xref: /openbmc/linux/arch/powerpc/kernel/signal_32.c (revision 2359ccdd)
1 /*
2  * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3  *
4  *  PowerPC version
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  * Copyright (C) 2001 IBM
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9  *
10  *  Derived from "arch/i386/kernel/signal.c"
11  *    Copyright (C) 1991, 1992 Linus Torvalds
12  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  */
19 
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
39 
40 #include <linux/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #include <asm/asm-prototypes.h>
48 #ifdef CONFIG_PPC64
49 #include "ppc32.h"
50 #include <asm/unistd.h>
51 #else
52 #include <asm/ucontext.h>
53 #include <asm/pgtable.h>
54 #endif
55 
56 #include "signal.h"
57 
58 
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn	compat_sys_rt_sigreturn
61 #define sys_swapcontext	compat_sys_swapcontext
62 #define sys_sigreturn	compat_sys_sigreturn
63 
64 #define old_sigaction	old_sigaction32
65 #define sigcontext	sigcontext32
66 #define mcontext	mcontext32
67 #define ucontext	ucontext32
68 
69 #define __save_altstack __compat_save_altstack
70 
71 /*
72  * Userspace code may pass a ucontext which doesn't include VSX added
73  * at the end.  We need to check for this case.
74  */
75 #define UCONTEXTSIZEWITHOUTVSX \
76 		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
77 
78 /*
79  * Returning 0 means we return to userspace via
80  * ret_from_except and thus restore all user
81  * registers from *regs.  This is what we need
82  * to do when a signal has been delivered.
83  */
84 
85 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG	ELF_NVRREG32
90 
91 /*
92  * Functions for flipping sigsets (thanks to brain dead generic
93  * implementation that makes things simple for little endian only)
94  */
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
96 {
97 	return put_compat_sigset(uset, set, sizeof(*uset));
98 }
99 
100 static inline int get_sigset_t(sigset_t *set,
101 			       const compat_sigset_t __user *uset)
102 {
103 	return get_compat_sigset(set, uset);
104 }
105 
106 #define to_user_ptr(p)		ptr_to_compat(p)
107 #define from_user_ptr(p)	compat_ptr(p)
108 
109 static inline int save_general_regs(struct pt_regs *regs,
110 		struct mcontext __user *frame)
111 {
112 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
113 	int i;
114 	/* Force usr to alway see softe as 1 (interrupts enabled) */
115 	elf_greg_t64 softe = 0x1;
116 
117 	WARN_ON(!FULL_REGS(regs));
118 
119 	for (i = 0; i <= PT_RESULT; i ++) {
120 		if (i == 14 && !FULL_REGS(regs))
121 			i = 32;
122 		if ( i == PT_SOFTE) {
123 			if(__put_user((unsigned int)softe, &frame->mc_gregs[i]))
124 				return -EFAULT;
125 			else
126 				continue;
127 		}
128 		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
129 			return -EFAULT;
130 	}
131 	return 0;
132 }
133 
134 static inline int restore_general_regs(struct pt_regs *regs,
135 		struct mcontext __user *sr)
136 {
137 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
138 	int i;
139 
140 	for (i = 0; i <= PT_RESULT; i++) {
141 		if ((i == PT_MSR) || (i == PT_SOFTE))
142 			continue;
143 		if (__get_user(gregs[i], &sr->mc_gregs[i]))
144 			return -EFAULT;
145 	}
146 	return 0;
147 }
148 
149 #else /* CONFIG_PPC64 */
150 
151 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
152 
153 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
154 {
155 	return copy_to_user(uset, set, sizeof(*uset));
156 }
157 
158 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
159 {
160 	return copy_from_user(set, uset, sizeof(*uset));
161 }
162 
163 #define to_user_ptr(p)		((unsigned long)(p))
164 #define from_user_ptr(p)	((void __user *)(p))
165 
166 static inline int save_general_regs(struct pt_regs *regs,
167 		struct mcontext __user *frame)
168 {
169 	WARN_ON(!FULL_REGS(regs));
170 	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
171 }
172 
173 static inline int restore_general_regs(struct pt_regs *regs,
174 		struct mcontext __user *sr)
175 {
176 	/* copy up to but not including MSR */
177 	if (__copy_from_user(regs, &sr->mc_gregs,
178 				PT_MSR * sizeof(elf_greg_t)))
179 		return -EFAULT;
180 	/* copy from orig_r3 (the word after the MSR) up to the end */
181 	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
182 				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
183 		return -EFAULT;
184 	return 0;
185 }
186 #endif
187 
188 /*
189  * When we have signals to deliver, we set up on the
190  * user stack, going down from the original stack pointer:
191  *	an ABI gap of 56 words
192  *	an mcontext struct
193  *	a sigcontext struct
194  *	a gap of __SIGNAL_FRAMESIZE bytes
195  *
196  * Each of these things must be a multiple of 16 bytes in size. The following
197  * structure represent all of this except the __SIGNAL_FRAMESIZE gap
198  *
199  */
200 struct sigframe {
201 	struct sigcontext sctx;		/* the sigcontext */
202 	struct mcontext	mctx;		/* all the register values */
203 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
204 	struct sigcontext sctx_transact;
205 	struct mcontext	mctx_transact;
206 #endif
207 	/*
208 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
209 	 * regs and 18 fp regs below sp before decrementing it.
