1 /* 2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC 3 * 4 * PowerPC version 5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 6 * Copyright (C) 2001 IBM 7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) 9 * 10 * Derived from "arch/i386/kernel/signal.c" 11 * Copyright (C) 1991, 1992 Linus Torvalds 12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 13 * 14 * This program is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU General Public License 16 * as published by the Free Software Foundation; either version 17 * 2 of the License, or (at your option) any later version. 18 */ 19 20 #include <linux/sched.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/kernel.h> 24 #include <linux/signal.h> 25 #include <linux/errno.h> 26 #include <linux/elf.h> 27 #include <linux/ptrace.h> 28 #include <linux/ratelimit.h> 29 #ifdef CONFIG_PPC64 30 #include <linux/syscalls.h> 31 #include <linux/compat.h> 32 #else 33 #include <linux/wait.h> 34 #include <linux/unistd.h> 35 #include <linux/stddef.h> 36 #include <linux/tty.h> 37 #include <linux/binfmts.h> 38 #endif 39 40 #include <asm/uaccess.h> 41 #include <asm/cacheflush.h> 42 #include <asm/syscalls.h> 43 #include <asm/sigcontext.h> 44 #include <asm/vdso.h> 45 #include <asm/switch_to.h> 46 #include <asm/tm.h> 47 #ifdef CONFIG_PPC64 48 #include "ppc32.h" 49 #include <asm/unistd.h> 50 #else 51 #include <asm/ucontext.h> 52 #include <asm/pgtable.h> 53 #endif 54 55 #include "signal.h" 56 57 58 #ifdef CONFIG_PPC64 59 #define sys_rt_sigreturn compat_sys_rt_sigreturn 60 #define sys_swapcontext compat_sys_swapcontext 61 #define sys_sigreturn compat_sys_sigreturn 62 63 #define old_sigaction old_sigaction32 64 #define sigcontext sigcontext32 65 #define mcontext mcontext32 66 #define ucontext ucontext32 67 68 #define __save_altstack __compat_save_altstack 69 70 /* 71 * Userspace code may pass a ucontext which doesn't include VSX added 72 * at the end. We need to check for this case. 73 */ 74 #define UCONTEXTSIZEWITHOUTVSX \ 75 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32)) 76 77 /* 78 * Returning 0 means we return to userspace via 79 * ret_from_except and thus restore all user 80 * registers from *regs. This is what we need 81 * to do when a signal has been delivered. 82 */ 83 84 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32)) 85 #undef __SIGNAL_FRAMESIZE 86 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32 87 #undef ELF_NVRREG 88 #define ELF_NVRREG ELF_NVRREG32 89 90 /* 91 * Functions for flipping sigsets (thanks to brain dead generic 92 * implementation that makes things simple for little endian only) 93 */ 94 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set) 95 { 96 compat_sigset_t cset; 97 98 switch (_NSIG_WORDS) { 99 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull; 100 cset.sig[7] = set->sig[3] >> 32; 101 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull; 102 cset.sig[5] = set->sig[2] >> 32; 103 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull; 104 cset.sig[3] = set->sig[1] >> 32; 105 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull; 106 cset.sig[1] = set->sig[0] >> 32; 107 } 108 return copy_to_user(uset, &cset, sizeof(*uset)); 109 } 110 111 static inline int get_sigset_t(sigset_t *set, 112 const compat_sigset_t __user *uset) 113 { 114 compat_sigset_t s32; 115 116 if (copy_from_user(&s32, uset, sizeof(*uset))) 117 return -EFAULT; 118 119 /* 120 * Swap the 2 words of the 64-bit sigset_t (they are stored 121 * in the "wrong" endian in 32-bit user storage). 122 */ 123 switch (_NSIG_WORDS) { 124 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32); 125 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32); 126 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32); 127 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32); 128 } 129 return 0; 130 } 131 132 #define to_user_ptr(p) ptr_to_compat(p) 133 #define from_user_ptr(p) compat_ptr(p) 134 135 static inline int save_general_regs(struct pt_regs *regs, 136 struct mcontext __user *frame) 137 { 138 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 139 int i; 140 141 WARN_ON(!FULL_REGS(regs)); 142 143 for (i = 0; i <= PT_RESULT; i ++) { 144 if (i == 14 && !FULL_REGS(regs)) 145 i = 32; 146 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i])) 147 return -EFAULT; 148 } 149 return 0; 150 } 151 152 static inline int restore_general_regs(struct pt_regs *regs, 153 struct mcontext __user *sr) 154 { 155 elf_greg_t64 *gregs = (elf_greg_t64 *)regs; 156 int i; 157 158 for (i = 0; i <= PT_RESULT; i++) { 159 if ((i == PT_MSR) || (i == PT_SOFTE)) 160 continue; 161 if (__get_user(gregs[i], &sr->mc_gregs[i])) 162 return -EFAULT; 163 } 164 return 0; 165 } 166 167 #else /* CONFIG_PPC64 */ 168 169 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) 170 171 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set) 172 { 173 return copy_to_user(uset, set, sizeof(*uset)); 174 } 175 176 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset) 177 { 178 return copy_from_user(set, uset, sizeof(*uset)); 179 } 180 181 #define to_user_ptr(p) ((unsigned long)(p)) 182 #define from_user_ptr(p) ((void __user *)(p)) 183 184 static inline int save_general_regs(struct pt_regs *regs, 185 struct mcontext __user *frame) 186 { 187 WARN_ON(!FULL_REGS(regs)); 188 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE); 189 } 190 191 static inline int restore_general_regs(struct pt_regs *regs, 192 struct mcontext __user *sr) 193 { 194 /* copy up to but not including MSR */ 195 if (__copy_from_user(regs, &sr->mc_gregs, 196 PT_MSR * sizeof(elf_greg_t))) 197 return -EFAULT; 198 /* copy from orig_r3 (the word after the MSR) up to the end */ 199 if (__copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3], 200 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t))) 201 return -EFAULT; 202 return 0; 203 } 204 #endif 205 206 /* 207 * When we have signals to deliver, we set up on the 208 * user stack, going down from the original stack pointer: 209 * an ABI gap of 56 words 210 * an