp; 951 952 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 953 954 /* create a stack frame for the caller of the handler */ 955 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); 956 addr = (void __user *)regs->gpr[1]; 957 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 958 goto badframe; 959 960 /* Fill registers for signal handler */ 961 regs->gpr[1] = newsp; 962 regs->gpr[3] = ksig->sig; 963 regs->gpr[4] = (unsigned long) &rt_sf->info; 964 regs->gpr[5] = (unsigned long) &rt_sf->uc; 965 regs->gpr[6] = (unsigned long) rt_sf; 966 regs->nip = (unsigned long) ksig->ka.sa.sa_handler; 967 /* enter the signal handler in native-endian mode */ 968 regs->msr &= ~MSR_LE; 969 regs->msr |= (MSR_KERNEL & MSR_LE); 970 return 0; 971 972 badframe: 973 if (show_unhandled_signals) 974 printk_ratelimited(KERN_INFO 975 "%s[%d]: bad frame in handle_rt_signal32: " 976 "%p nip %08lx lr %08lx\n", 977 tsk->comm, tsk->pid, 978 addr, regs->nip, regs->link); 979 980 return 1; 981 } 982 983 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) 984 { 985 sigset_t set; 986 struct mcontext __user *mcp; 987 988 if (get_sigset_t(&set, &ucp->uc_sigmask)) 989 return -EFAULT; 990 #ifdef CONFIG_PPC64 991 { 992 u32 cmcp; 993 994 if (__get_user(cmcp, &ucp->uc_regs)) 995 return -EFAULT; 996 mcp = (struct mcontext __user *)(u64)cmcp; 997 /* no need to check access_ok(mcp), since mcp < 4GB */ 998 } 999 #else 1000 if (__get_user(mcp, &ucp->uc_regs)) 1001 return -EFAULT; 1002 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp))) 1003 return -EFAULT; 1004 #endif 1005 set_current_blocked(&set); 1006 if (restore_user_regs(regs, mcp, sig)) 1007 return -EFAULT; 1008 1009 return 0; 1010 } 1011 1012 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1013 static int do_setcontext_tm(struct ucontext __user *ucp, 1014 struct ucontext __user *tm_ucp, 1015 struct pt_regs *regs) 1016 { 1017 sigset_t set; 1018 struct mcontext __user *mcp; 1019 struct mcontext __user *tm_mcp; 1020 u32 cmcp; 1021 u32 tm_cmcp; 1022 1023 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1024 return -EFAULT; 1025 1026 if (__get_user(cmcp, &ucp->uc_regs) || 1027 __get_user(tm_cmcp, &tm_ucp->uc_regs)) 1028 return -EFAULT; 1029 mcp = (struct mcontext __user *)(u64)cmcp; 1030 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; 1031 /* no need to check access_ok(mcp), since mcp < 4GB */ 1032 1033 set_current_blocked(&set); 1034 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1035 return -EFAULT; 1036 1037 return 0; 1038 } 1039 #endif 1040 1041 #ifdef CONFIG_PPC64 1042 COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx, 1043 struct ucontext __user *, new_ctx, int, ctx_size) 1044 #else 1045 SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx, 1046 struct ucontext __user *, new_ctx, long, ctx_size) 1047 #endif 1048 { 1049 struct pt_regs *regs = current_pt_regs(); 1050 int ctx_has_vsx_region = 0; 1051 1052 #ifdef CONFIG_PPC64 1053 unsigned long new_msr = 0; 1054 1055 if (new_ctx) { 1056 struct mcontext __user *mcp; 1057 u32 cmcp; 1058 1059 /* 1060 * Get pointer to the real mcontext. No need for 1061 * access_ok since we are dealing with compat 1062 * pointers. 1063 */ 1064 if (__get_user(cmcp, &new_ctx->uc_regs)) 1065 return -EFAULT; 1066 mcp = (struct mcontext __user *)(u64)cmcp; 1067 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) 1068 return -EFAULT; 1069 } 1070 /* 1071 * Check that the context is not smaller than the original 1072 * size (with VMX but without VSX) 1073 */ 1074 if (ctx_size < UCONTEXTSIZEWITHOUTVSX) 1075 return -EINVAL; 1076 /* 1077 * If the new context state sets the MSR VSX bits but 1078 * it doesn't provide VSX state. 1079 */ 1080 if ((ctx_size < sizeof(struct ucontext)) && 1081 (new_msr & MSR_VSX)) 1082 return -EINVAL; 1083 /* Does the context have enough room to store VSX data? */ 1084 if (ctx_size >= sizeof(struct ucontext)) 1085 ctx_has_vsx_region = 1; 1086 #else 1087 /* Context size is for future use. Right now, we only make sure 1088 * we are passed something we understand 1089 */ 1090 if (ctx_size < sizeof(struct ucontext)) 1091 return -EINVAL; 1092 #endif 1093 if (old_ctx != NULL) { 1094 struct mcontext __user *mctx; 1095 1096 /* 1097 * old_ctx might not be 16-byte aligned, in which 1098 * case old_ctx->uc_mcontext won't be either. 