210 	 */
211 	int			abigap[56];
212 };
213 
214 /* We use the mc_pad field for the signal return trampoline. */
215 #define tramp	mc_pad
216 
217 /*
218  *  When we have rt signals to deliver, we set up on the
219  *  user stack, going down from the original stack pointer:
220  *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
221  *	a gap of __SIGNAL_FRAMESIZE+16 bytes
222  *  (the +16 is to get the siginfo and ucontext in the same
223  *  positions as in older kernels).
224  *
225  *  Each of these things must be a multiple of 16 bytes in size.
226  *
227  */
228 struct rt_sigframe {
229 #ifdef CONFIG_PPC64
230 	compat_siginfo_t info;
231 #else
232 	struct siginfo info;
233 #endif
234 	struct ucontext	uc;
235 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
236 	struct ucontext	uc_transact;
237 #endif
238 	/*
239 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
240 	 * regs and 18 fp regs below sp before decrementing it.
241 	 */
242 	int			abigap[56];
243 };
244 
245 #ifdef CONFIG_VSX
246 unsigned long copy_fpr_to_user(void __user *to,
247 			       struct task_struct *task)
248 {
249 	u64 buf[ELF_NFPREG];
250 	int i;
251 
252 	/* save FPR copy to local buffer then write to the thread_struct */
253 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
254 		buf[i] = task->thread.TS_FPR(i);
255 	buf[i] = task->thread.fp_state.fpscr;
256 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
257 }
258 
259 unsigned long copy_fpr_from_user(struct task_struct *task,
260 				 void __user *from)
261 {
262 	u64 buf[ELF_NFPREG];
263 	int i;
264 
265 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
266 		return 1;
267 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
268 		task->thread.TS_FPR(i) = buf[i];
269 	task->thread.fp_state.fpscr = buf[i];
270 
271 	return 0;
272 }
273 
274 unsigned long copy_vsx_to_user(void __user *to,
275 			       struct task_struct *task)
276 {
277 	u64 buf[ELF_NVSRHALFREG];
278 	int i;
279 
280 	/* save FPR copy to local buffer then write to the thread_struct */
281 	for (i = 0; i < ELF_NVSRHALFREG; i++)
282 		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
283 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
284 }
285 
286 unsigned long copy_vsx_from_user(struct task_struct *task,
287 				 void __user *from)
288 {
289 	u64 buf[ELF_NVSRHALFREG];
290 	int i;
291 
292 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
293 		return 1;
294 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
295 		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
296 	return 0;
297 }
298 
299 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
300 unsigned long copy_ckfpr_to_user(void __user *to,
301 				  struct task_struct *task)
302 {
303 	u64 buf[ELF_NFPREG];
304 	int i;
305 
306 	/* save FPR copy to local buffer then write to the thread_struct */
307 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
308 		buf[i] = task->thread.TS_CKFPR(i);
309 	buf[i] = task->thread.ckfp_state.fpscr;
310 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
311 }
312 
313 unsigned long copy_ckfpr_from_user(struct task_struct *task,
314 					  void __user *from)
315 {
316 	u64 buf[ELF_NFPREG];
317 	int i;
318 
319 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
320 		return 1;
321 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
322 		task->thread.TS_CKFPR(i) = buf[i];
323 	task->thread.ckfp_state.fpscr = buf[i];
324 
325 	return 0;
326 }
327 
328 unsigned long copy_ckvsx_to_user(void __user *to,
329 				  struct task_struct *task)