mcontext struct 211 * a sigcontext struct 212 * a gap of __SIGNAL_FRAMESIZE bytes 213 * 214 * Each of these things must be a multiple of 16 bytes in size. The following 215 * structure represent all of this except the __SIGNAL_FRAMESIZE gap 216 * 217 */ 218 struct sigframe { 219 struct sigcontext sctx; /* the sigcontext */ 220 struct mcontext mctx; /* all the register values */ 221 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 222 struct sigcontext sctx_transact; 223 struct mcontext mctx_transact; 224 #endif 225 /* 226 * Programs using the rs6000/xcoff abi can save up to 19 gp 227 * regs and 18 fp regs below sp before decrementing it. 228 */ 229 int abigap[56]; 230 }; 231 232 /* We use the mc_pad field for the signal return trampoline. */ 233 #define tramp mc_pad 234 235 /* 236 * When we have rt signals to deliver, we set up on the 237 * user stack, going down from the original stack pointer: 238 * one rt_sigframe struct (siginfo + ucontext + ABI gap) 239 * a gap of __SIGNAL_FRAMESIZE+16 bytes 240 * (the +16 is to get the siginfo and ucontext in the same 241 * positions as in older kernels). 242 * 243 * Each of these things must be a multiple of 16 bytes in size. 244 * 245 */ 246 struct rt_sigframe { 247 #ifdef CONFIG_PPC64 248 compat_siginfo_t info; 249 #else 250 struct siginfo info; 251 #endif 252 struct ucontext uc; 253 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 254 struct ucontext uc_transact; 255 #endif 256 /* 257 * Programs using the rs6000/xcoff abi can save up to 19 gp 258 * regs and 18 fp regs below sp before decrementing it. 259 */ 260 int abigap[56]; 261 }; 262 263 #ifdef CONFIG_VSX 264 unsigned long copy_fpr_to_user(void __user *to, 265 struct task_struct *task) 266 { 267 u64 buf[ELF_NFPREG]; 268 int i; 269 270 /* save FPR copy to local buffer then write to the thread_struct */ 271 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 272 buf[i] = task->thread.TS_FPR(i); 273 buf[i] = task->thread.fp_state.fpscr; 274 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 275 } 276 277 unsigned long copy_fpr_from_user(struct task_struct *task, 278 void __user *from) 279 { 280 u64 buf[ELF_NFPREG]; 281 int i; 282 283 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 284 return 1; 285 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 286 task->thread.TS_FPR(i) = buf[i]; 287 task->thread.fp_state.fpscr = buf[i]; 288 289 return 0; 290 } 291 292 unsigned long copy_vsx_to_user(void __user *to, 293 struct task_struct *task) 294 { 295 u64 buf[ELF_NVSRHALFREG]; 296 int i; 297 298 /* save FPR copy to local buffer then write to the thread_struct */ 299 for (i = 0; i < ELF_NVSRHALFREG; i++) 300 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; 301 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 302 } 303 304 unsigned long copy_vsx_from_user(struct task_struct *task, 305 void __user *from) 306 { 307 u64 buf[ELF_NVSRHALFREG]; 308 int i; 309 310 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 311 return 1; 312 for (i = 0; i < ELF_NVSRHALFREG ; i++) 313 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 314 return 0; 315 } 316 317 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 318 unsigned long copy_transact_fpr_to_user(void __user *to, 319 struct task_struct *task) 320 { 321 u64 buf[ELF_NFPREG]; 322 int i; 323 324 /* save FPR copy to local buffer then write to the thread_struct */ 325 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 326 buf[i] = task->thread.TS_TRANS_FPR(i); 327 buf[i] = task->thread.transact_fp.fpscr; 328 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double)); 329 } 330 331 unsigned long copy_transact_fpr_from_user(struct task_struct *task, 332 void __user *from) 333 { 334 u64 buf[ELF_NFPREG]; 335 int i; 336 337 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double))) 338 return 1; 339 for (i = 0; i < (ELF_NFPREG - 1) ; i++) 340 task->thread.TS_TRANS_FPR(i) = buf[i]; 341 task->thread.transact_fp.fpscr = buf[i]; 342 343 return 0; 344 } 345 346 unsigned long copy_transact_vsx_to_user(void __user *to, 347 struct task_struct *task) 348 { 349 u64 buf[ELF_NVSRHALFREG]; 350 int i; 351 352 /* save FPR copy to local buffer then write to the thread_struct */ 353 for (i = 0; i < ELF_NVSRHALFREG; i++) 354 buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET]; 355 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double)); 356 } 357 358 unsigned long copy_transact_vsx_from_user(struct task_struct *task, 359 void __user *from) 360 { 361 u64 buf[ELF_NVSRHALFREG]; 362 int i; 363 364 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double))) 365 return 1; 366 for (i = 0; i < ELF_NVSRHALFREG ; i++) 367 task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i]; 368 return 0; 369 } 370 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 371 #else 372 inline unsigned long copy_fpr_to_user(void __user *to, 373 struct task_struct *task) 374 { 375 return __copy_to_user(to, task->thread.fp_state.fpr, 376 ELF_NFPREG * sizeof(double)); 377 } 378 379 inline unsigned long copy_fpr_from_user(struct task_struct *task, 380 void __user *from) 381 { 382 return __copy_from_user(task->thread.fp_state.fpr, from, 383 ELF_NFPREG * sizeof(double)); 384 } 385 386 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 387 inline unsigned long copy_transact_fpr_to_user(void __user *to, 388 struct task_struct *task) 389 { 390 return __copy_to_user(to, task->thread.transact_fp.fpr, 391 ELF_NFPREG * sizeof(double)); 392 } 393 394 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task, 395 void __user *from) 396 { 397 return __copy_from_user(task->thread.transact_fp.fpr, from, 398 ELF_NFPREG * sizeof(double)); 399 } 400 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 401 #endif 402 403 /* 404 * Save the current user registers on the user stack. 405 * We only save the altivec/spe registers if the process has used 406 * altivec/spe instructions at some point. 