1099 * Because we have the old_ctx->uc_pad2 field 1100 * before old_ctx->uc_mcontext, we need to round down 1101 * from &old_ctx->uc_mcontext to a 16-byte boundary. 1102 */ 1103 mctx = (struct mcontext __user *) 1104 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); 1105 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size) 1106 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) 1107 || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) 1108 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) 1109 return -EFAULT; 1110 } 1111 if (new_ctx == NULL) 1112 return 0; 1113 if (!access_ok(VERIFY_READ, new_ctx, ctx_size) || 1114 fault_in_pages_readable((u8 __user *)new_ctx, ctx_size)) 1115 return -EFAULT; 1116 1117 /* 1118 * If we get a fault copying the context into the kernel's 1119 * image of the user's registers, we can't just return -EFAULT 1120 * because the user's registers will be corrupted. For instance 1121 * the NIP value may have been updated but not some of the 1122 * other registers. Given that we have done the access_ok 1123 * and successfully read the first and last bytes of the region 1124 * above, this should only happen in an out-of-memory situation 1125 * or if another thread unmaps the region containing the context. 1126 * We kill the task with a SIGSEGV in this situation. 1127 */ 1128 if (do_setcontext(new_ctx, regs, 0)) 1129 do_exit(SIGSEGV); 1130 1131 set_thread_flag(TIF_RESTOREALL); 1132 return 0; 1133 } 1134 1135 #ifdef CONFIG_PPC64 1136 COMPAT_SYSCALL_DEFINE0(rt_sigreturn) 1137 #else 1138 SYSCALL_DEFINE0(rt_sigreturn) 1139 #endif 1140 { 1141 struct rt_sigframe __user *rt_sf; 1142 struct pt_regs *regs = current_pt_regs(); 1143 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1144 struct ucontext __user *uc_transact; 1145 unsigned long msr_hi; 1146 unsigned long tmp; 1147 int tm_restore = 0; 1148 #endif 1149 /* Always make any pending restarted system calls return -EINTR */ 1150 current->restart_block.fn = do_no_restart_syscall; 1151 1152 rt_sf = (struct rt_sigframe __user *) 1153 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); 1154 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf))) 1155 goto bad; 1156 1157 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1158 /* 1159 * If there is a transactional state then throw it away. 1160 * The purpose of a sigreturn is to destroy all traces of the 1161 * signal frame, this includes any transactional state created 1162 * within in. We only check for suspended as we can never be 1163 * active in the kernel, we are active, there is nothing better to 1164 * do than go ahead and Bad Thing later. 1165 * The cause is not important as there will never be a 1166 * recheckpoint so it's not user visible. 1167 */ 1168 if (MSR_TM_SUSPENDED(mfmsr())) 1169 tm_reclaim_current(0); 1170 1171 if (__get_user(tmp, &rt_sf->uc.uc_link)) 1172 goto bad; 1173 uc_transact = (struct ucontext __user *)(uintptr_t)tmp; 1174 if (uc_transact) { 1175 u32 cmcp; 1176 struct mcontext __user *mcp; 1177 1178 if (__get_user(cmcp, &uc_transact->uc_regs)) 1179 return -EFAULT; 1180 mcp = (struct mcontext __user *)(u64)cmcp; 1181 /* The top 32 bits of the MSR are stashed in the transactional 1182 * ucontext. */ 1183 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) 1184 goto bad; 1185 1186 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1187 /* We only recheckpoint on return if we're 1188 * transaction. 1189 */ 1190 tm_restore = 1; 1191 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) 1192 goto bad; 1193 } 1194 } 1195 if (!tm_restore) 1196 /* Fall through, for non-TM restore */ 1197 #endif 1198 if (do_setcontext(&rt_sf->uc, regs, 1)) 1199 goto bad; 1200 1201 /* 1202 * It's not clear whether or why it is desirable to save the 1203 * sigaltstack setting on signal delivery and restore it on 1204 * signal return. But other architectures do this and we have 1205 * always done it up until now so it is probably better not to 1206 * change it. -- paulus 1207 */ 1208 #ifdef CONFIG_PPC64 1209 if (compat_restore_altstack(&rt_sf->uc.uc_stack)) 1210 goto bad; 1211 #else 1212 if (restore_altstack(&rt_sf->uc.uc_stack)) 