330 {
331 	u64 buf[ELF_NVSRHALFREG];
332 	int i;
333 
334 	/* save FPR copy to local buffer then write to the thread_struct */
335 	for (i = 0; i < ELF_NVSRHALFREG; i++)
336 		buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
337 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
338 }
339 
340 unsigned long copy_ckvsx_from_user(struct task_struct *task,
341 					  void __user *from)
342 {
343 	u64 buf[ELF_NVSRHALFREG];
344 	int i;
345 
346 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
347 		return 1;
348 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
349 		task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
350 	return 0;
351 }
352 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
353 #else
354 inline unsigned long copy_fpr_to_user(void __user *to,
355 				      struct task_struct *task)
356 {
357 	return __copy_to_user(to, task->thread.fp_state.fpr,
358 			      ELF_NFPREG * sizeof(double));
359 }
360 
361 inline unsigned long copy_fpr_from_user(struct task_struct *task,
362 					void __user *from)
363 {
364 	return __copy_from_user(task->thread.fp_state.fpr, from,
365 			      ELF_NFPREG * sizeof(double));
366 }
367 
368 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
369 inline unsigned long copy_ckfpr_to_user(void __user *to,
370 					 struct task_struct *task)
371 {
372 	return __copy_to_user(to, task->thread.ckfp_state.fpr,
373 			      ELF_NFPREG * sizeof(double));
374 }
375 
376 inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
377 						 void __user *from)
378 {
379 	return __copy_from_user(task->thread.ckfp_state.fpr, from,
380 				ELF_NFPREG * sizeof(double));
381 }
382 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
383 #endif
384 
385 /*
386  * Save the current user registers on the user stack.
387  * We only save the altivec/spe registers if the process has used
388  * altivec/spe instructions at some point.
389  */
390 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
391 			  struct mcontext __user *tm_frame, int sigret,
392 			  int ctx_has_vsx_region)
393 {
394 	unsigned long msr = regs->msr;
395 
396 	/* Make sure floating point registers are stored in regs */
397 	flush_fp_to_thread(current);
398 
399 	/* save general registers */
400 	if (save_general_regs(regs, frame))
401 		return 1;
402 
403 #ifdef CONFIG_ALTIVEC
404 	/* save altivec registers */
405 	if (current->thread.used_vr) {
406 		flush_altivec_to_thread(current);
407 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
408 				   ELF_NVRREG * sizeof(vector128)))
409 			return 1;
410 		/* set MSR_VEC in the saved MSR value to indicate that
411 		   frame->mc_vregs contains valid data */
412 		msr |= MSR_VEC;
413 	}
414 	/* else assert((regs->msr & MSR_VEC) == 0) */
415 
416 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
417 	 * use altivec. Since VSCR only contains 32 bits saved in the least
418 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
419 	 * most significant bits of that same vector. --BenH
420 	 * Note that the current VRSAVE value is in the SPR at this point.
421 	 */
422 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
423 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
424 	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
425 		return 1;
426 #endif /* CONFIG_ALTIVEC */
427 	if (copy_fpr_to_user(&frame->mc_fregs, current))
428 		return 1;
429 
430 	/*
431 	 * Clear the MSR VSX bit to indicate there is no valid state attached
432 	 * to this context, except in the specific case below where we set it.