407 */ 408 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame, 409 struct mcontext __user *tm_frame, int sigret, 410 int ctx_has_vsx_region) 411 { 412 unsigned long msr = regs->msr; 413 414 /* Make sure floating point registers are stored in regs */ 415 flush_fp_to_thread(current); 416 417 /* save general registers */ 418 if (save_general_regs(regs, frame)) 419 return 1; 420 421 #ifdef CONFIG_ALTIVEC 422 /* save altivec registers */ 423 if (current->thread.used_vr) { 424 flush_altivec_to_thread(current); 425 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 426 ELF_NVRREG * sizeof(vector128))) 427 return 1; 428 /* set MSR_VEC in the saved MSR value to indicate that 429 frame->mc_vregs contains valid data */ 430 msr |= MSR_VEC; 431 } 432 /* else assert((regs->msr & MSR_VEC) == 0) */ 433 434 /* We always copy to/from vrsave, it's 0 if we don't have or don't 435 * use altivec. Since VSCR only contains 32 bits saved in the least 436 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 437 * most significant bits of that same vector. --BenH 438 * Note that the current VRSAVE value is in the SPR at this point. 439 */ 440 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 441 current->thread.vrsave = mfspr(SPRN_VRSAVE); 442 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32])) 443 return 1; 444 #endif /* CONFIG_ALTIVEC */ 445 if (copy_fpr_to_user(&frame->mc_fregs, current)) 446 return 1; 447 448 /* 449 * Clear the MSR VSX bit to indicate there is no valid state attached 450 * to this context, except in the specific case below where we set it. 451 */ 452 msr &= ~MSR_VSX; 453 #ifdef CONFIG_VSX 454 /* 455 * Copy VSR 0-31 upper half from thread_struct to local 456 * buffer, then write that to userspace. Also set MSR_VSX in 457 * the saved MSR value to indicate that frame->mc_vregs 458 * contains valid data 459 */ 460 if (current->thread.used_vsr && ctx_has_vsx_region) { 461 flush_vsx_to_thread(current); 462 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 463 return 1; 464 msr |= MSR_VSX; 465 } 466 #endif /* CONFIG_VSX */ 467 #ifdef CONFIG_SPE 468 /* save spe registers */ 469 if (current->thread.used_spe) { 470 flush_spe_to_thread(current); 471 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 472 ELF_NEVRREG * sizeof(u32))) 473 return 1; 474 /* set MSR_SPE in the saved MSR value to indicate that 475 frame->mc_vregs contains valid data */ 476 msr |= MSR_SPE; 477 } 478 /* else assert((regs->msr & MSR_SPE) == 0) */ 479 480 /* We always copy to/from spefscr */ 481 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 482 return 1; 483 #endif /* CONFIG_SPE */ 484 485 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 486 return 1; 487 /* We need to write 0 the MSR top 32 bits in the tm frame so that we 488 * can check it on the restore to see if TM is active 489 */ 490 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR])) 491 return 1; 492 493 if (sigret) { 494 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 495 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 496 || __put_user(0x44000002UL, &frame->tramp[1])) 497 return 1; 498 flush_icache_range((unsigned long) &frame->tramp[0], 499 (unsigned long) &frame->tramp[2]); 500 } 501 502 return 0; 503 } 504 505 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 506 /* 507 * Save the current user registers on the user stack. 508 * We only save the altivec/spe registers if the process has used 509 * altivec/spe instructions at some point. 510 * We also save the transactional registers to a second ucontext in the 511 * frame. 512 * 513 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts(). 514 */ 515 static int save_tm_user_regs(struct pt_regs *regs, 516 struct mcontext __user *frame, 517 struct mcontext __user *tm_frame, int sigret) 518 { 519 unsigned long msr = regs->msr; 520 521 /* Remove TM bits from thread's MSR. The MSR in the sigcontext 522 * just indicates to userland that we were doing a transaction, but we 523 * don't want to return in transactional state. This also ensures 524 * that flush_fp_to_thread won't set TIF_RESTORE_TM again. 525 */ 526 regs->msr &= ~MSR_TS_MASK; 527 528 /* Make sure floating point registers are stored in regs */ 529 flush_fp_to_thread(current); 530 531 /* Save both sets of general registers */ 532 if (save_general_regs(¤t->thread.ckpt_regs, frame) 533 || save_general_regs(regs, tm_frame)) 534 return 1; 535 536 /* Stash the top half of the 64bit MSR into the 32bit MSR word 537 * of the transactional mcontext. This way we have a backward-compatible 538 * MSR in the 'normal' (checkpointed) mcontext and additionally one can 539 * also look at what type of transaction (T or S) was active at the 540 * time of the signal. 541 */ 542 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR])) 543 return 1; 544 545 #ifdef CONFIG_ALTIVEC 546 /* save altivec registers */ 547 if (current->thread.used_vr) { 548 flush_altivec_to_thread(current); 549 if (__copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state, 550 ELF_NVRREG * sizeof(vector128))) 551 return 1; 552 if (msr & MSR_VEC) { 553 if (__copy_to_user(&tm_frame->mc_vregs, 554 ¤t->thread.transact_vr, 555 ELF_NVRREG * sizeof(vector128))) 556 return 1; 557 } else { 558 if (__copy_to_user(&tm_frame->mc_vregs, 559 ¤t->thread.vr_state, 560 ELF_NVRREG * sizeof(vector128))) 561 return 1; 562 } 563 564 /* set MSR_VEC in the saved MSR value to indicate that 565 * frame->mc_vregs contains valid data 566 */ 567 msr |= MSR_VEC; 568 } 569 570 /* We always copy to/from vrsave, it's 0 if we don't have or don't 571 * use altivec. Since VSCR only contains 32 bits saved in the least 572 * significant bits of a vector, we "cheat" and stuff VRSAVE in the 573 * most significant bits of that same vector. --BenH 574 */ 575 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 576 current->thread.vrsave = mfspr(SPRN_VRSAVE); 577 if (__put_user(current->thread.vrsave, 578 (u32 __user *)&frame->mc_vregs[32])) 579 return 1; 580 if (msr & MSR_VEC) { 581 if (__put_user(current->thread.transact_vrsave, 582 (u32 __user *)&tm_frame->mc_vregs[32])) 583 return 1; 584 } else { 585 if (__put_user(current->thread.vrsave, 586 (u32 __user *)&tm_frame->mc_vregs[32])) 587 return 1; 588 } 589 #endif /* CONFIG_ALTIVEC */ 590 591 if (copy_fpr_to_user(&frame->mc_fregs, current)) 592 return 1; 593 if (msr & MSR_FP) { 594 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current)) 595 return 1; 596 } else { 597 if (copy_fpr_to_user(&tm_frame->mc_fregs, current)) 598 return 1; 599 } 600 601 #ifdef CONFIG_VSX 602 /* 603 * Copy VSR 0-31 upper half from thread_struct to local 604 * buffer, then write that to userspace. Also set MSR_VSX in 605 * the saved MSR value to indicate that frame->mc_vregs 606 * contains valid data 607 */ 608 if (current->thread.used_vsr) { 609 flush_vsx_to_thread(current); 610 if (copy_vsx_to_user(&frame->mc_vsregs, current)) 611 return 1; 612 if (msr & MSR_VSX) { 613 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs, 614 current)) 615 return 1; 616 } else { 617 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current)) 618 return 1; 619 } 620 621 msr |= MSR_VSX; 622 } 623 #endif /* CONFIG_VSX */ 624 #ifdef CONFIG_SPE 625 /* SPE regs are not checkpointed with TM, so this section is 626 * simply the same as in save_user_regs(). 627 */ 628 if (current->thread.used_spe) { 629 flush_spe_to_thread(current); 630 if (__copy_to_user(&frame->mc_vregs, current->thread.evr, 631 ELF_NEVRREG * sizeof(u32))) 632 return 1; 633 /* set MSR_SPE in the saved MSR value to indicate that 634 * frame->mc_vregs contains valid data */ 635 msr |= MSR_SPE; 636 } 637 638 /* We always copy to/from spefscr */ 639 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG)) 640 return 1; 641 #endif /* CONFIG_SPE */ 642 643 if (__put_user(msr, &frame->mc_gregs[PT_MSR])) 644 return 1; 645 if (sigret) { 646 /* Set up the sigreturn trampoline: li r0,sigret; sc */ 647 if (__put_user(0x38000000UL + sigret, &frame->tramp[0]) 648 || __put_user(0x44000002UL, &frame->tramp[1])) 649 return 1; 650 flush_icache_range((unsigned long) &frame->tramp[0], 651 (unsigned long) &frame->tramp[2]); 652 } 653 654 return 0; 655 } 656 #endif 657 658 /* 659 * Restore the current user register values from the user stack, 660 * (except for MSR). 661 */ 662 static long restore_user_regs(struct pt_regs *regs, 663 struct mcontext __user *sr, int sig) 664 { 665 long err; 666 unsigned int save_r2 = 0; 667 unsigned long msr; 668 #ifdef CONFIG_VSX 669 int i; 670 #endif 671 672 /* 673 * restore general registers but not including MSR or SOFTE. Also 674 * take care of keeping r2 (TLS) intact if not a signal 675 */ 676 if (!sig) 677 save_r2 = (unsigned int)regs->gpr[2]; 678 err = restore_general_regs(regs, sr); 679 regs->trap = 0; 680 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 681 if (!sig) 682 regs->gpr[2] = (unsigned long) save_r2; 683 if (err) 684 return 1; 685 686 /* if doing signal return, restore the previous little-endian mode */ 687 if (sig) 688 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 689 690 #ifdef CONFIG_ALTIVEC 691 /* 692 * Force the process to reload the altivec registers from 693 * current->thread when it next does altivec instructions 694 */ 695 regs->msr &= ~MSR_VEC; 696 if (msr & MSR_VEC) { 697 /* restore altivec registers from the stack */ 698 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 699 sizeof(sr->mc_vregs))) 700 return 1; 701 } else if (current->thread.used_vr) 702 memset(¤t->thread.vr_state, 0, 703 ELF_NVRREG * sizeof(vector128)); 704 705 /* Always get VRSAVE back */ 706 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32])) 707 return 1; 708 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 709 mtspr(SPRN_VRSAVE, current->thread.vrsave); 710 #endif /* CONFIG_ALTIVEC */ 711 if (copy_fpr_from_user(current, &sr->mc_fregs)) 712 return 1; 713 714 #ifdef CONFIG_VSX 715 /* 716 * Force the process to reload the VSX registers from 717 * current->thread when it next does VSX instruction. 718 */ 719 regs->msr &= ~MSR_VSX; 720 if (msr & MSR_VSX) { 721 /* 722 * Restore altivec registers from the stack to a local 723 * buffer, then write this out to the thread_struct 724 */ 725 if (copy_vsx_from_user(current, &sr->mc_vsregs)) 726 return 1; 727 } else if (current->thread.used_vsr) 728 for (i = 0; i < 32 ; i++) 729 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 730 #endif /* CONFIG_VSX */ 731 /* 732 * force the process to reload the FP registers from 733 * current->thread when it next does FP instructions 734 */ 735 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 736 737 #ifdef CONFIG_SPE 738 /* force the process to reload the spe registers from 739 current->thread when it next does spe instructions */ 740 regs->msr &= ~MSR_SPE; 741 if (msr & MSR_SPE) { 742 /* restore spe registers from the stack */ 743 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 744 ELF_NEVRREG * sizeof(u32))) 745 return 1; 746 } else if (current->thread.used_spe) 747 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 748 749 /* Always get SPEFSCR back */ 750 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG)) 751 return 1; 752 #endif /* CONFIG_SPE */ 753 754 return 0; 755 } 756 757 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 758 /* 759 * Restore the current user register values from the user stack, except for 760 * MSR, and recheckpoint the original checkpointed register state for processes 761 * in transactions. 762 */ 763 static long restore_tm_user_regs(struct pt_regs *regs, 764 struct mcontext __user *sr, 765 struct mcontext __user *tm_sr) 766 { 767 long err; 768 unsigned long msr, msr_hi; 769 #ifdef CONFIG_VSX 770 int i; 771 #endif 772 773 /* 774 * restore general registers but not including MSR or SOFTE. Also 775 * take care of keeping r2 (TLS) intact if not a signal. 776 * See comment in signal_64.c:restore_tm_sigcontexts(); 777 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR 778 * were set by the signal delivery. 