1213 goto bad; 1214 #endif 1215 set_thread_flag(TIF_RESTOREALL); 1216 return 0; 1217 1218 bad: 1219 if (show_unhandled_signals) 1220 printk_ratelimited(KERN_INFO 1221 "%s[%d]: bad frame in sys_rt_sigreturn: " 1222 "%p nip %08lx lr %08lx\n", 1223 current->comm, current->pid, 1224 rt_sf, regs->nip, regs->link); 1225 1226 force_sig(SIGSEGV, current); 1227 return 0; 1228 } 1229 1230 #ifdef CONFIG_PPC32 1231 SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx, 1232 int, ndbg, struct sig_dbg_op __user *, dbg) 1233 { 1234 struct pt_regs *regs = current_pt_regs(); 1235 struct sig_dbg_op op; 1236 int i; 1237 unsigned long new_msr = regs->msr; 1238 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1239 unsigned long new_dbcr0 = current->thread.debug.dbcr0; 1240 #endif 1241 1242 for (i=0; i<ndbg; i++) { 1243 if (copy_from_user(&op, dbg + i, sizeof(op))) 1244 return -EFAULT; 1245 switch (op.dbg_type) { 1246 case SIG_DBG_SINGLE_STEPPING: 1247 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1248 if (op.dbg_value) { 1249 new_msr |= MSR_DE; 1250 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); 1251 } else { 1252 new_dbcr0 &= ~DBCR0_IC; 1253 if (!DBCR_ACTIVE_EVENTS(new_dbcr0, 1254 current->thread.debug.dbcr1)) { 1255 new_msr &= ~MSR_DE; 1256 new_dbcr0 &= ~DBCR0_IDM; 1257 } 1258 } 1259 #else 1260 if (op.dbg_value) 1261 new_msr |= MSR_SE; 1262 else 1263 new_msr &= ~MSR_SE; 1264 #endif 1265 break; 1266 case SIG_DBG_BRANCH_TRACING: 1267 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1268 return -EINVAL; 1269 #else 1270 if (op.dbg_value) 1271 new_msr |= MSR_BE; 1272 else 1273 new_msr &= ~MSR_BE; 1274 #endif 1275 break; 1276 1277 default: 1278 return -EINVAL; 1279 } 1280 } 1281 1282 /* We wait until here to actually install the values in the 1283 registers so if we fail in the above loop, it will not 1284 affect the contents of these registers. After this point, 1285 failure is a problem, anyway, and it's very unlikely unless 1286 the user is really doing something wrong. */ 1287 regs->msr = new_msr; 1288 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1289 current->thread.debug.dbcr0 = new_dbcr0; 1290 #endif 1291 1292 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx)) || 1293 fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx))) 1294 return -EFAULT; 1295 1296 /* 1297 * If we get a fault copying the context into the kernel's 1298 * image of the user's registers, we can't just return -EFAULT 1299 * because the user's registers will be corrupted. For instance 1300 * the NIP value may have been updated but not some of the 1301 * other registers. Given that we have done the access_ok 1302 * and successfully read the first and last bytes of the region 1303 * above, this should only happen in an out-of-memory situation 1304 * or if another thread unmaps the region containing the context. 1305 * We kill the task with a SIGSEGV in this situation. 1306 */ 1307 if (do_setcontext(ctx, regs, 1)) { 1308 if (show_unhandled_signals) 1309 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " 1310 "sys_debug_setcontext: %p nip %08lx " 1311 "lr %08lx\n", 1312 current->comm, current->pid, 1313 ctx, regs->nip, regs->link); 1314 1315 force_sig(SIGSEGV, current); 1316 goto out; 1317 } 1318 1319 /* 1320 * It's not clear whether or why it is desirable to save the 1321 * sigaltstack setting on signal delivery and restore it on 1322 * signal return. But other architectures do this and we have 1323 * always done it up until now so it is probably better not to 1324 * change it. -- paulus 1325 */ 1326 restore_altstack(&ctx->uc_stack); 1327 1328 set_thread_flag(TIF_RESTOREALL); 1329 out: 1330 return 0; 1331 } 1332 #endif 1333 1334 /* 1335 * OK, we're invoking a handler 1336 */ 1337 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, 1338 struct task_struct *tsk) 1339 { 1340 struct sigcontext __user *sc; 1341 struct sigframe __user *frame; 1342 struct mcontext __user *tm_mctx = NULL; 1343 unsigned long newsp = 0; 1344 int sigret; 1345 unsigned long tramp; 1346 struct pt_regs *regs = tsk->thread.regs; 1347 1348 BUG_ON(tsk != current); 1349 1350 /* Set up Signal Frame */ 1351 frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1); 1352 if (unlikely(frame == NULL)) 1353 goto badframe; 1354 sc = (struct sigcontext __user *) &frame->sctx; 1355 1356 #if _NSIG != 64 1357 #error "Please adjust handle_signal()" 1358 #endif 1359 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler) 1360 || __put_user(oldset->sig[0], &sc->oldmask) 1361 #ifdef CONFIG_PPC64 1362 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) 1363 #else 1364 || __put_user(oldset->sig[1], &sc->_unused[3]) 1365 #endif 1366 || __put_user(to_user_ptr(&frame->mctx), &sc->regs) 1367 || __put_user(ksig->sig, &sc->signal)) 1368 goto badframe; 1369 1370 if (vdso32_sigtramp && tsk->mm->context.vdso_base) { 1371 sigret = 0; 1372 tramp = tsk->mm->context.vdso_base + vdso32_sigtramp; 1373 } else { 1374 sigret = __NR_sigreturn; 1375 tramp = (unsigned long) frame->mctx.tramp; 1376 } 1377 1378 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1379 tm_mctx = &frame->mctx_transact; 1380 if (MSR_TM_ACTIVE(regs->msr)) { 1381 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, 1382 sigret)) 1383 goto badframe; 1384 } 1385 else 1386 #endif 1387 { 1388 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) 1389 goto badframe; 1390 } 1391 1392 regs->link = tramp; 1393 1394 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1395 1396 /* create a stack frame for the caller of the handler */ 1397 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; 1398 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1399 goto badframe; 1400 1401 regs->gpr[1] = newsp; 1402 regs->gpr[3] = ksig->sig; 1403 regs->gpr[4] = (unsigned long) sc; 1404 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler; 1405 /* enter the signal handler in big-endian mode */ 1406 regs->msr &= ~MSR_LE; 1407 return 0; 1408 1409 badframe: 1410 if (show_unhandled_signals) 1411 printk_ratelimited(KERN_INFO 1412 "%s[%d]: bad frame in handle_signal32: " 1413 "%p nip %08lx lr %08lx\n", 1414 tsk->comm, tsk->pid, 1415 frame, regs->nip, regs->link); 1416 1417 return 1; 1418 } 1419 1420 /* 1421 * Do a signal return; undo the signal stack. 1422 */ 1423 #ifdef CONFIG_PPC64 1424 COMPAT_SYSCALL_DEFINE0(sigreturn) 1425 #else 1426 SYSCALL_DEFINE0(sigreturn) 1427 #endif 1428 { 1429 struct pt_regs *regs = current_pt_regs(); 1430 struct sigframe __user *sf; 1431 struct sigcontext __user *sc; 1432 struct sigcontext sigctx; 1433 struct mcontext __user *sr; 1434 void __user *addr; 1435 sigset_t set; 1436 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1437 struct mcontext __user *mcp, *tm_mcp; 1438 unsigned long msr_hi; 1439 #endif 1440 1441 /* Always make any pending restarted system calls return -EINTR */ 1442 current->restart_block.fn = do_no_restart_syscall; 1443 1444 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); 1445 sc = &sf->sctx; 1446 addr = sc; 1447 if (copy_from_user(&sigctx, sc, sizeof(sigctx))) 1448 goto badframe; 1449 1450 #ifdef CONFIG_PPC64 1451 /* 1452 * Note that PPC32 puts the upper 32 bits of the sigmask in the 1453 * unused part of the signal stackframe 1454 */ 1455 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); 1456 #else 1457 set.sig[0] = sigctx.oldmask; 1458 set.sig[1] = sigctx._unused[3]; 1459 #endif 1460 set_current_blocked(&set); 1461 1462 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1463 mcp = (struct mcontext __user *)&sf->mctx; 1464 tm_mcp = (struct mcontext __user *)&sf->mctx_transact; 1465 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) 1466 goto badframe; 1467 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1468 if (!cpu_has_feature(CPU_FTR_TM)) 1469 goto badframe; 1470 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1471 goto badframe; 1472 } else 1473 #endif 1474 { 1475 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); 1476 addr = sr; 1477 if (!access_ok(VERIFY_READ, sr, sizeof(*sr)) 1478 || restore_user_regs(regs, sr, 1)) 1479 goto badframe; 1480 } 1481 1482 set_thread_flag(TIF_RESTOREALL); 1483 return 0; 1484 1485 badframe: 1486 if (show_unhandled_signals) 1487 printk_ratelimited(KERN_INFO 1488 "%s[%d]: bad frame in sys_sigreturn: " 1489 "%p nip %08lx lr %08lx\n", 1490 current->comm, current->pid, 1491 addr, regs->nip, regs->link); 1492 1493 force_sig(SIGSEGV, current); 1494 return 0; 1495 } 1496