433 	 */
434 	msr &= ~MSR_VSX;
435 #ifdef CONFIG_VSX
436 	/*
437 	 * Copy VSR 0-31 upper half from thread_struct to local
438 	 * buffer, then write that to userspace.  Also set MSR_VSX in
439 	 * the saved MSR value to indicate that frame->mc_vregs
440 	 * contains valid data
441 	 */
442 	if (current->thread.used_vsr && ctx_has_vsx_region) {
443 		flush_vsx_to_thread(current);
444 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
445 			return 1;
446 		msr |= MSR_VSX;
447 	}
448 #endif /* CONFIG_VSX */
449 #ifdef CONFIG_SPE
450 	/* save spe registers */
451 	if (current->thread.used_spe) {
452 		flush_spe_to_thread(current);
453 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
454 				   ELF_NEVRREG * sizeof(u32)))
455 			return 1;
456 		/* set MSR_SPE in the saved MSR value to indicate that
457 		   frame->mc_vregs contains valid data */
458 		msr |= MSR_SPE;
459 	}
460 	/* else assert((regs->msr & MSR_SPE) == 0) */
461 
462 	/* We always copy to/from spefscr */
463 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
464 		return 1;
465 #endif /* CONFIG_SPE */
466 
467 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
468 		return 1;
469 	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
470 	 * can check it on the restore to see if TM is active
471 	 */
472 	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
473 		return 1;
474 
475 	if (sigret) {
476 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
477 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
478 		    || __put_user(0x44000002UL, &frame->tramp[1]))
479 			return 1;
480 		flush_icache_range((unsigned long) &frame->tramp[0],
481 				   (unsigned long) &frame->tramp[2]);
482 	}
483 
484 	return 0;
485 }
486 
487 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
488 /*
489  * Save the current user registers on the user stack.
490  * We only save the altivec/spe registers if the process has used
491  * altivec/spe instructions at some point.
492  * We also save the transactional registers to a second ucontext in the
493  * frame.
494  *
495  * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
496  */
497 static int save_tm_user_regs(struct pt_regs *regs,
498 			     struct mcontext __user *frame,
499 			     struct mcontext __user *tm_frame, int sigret)
500 {
501 	unsigned long msr = regs->msr;
502 
503 	WARN_ON(tm_suspend_disabled);
504 
505 	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
506 	 * just indicates to userland that we were doing a transaction, but we
507 	 * don't want to return in transactional state.  This also ensures
508 	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
509 	 */
510 	regs->msr &= ~MSR_TS_MASK;
511 
512 	/* Save both sets of general registers */
513 	if (save_general_regs(&current->thread.ckpt_regs, frame)
514 	    || save_general_regs(regs, tm_frame))
515 		return 1;
516 
517 	/* Stash the top half of the 64bit MSR into the 32bit MSR word
518 	 * of the transactional mcontext.  This way we have a backward-compatible
519 	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
520 	 * also look at what type of transaction (T or S) was active at the
521 	 * time of the signal.
522 	 */
523 	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
524 		return 1;
525 
526 #ifdef CONFIG_ALTIVEC
527 	/* save altivec registers */
528 	if (current->thread.used_vr) {
529 		if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
530 				   ELF_NVRREG * sizeof(vector128)))
531 			return 1;
532 		if (msr & MSR_VEC) {
533 			if (__copy_to_user(&tm_frame->mc_vregs,
534 					   &current->thread.vr_state,
535 					   ELF_NVRREG * sizeof(vector128)))
536 				return 1;
537 		} else {
538 			if (__copy_to_user(&tm_frame->mc_vregs,
539 					   &current->thread.ckvr_state,
540 					   ELF_NVRREG * sizeof(vector128)))
541 				return 1;
542 		}
543 
544 		/* set MSR_VEC in the saved MSR value to indicate that
545 		 * frame->mc_vregs contains valid data
546 		 */
547 		msr |= MSR_VEC;
548 	}
549 
550 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
551 	 * use altivec. Since VSCR only contains 32 bits saved in the least
552 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
553 	 * most significant bits of that same vector. --BenH
554 	 */
555 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