779 */ 780 err = restore_general_regs(regs, tm_sr); 781 err |= restore_general_regs(¤t->thread.ckpt_regs, sr); 782 783 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]); 784 785 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]); 786 if (err) 787 return 1; 788 789 /* Restore the previous little-endian mode */ 790 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); 791 792 #ifdef CONFIG_ALTIVEC 793 regs->msr &= ~MSR_VEC; 794 if (msr & MSR_VEC) { 795 /* restore altivec registers from the stack */ 796 if (__copy_from_user(¤t->thread.vr_state, &sr->mc_vregs, 797 sizeof(sr->mc_vregs)) || 798 __copy_from_user(¤t->thread.transact_vr, 799 &tm_sr->mc_vregs, 800 sizeof(sr->mc_vregs))) 801 return 1; 802 } else if (current->thread.used_vr) { 803 memset(¤t->thread.vr_state, 0, 804 ELF_NVRREG * sizeof(vector128)); 805 memset(¤t->thread.transact_vr, 0, 806 ELF_NVRREG * sizeof(vector128)); 807 } 808 809 /* Always get VRSAVE back */ 810 if (__get_user(current->thread.vrsave, 811 (u32 __user *)&sr->mc_vregs[32]) || 812 __get_user(current->thread.transact_vrsave, 813 (u32 __user *)&tm_sr->mc_vregs[32])) 814 return 1; 815 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 816 mtspr(SPRN_VRSAVE, current->thread.vrsave); 817 #endif /* CONFIG_ALTIVEC */ 818 819 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1); 820 821 if (copy_fpr_from_user(current, &sr->mc_fregs) || 822 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs)) 823 return 1; 824 825 #ifdef CONFIG_VSX 826 regs->msr &= ~MSR_VSX; 827 if (msr & MSR_VSX) { 828 /* 829 * Restore altivec registers from the stack to a local 830 * buffer, then write this out to the thread_struct 831 */ 832 if (copy_vsx_from_user(current, &sr->mc_vsregs) || 833 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs)) 834 return 1; 835 } else if (current->thread.used_vsr) 836 for (i = 0; i < 32 ; i++) { 837 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; 838 current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0; 839 } 840 #endif /* CONFIG_VSX */ 841 842 #ifdef CONFIG_SPE 843 /* SPE regs are not checkpointed with TM, so this section is 844 * simply the same as in restore_user_regs(). 845 */ 846 regs->msr &= ~MSR_SPE; 847 if (msr & MSR_SPE) { 848 if (__copy_from_user(current->thread.evr, &sr->mc_vregs, 849 ELF_NEVRREG * sizeof(u32))) 850 return 1; 851 } else if (current->thread.used_spe) 852 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32)); 853 854 /* Always get SPEFSCR back */ 855 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs 856 + ELF_NEVRREG)) 857 return 1; 858 #endif /* CONFIG_SPE */ 859 860 /* Get the top half of the MSR from the user context */ 861 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR])) 862 return 1; 863 msr_hi <<= 32; 864 /* If TM bits are set to the reserved value, it's an invalid context */ 865 if (MSR_TM_RESV(msr_hi)) 866 return 1; 867 /* Pull in the MSR TM bits from the user context */ 868 regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK); 869 /* Now, recheckpoint. This loads up all of the checkpointed (older) 870 * registers, including FP and V[S]Rs. After recheckpointing, the 871 * transactional versions should be loaded. 872 */ 873 tm_enable(); 874 /* Make sure the transaction is marked as failed */ 875 current->thread.tm_texasr |= TEXASR_FS; 876 /* This loads the checkpointed FP/VEC state, if used */ 877 tm_recheckpoint(¤t->thread, msr); 878 879 /* This loads the speculative FP/VEC state, if used */ 880 if (msr & MSR_FP) { 881 do_load_up_transact_fpu(¤t->thread); 882 regs->msr |= (MSR_FP | current->thread.fpexc_mode); 883 } 884 #ifdef CONFIG_ALTIVEC 885 if (msr & MSR_VEC) { 886 do_load_up_transact_altivec(¤t->thread); 887 regs->msr |= MSR_VEC; 888 } 889 #endif 890 891 return 0; 892 } 893 #endif 894 895 #ifdef CONFIG_PPC64 896 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s) 897 { 898 int err; 899 900 if (!access_ok (VERIFY_WRITE, d, sizeof(*d))) 901 return -EFAULT; 902 903 /* If you change siginfo_t structure, please be sure 904 * this code is fixed accordingly. 905 * It should never copy any pad contained in the structure 906 * to avoid security leaks, but must copy the generic 907 * 3 ints plus the relevant union member. 908 * This routine must convert siginfo from 64bit to 32bit as well 909 * at the same time. 910 */ 911 err = __put_user(s->si_signo, &d->si_signo); 912 err |= __put_user(s->si_errno, &d->si_errno); 913 err |= __put_user((short)s->si_code, &d->si_code); 914 if (s->si_code < 0) 915 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad, 916 SI_PAD_SIZE32); 917 else switch(s->si_code >> 16) { 918 case __SI_CHLD >> 16: 919 err |= __put_user(s->si_pid, &d->si_pid); 920 err |= __put_user(s->si_uid, &d->si_uid); 921 err |= __put_user(s->si_utime, &d->si_utime); 922 err |= __put_user(s->si_stime, &d->si_stime); 923 err |= __put_user(s->si_status, &d->si_status); 924 break; 925 case __SI_FAULT >> 16: 926 err |= __put_user((unsigned int)(unsigned long)s->si_addr, 927 &d->si_addr); 928 break; 929 case __SI_POLL >> 16: 930 err |= __put_user(s->si_band, &d->si_band); 931 err |= __put_user(s->si_fd, &d->si_fd); 932 break; 933 case __SI_TIMER >> 16: 934 err |= __put_user(s->si_tid, &d->si_tid); 935 err |= __put_user(s->si_overrun, &d->si_overrun); 936 err |= __put_user(s->si_int, &d->si_int); 937 break; 938 case __SI_SYS >> 16: 939 err |= __put_user(ptr_to_compat(s->si_call_addr), &d->si_call_addr); 940 err |= __put_user(s->si_syscall, &d->si_syscall); 941 err |= __put_user(s->si_arch, &d->si_arch); 942 break; 943 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */ 944 case __SI_MESGQ >> 16: 945 err |= __put_user(s->si_int, &d->si_int); 946 /* fallthrough */ 947 case __SI_KILL >> 16: 948 default: 949 err |= __put_user(s->si_pid, &d->si_pid); 950 err |= __put_user(s->si_uid, &d->si_uid); 951 break; 952 } 953 return err; 954 } 955 956 #define copy_siginfo_to_user copy_siginfo_to_user32 957 958 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from) 959 { 960 if (copy_from_user(to, from, 3*sizeof(int)) || 961 copy_from_user(to->_sifields._pad, 962 from->_sifields._pad, SI_PAD_SIZE32)) 963 return -EFAULT; 964 965 return 0; 966 } 967 #endif /* CONFIG_PPC64 */ 968 969 /* 970 * Set up a signal frame for a "real-time" signal handler 971 * (one which gets siginfo). 972 */ 973 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset, 974 struct pt_regs *regs) 975 { 976 struct rt_sigframe __user *rt_sf; 977 struct mcontext __user *frame; 978 struct mcontext __user *tm_frame = NULL; 979 void __user *addr; 980 unsigned long newsp = 0; 981 int sigret; 982 unsigned long tramp; 983 984 /* Set up Signal Frame */ 985 /* Put a Real Time Context onto stack */ 986 rt_sf = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*rt_sf), 1); 987 addr = rt_sf; 988 if (unlikely(rt_sf == NULL)) 989 goto badframe; 990 991 /* Put the siginfo & fill in most of the ucontext */ 992 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info) 993 || __put_user(0, &rt_sf->uc.uc_flags) 994 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1]) 995 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext), 996 &rt_sf->uc.uc_regs) 997 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset)) 998 goto badframe; 999 1000 /* Save user registers on the stack */ 1001 frame = &rt_sf->uc.uc_mcontext; 1002 addr = frame; 1003 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) { 1004 sigret = 0; 1005 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp; 1006 } else { 1007 sigret = __NR_rt_sigreturn; 1008 tramp = (unsigned long) frame->tramp; 1009 } 1010 1011 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1012 tm_frame = &rt_sf->uc_transact.uc_mcontext; 1013 if (MSR_TM_ACTIVE(regs->msr)) { 1014 if (__put_user((unsigned long)&rt_sf->uc_transact, 1015 &rt_sf->uc.uc_link) || 1016 __put_user((unsigned long)tm_frame, 1017 &rt_sf->uc_transact.uc_regs)) 1018 goto badframe; 1019 if (save_tm_user_regs(regs, frame, tm_frame, sigret)) 1020 goto badframe; 1021 } 1022 else 1023 #endif 1024 { 1025 if (__put_user(0, &rt_sf->uc.uc_link)) 1026 goto badframe; 1027 if (save_user_regs(regs, frame, tm_frame, sigret, 1)) 1028 goto badframe; 1029 } 1030 regs->link = tramp; 1031 1032 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1033 1034 /* create a stack frame for the caller of the handler */ 1035 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16); 1036 addr = (void __user *)regs->gpr[1]; 1037 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1038 goto badframe; 1039 1040 /* Fill registers for signal handler */ 1041 regs->gpr[1] = newsp; 1042 regs->gpr[3] = ksig->sig; 1043 regs->gpr[4] = (unsigned long) &rt_sf->info; 1044 regs->gpr[5] = (unsigned long) &rt_sf->uc; 1045 regs->gpr[6] = (unsigned long) rt_sf; 1046 regs->nip = (unsigned long) ksig->ka.sa.sa_handler; 1047 /* enter the signal handler in native-endian mode */ 1048 regs->msr &= ~MSR_LE; 1049 regs->msr |= (MSR_KERNEL & MSR_LE); 1050 return 0; 1051 1052 badframe: 1053 if (show_unhandled_signals) 1054 printk_ratelimited(KERN_INFO 1055 "%s[%d]: bad frame in handle_rt_signal32: " 1056 "%p nip %08lx lr %08lx\n", 1057 current->comm, current->pid, 1058 addr, regs->nip, regs->link); 1059 1060 return 1; 1061 } 1062 1063 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig) 1064 { 1065 sigset_t set; 1066 struct mcontext __user *mcp; 1067 1068 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1069 return -EFAULT; 1070 #ifdef CONFIG_PPC64 1071 { 1072 u32 cmcp; 1073 1074 if (__get_user(cmcp, &ucp->uc_regs)) 1075 return -EFAULT; 1076 mcp = (struct mcontext __user *)(u64)cmcp; 1077 /* no need to check access_ok(mcp), since mcp < 4GB */ 1078 } 1079 #else 1080 if (__get_user(mcp, &ucp->uc_regs)) 1081 return -EFAULT; 1082 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp))) 1083 return -EFAULT; 1084 #endif 1085 set_current_blocked(&set); 1086 if (restore_user_regs(regs, mcp, sig)) 1087 return -EFAULT; 1088 1089 return 0; 1090 } 1091 1092 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1093 static int do_setcontext_tm(struct ucontext __user *ucp, 1094 struct ucontext __user *tm_ucp, 1095 struct pt_regs *regs) 1096 { 1097 sigset_t set; 1098 struct mcontext __user *mcp; 1099 struct mcontext __user *tm_mcp; 1100 u32 cmcp; 1101 u32 tm_cmcp; 1102 1103 if (get_sigset_t(&set, &ucp->uc_sigmask)) 1104 return -EFAULT; 1105 1106 if (__get_user(cmcp, &ucp->uc_regs) || 1107 __get_user(tm_cmcp, &tm_ucp->uc_regs)) 1108 return -EFAULT; 1109 mcp = (struct mcontext __user *)(u64)cmcp; 1110 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp; 1111 /* no need to check access_ok(mcp), since mcp < 4GB */ 1112 1113 set_current_blocked(&set); 1114 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1115 return -EFAULT; 1116 1117 return 0; 1118 } 1119 #endif 1120 1121 long sys_swapcontext(struct ucontext __user *old_ctx, 1122 struct ucontext __user *new_ctx, 1123 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs) 1124 { 1125 unsigned char tmp; 1126 int ctx_has_vsx_region = 0; 1127 1128 #ifdef CONFIG_PPC64 1129 unsigned long new_msr = 0; 1130 1131 if (new_ctx) { 1132 struct mcontext __user *mcp; 1133 u32 cmcp; 1134 1135 /* 1136 * Get pointer to the real mcontext. No need for 1137 * access_ok since we are dealing with compat 1138 * pointers. 1139 */ 1140 if (__get_user(cmcp, &new_ctx->uc_regs)) 1141 return -EFAULT; 1142 mcp = (struct mcontext __user *)(u64)cmcp; 1143 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR])) 1144 return -EFAULT; 1145 } 1146 /* 1147 * Check that the context is not smaller than the original 1148 * size (with VMX but without VSX) 1149 */ 1150 if (ctx_size < UCONTEXTSIZEWITHOUTVSX) 1151 return -EINVAL; 1152 /* 1153 * If the new context state sets the MSR VSX bits but 1154 * it doesn't provide VSX state. 1155 */ 1156 if ((ctx_size < sizeof(struct ucontext)) && 1157 (new_msr & MSR_VSX)) 1158 return -EINVAL; 1159 /* Does the context have enough room to store VSX data? */ 1160 if (ctx_size >= sizeof(struct ucontext)) 1161 ctx_has_vsx_region = 1; 1162 #else 1163 /* Context size is for future use. Right now, we only make sure 1164 * we are passed something we understand 1165 */ 1166 if (ctx_size < sizeof(struct ucontext)) 1167 return -EINVAL; 1168 #endif 1169 if (old_ctx != NULL) { 1170 struct mcontext __user *mctx; 1171 1172 /* 1173 * old_ctx might not be 16-byte aligned, in which 1174 * case old_ctx->uc_mcontext won't be either. 1175 * Because we have the old_ctx->uc_pad2 field 1176 * before old_ctx->uc_mcontext, we need to round down 1177 * from &old_ctx->uc_mcontext to a 16-byte boundary. 1178 */ 1179 mctx = (struct mcontext __user *) 1180 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL); 1181 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size) 1182 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region) 1183 || put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked) 1184 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs)) 1185 return -EFAULT; 1186 } 1187 if (new_ctx == NULL) 1188 return 0; 1189 if (!access_ok(VERIFY_READ, new_ctx, ctx_size) 1190 || __get_user(tmp, (u8 __user *) new_ctx) 1191 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1)) 1192 return -EFAULT; 1193 1194 /* 1195 * If we get a fault copying the context into the kernel's 1196 * image of the user's registers, we can't just return -EFAULT 1197 * because the user's registers will be corrupted. For instance 1198 * the NIP value may have been updated but not some of the 1199 * other registers. Given that we have done the access_ok 1200 * and successfully read the first and last bytes of the region 1201 * above, this should only happen in an out-of-memory situation 1202 * or if another thread unmaps the region containing the context. 1203 * We kill the task with a SIGSEGV in this situation. 1204 */ 1205 if (do_setcontext(new_ctx, regs, 0)) 1206 do_exit(SIGSEGV); 1207 1208 set_thread_flag(TIF_RESTOREALL); 1209 return 0; 1210 } 1211 1212 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1213 struct pt_regs *regs) 1214 { 1215 struct rt_sigframe __user *rt_sf; 1216 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1217 struct ucontext __user *uc_transact; 1218 unsigned long msr_hi; 1219 unsigned long tmp; 1220 int tm_restore = 0; 1221 #endif 1222 /* Always make any pending restarted system calls return -EINTR */ 1223 current->restart_block.fn = do_no_restart_syscall; 1224 1225 rt_sf = (struct rt_sigframe __user *) 1226 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16); 1227 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf))) 1228 goto bad; 1229 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1230 if (__get_user(tmp, &rt_sf->uc.uc_link)) 1231 goto bad; 1232 uc_transact = (struct ucontext __user *)(uintptr_t)tmp; 1233 if (uc_transact) { 1234 u32 cmcp; 1235 struct mcontext __user *mcp; 1236 1237 if (__get_user(cmcp, &uc_transact->uc_regs)) 1238 return -EFAULT; 1239 mcp = (struct mcontext __user *)(u64)cmcp; 1240 /* The top 32 bits of the MSR are stashed in the transactional 1241 * ucontext. */ 1242 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR])) 1243 goto bad; 1244 1245 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1246 /* We only recheckpoint on return if we're 1247 * transaction. 1248 */ 1249 tm_restore = 1; 1250 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs)) 1251 goto bad; 1252 } 1253 } 1254 if (!tm_restore) 1255 /* Fall through, for non-TM restore */ 1256 #endif 1257 if (do_setcontext(&rt_sf->uc, regs, 1)) 1258 goto bad; 1259 1260 /* 1261 * It's not clear whether or why it is desirable to save the 1262 * sigaltstack setting on signal delivery and restore it on 1263 * signal return. But other architectures do this and we have 1264 * always done it up until now so it is probably better not to 1265 * change it. -- paulus 1266 */ 1267 #ifdef CONFIG_PPC64 1268 if (compat_restore_altstack(&rt_sf->uc.uc_stack)) 1269 goto bad; 1270 #else 1271 if (restore_altstack(&rt_sf->uc.uc_stack)) 1272 goto bad; 1273 #endif 1274 set_thread_flag(TIF_RESTOREALL); 1275 return 0; 1276 1277 bad: 1278 if (show_unhandled_signals) 1279 printk_ratelimited(KERN_INFO 1280 "%s[%d]: bad frame in sys_rt_sigreturn: " 1281 "%p nip %08lx lr %08lx\n", 1282 current->comm, current->pid, 1283 rt_sf, regs->nip, regs->link); 1284 1285 force_sig(SIGSEGV, current); 1286 return 0; 1287 } 1288 1289 #ifdef CONFIG_PPC32 1290 int sys_debug_setcontext(struct ucontext __user *ctx, 1291 int ndbg, struct sig_dbg_op __user *dbg, 1292 int r6, int r7, int r8, 1293 struct pt_regs *regs) 1294 { 1295 struct sig_dbg_op op; 1296 int i; 1297 unsigned char tmp; 1298 unsigned long new_msr = regs->msr; 1299 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1300 unsigned long new_dbcr0 = current->thread.debug.dbcr0; 1301 #endif 1302 1303 for (i=0; i<ndbg; i++) { 1304 if (copy_from_user(&op, dbg + i, sizeof(op))) 1305 return -EFAULT; 1306 switch (op.dbg_type) { 1307 case SIG_DBG_SINGLE_STEPPING: 1308 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1309 if (op.dbg_value) { 1310 new_msr |= MSR_DE; 1311 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC); 1312 } else { 1313 new_dbcr0 &= ~DBCR0_IC; 1314 if (!DBCR_ACTIVE_EVENTS(new_dbcr0, 1315 current->thread.debug.dbcr1)) { 1316 new_msr &= ~MSR_DE; 1317 new_dbcr0 &= ~DBCR0_IDM; 1318 } 1319 } 1320 #else 1321 if (op.dbg_value) 1322 new_msr |= MSR_SE; 1323 else 1324 new_msr &= ~MSR_SE; 1325 #endif 1326 break; 1327 case SIG_DBG_BRANCH_TRACING: 1328 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1329 return -EINVAL; 1330 #else 1331 if (op.dbg_value) 1332 new_msr |= MSR_BE; 1333 else 1334 new_msr &= ~MSR_BE; 1335 #endif 1336 break; 1337 1338 default: 1339 return -EINVAL; 1340 } 1341 } 1342 1343 /* We wait until here to actually install the values in the 1344 registers so if we fail in the above loop, it will not 1345 affect the contents of these registers. After this point, 1346 failure is a problem, anyway, and it's very unlikely unless 1347 the user is really doing something wrong. */ 1348 regs->msr = new_msr; 1349 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1350 current->thread.debug.dbcr0 = new_dbcr0; 1351 #endif 1352 1353 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx)) 1354 || __get_user(tmp, (u8 __user *) ctx) 1355 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1)) 1356 return -EFAULT; 1357 1358 /* 1359 * If we get a fault copying the context into the kernel's 1360 * image of the user's registers, we can't just return -EFAULT 1361 * because the user's registers will be corrupted. For instance 1362 * the NIP value may have been updated but not some of the 1363 * other registers. Given that we have done the access_ok 1364 * and successfully read the first and last bytes of the region 1365 * above, this should only happen in an out-of-memory situation 1366 * or if another thread unmaps the region containing the context. 1367 * We kill the task with a SIGSEGV in this situation. 1368 */ 1369 if (do_setcontext(ctx, regs, 1)) { 1370 if (show_unhandled_signals) 1371 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in " 1372 "sys_debug_setcontext: %p nip %08lx " 1373 "lr %08lx\n", 1374 current->comm, current->pid, 1375 ctx, regs->nip, regs->link); 1376 1377 force_sig(SIGSEGV, current); 1378 goto out; 1379 } 1380 1381 /* 1382 * It's not clear whether or why it is desirable to save the 1383 * sigaltstack setting on signal delivery and restore it on 1384 * signal return. But other architectures do this and we have 1385 * always done it up until now so it is probably better not to 1386 * change it. -- paulus 1387 */ 1388 restore_altstack(&ctx->uc_stack); 1389 1390 set_thread_flag(TIF_RESTOREALL); 1391 out: 1392 return 0; 1393 } 1394 #endif 1395 1396 /* 1397 * OK, we're invoking a handler 1398 */ 1399 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, struct pt_regs *regs) 1400 { 1401 struct sigcontext __user *sc; 1402 struct sigframe __user *frame; 1403 struct mcontext __user *tm_mctx = NULL; 1404 unsigned long newsp = 0; 1405 int sigret; 1406 unsigned long tramp; 1407 1408 /* Set up Signal Frame */ 1409 frame = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*frame), 1); 1410 if (unlikely(frame == NULL)) 1411 goto badframe; 1412 sc = (struct sigcontext __user *) &frame->sctx; 1413 1414 #if _NSIG != 64 1415 #error "Please adjust handle_signal()" 1416 #endif 1417 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler) 1418 || __put_user(oldset->sig[0], &sc->oldmask) 1419 #ifdef CONFIG_PPC64 1420 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3]) 1421 #else 1422 || __put_user(oldset->sig[1], &sc->_unused[3]) 1423 #endif 1424 || __put_user(to_user_ptr(&frame->mctx), &sc->regs) 1425 || __put_user(ksig->sig, &sc->signal)) 1426 goto badframe; 1427 1428 if (vdso32_sigtramp && current->mm->context.vdso_base) { 1429 sigret = 0; 1430 tramp = current->mm->context.vdso_base + vdso32_sigtramp; 1431 } else { 1432 sigret = __NR_sigreturn; 1433 tramp = (unsigned long) frame->mctx.tramp; 1434 } 1435 1436 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1437 tm_mctx = &frame->mctx_transact; 1438 if (MSR_TM_ACTIVE(regs->msr)) { 1439 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact, 1440 sigret)) 1441 goto badframe; 1442 } 1443 else 1444 #endif 1445 { 1446 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1)) 1447 goto badframe; 1448 } 1449 1450 regs->link = tramp; 1451 1452 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */ 1453 1454 /* create a stack frame for the caller of the handler */ 1455 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; 1456 if (put_user(regs->gpr[1], (u32 __user *)newsp)) 1457 goto badframe; 1458 1459 regs->gpr[1] = newsp; 1460 regs->gpr[3] = ksig->sig; 1461 regs->gpr[4] = (unsigned long) sc; 1462 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler; 1463 /* enter the signal handler in big-endian mode */ 1464 regs->msr &= ~MSR_LE; 1465 return 0; 1466 1467 badframe: 1468 if (show_unhandled_signals) 1469 printk_ratelimited(KERN_INFO 1470 "%s[%d]: bad frame in handle_signal32: " 1471 "%p nip %08lx lr %08lx\n", 1472 current->comm, current->pid, 1473 frame, regs->nip, regs->link); 1474 1475 return 1; 1476 } 1477 1478 /* 1479 * Do a signal return; undo the signal stack. 1480 */ 1481 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8, 1482 struct pt_regs *regs) 1483 { 1484 struct sigframe __user *sf; 1485 struct sigcontext __user *sc; 1486 struct sigcontext sigctx; 1487 struct mcontext __user *sr; 1488 void __user *addr; 1489 sigset_t set; 1490 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1491 struct mcontext __user *mcp, *tm_mcp; 1492 unsigned long msr_hi; 1493 #endif 1494 1495 /* Always make any pending restarted system calls return -EINTR */ 1496 current->restart_block.fn = do_no_restart_syscall; 1497 1498 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE); 1499 sc = &sf->sctx; 1500 addr = sc; 1501 if (copy_from_user(&sigctx, sc, sizeof(sigctx))) 1502 goto badframe; 1503 1504 #ifdef CONFIG_PPC64 1505 /* 1506 * Note that PPC32 puts the upper 32 bits of the sigmask in the 1507 * unused part of the signal stackframe 1508 */ 1509 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32); 1510 #else 1511 set.sig[0] = sigctx.oldmask; 1512 set.sig[1] = sigctx._unused[3]; 1513 #endif 1514 set_current_blocked(&set); 1515 1516 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1517 mcp = (struct mcontext __user *)&sf->mctx; 1518 tm_mcp = (struct mcontext __user *)&sf->mctx_transact; 1519 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR])) 1520 goto badframe; 1521 if (MSR_TM_ACTIVE(msr_hi<<32)) { 1522 if (!cpu_has_feature(CPU_FTR_TM)) 1523 goto badframe; 1524 if (restore_tm_user_regs(regs, mcp, tm_mcp)) 1525 goto badframe; 1526 } else 1527 #endif 1528 { 1529 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs); 1530 addr = sr; 1531 if (!access_ok(VERIFY_READ, sr, sizeof(*sr)) 1532 || restore_user_regs(regs, sr, 1)) 1533 goto badframe; 1534 } 1535 1536 set_thread_flag(TIF_RESTOREALL); 1537 return 0; 1538 1539 badframe: 1540 if (show_unhandled_signals) 1541 printk_ratelimited(KERN_INFO 1542 "%s[%d]: bad frame in sys_sigreturn: " 1543 "%p nip %08lx lr %08lx\n", 1544 current->comm, current->pid, 1545 addr, regs->nip, regs->link); 1546 1547 force_sig(SIGSEGV, current); 1548 return 0; 1549 } 1550