556 		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
557 	if (__put_user(current->thread.ckvrsave,
558 		       (u32 __user *)&frame->mc_vregs[32]))
559 		return 1;
560 	if (msr & MSR_VEC) {
561 		if (__put_user(current->thread.vrsave,
562 			       (u32 __user *)&tm_frame->mc_vregs[32]))
563 			return 1;
564 	} else {
565 		if (__put_user(current->thread.ckvrsave,
566 			       (u32 __user *)&tm_frame->mc_vregs[32]))
567 			return 1;
568 	}
569 #endif /* CONFIG_ALTIVEC */
570 
571 	if (copy_ckfpr_to_user(&frame->mc_fregs, current))
572 		return 1;
573 	if (msr & MSR_FP) {
574 		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
575 			return 1;
576 	} else {
577 		if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
578 			return 1;
579 	}
580 
581 #ifdef CONFIG_VSX
582 	/*
583 	 * Copy VSR 0-31 upper half from thread_struct to local
584 	 * buffer, then write that to userspace.  Also set MSR_VSX in
585 	 * the saved MSR value to indicate that frame->mc_vregs
586 	 * contains valid data
587 	 */
588 	if (current->thread.used_vsr) {
589 		if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
590 			return 1;
591 		if (msr & MSR_VSX) {
592 			if (copy_vsx_to_user(&tm_frame->mc_vsregs,
593 						      current))
594 				return 1;
595 		} else {
596 			if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
597 				return 1;
598 		}
599 
600 		msr |= MSR_VSX;
601 	}
602 #endif /* CONFIG_VSX */
603 #ifdef CONFIG_SPE
604 	/* SPE regs are not checkpointed with TM, so this section is
605 	 * simply the same as in save_user_regs().
606 	 */
607 	if (current->thread.used_spe) {
608 		flush_spe_to_thread(current);
609 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
610 				   ELF_NEVRREG * sizeof(u32)))
611 			return 1;
612 		/* set MSR_SPE in the saved MSR value to indicate that
613 		 * frame->mc_vregs contains valid data */
614 		msr |= MSR_SPE;
615 	}
616 
617 	/* We always copy to/from spefscr */
618 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
619 		return 1;
620 #endif /* CONFIG_SPE */
621 
622 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
623 		return 1;
624 	if (sigret) {
625 		/* Set up the sigreturn trampoline: li r0,sigret; sc */
626 		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
627 		    || __put_user(0x44000002UL, &frame->tramp[1]))
628 			return 1;
629 		flush_icache_range((unsigned long) &frame->tramp[0],
630 				   (unsigned long) &frame->tramp[2]);
631 	}
632 
633 	return 0;
634 }
635 #endif
636 
637 /*
638  * Restore the current user register values from the user stack,
639  * (except for MSR).
640  */
641 static long restore_user_regs(struct pt_regs *regs,
642 			      struct mcontext __user *sr, int sig)
643 {
644 	long err;
645 	unsigned int save_r2 = 0;
646 	unsigned long msr;
647 #ifdef CONFIG_VSX
648 	int i;
649 #endif
650 
651 	/*
652 	 * restore general registers but not including MSR or SOFTE. Also
653 	 * take care of keeping r2 (TLS) intact if not a signal
654 	 */
655 	if (!sig)
656 		save_r2 = (unsigned int)regs->gpr[2];
657 	err = restore_general_regs(regs, sr);
658 	regs->trap = 0;
659 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
660 	if (!sig)
661 		regs->gpr[2] = (unsigned long) save_r2;
662 	if (err)
663 		return 1;
664 
665 	/* if doing signal return, restore the previous little-endian mode */
666 	if (sig)
667 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
668 
669 #ifdef CONFIG_ALTIVEC
670 	/*
671 	 * Force the process to reload the altivec registers from
672 	 * current->thread when it next does altivec instructions
673 	 */
674 	regs->msr &= ~MSR_VEC;
675 	if (msr & MSR_VEC) {
676 		/* restore altivec registers from the stack */
677 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
678 				     sizeof(sr->mc_vregs)))
679 			return 1;
680 		current->thread.used_vr = true;
681 	} else if (current->thread.used_vr)
682 		memset(&current->thread.vr_state, 0,
683 		       ELF_NVRREG * sizeof(vector128));
684 
685 	/* Always get VRSAVE back */
686 	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
687 		return 1;
688 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
689 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
690 #endif /* CONFIG_ALTIVEC */
691 	if (copy_fpr_from_user(current, &sr->mc_fregs))
692 		return 1;
693 
694 #ifdef CONFIG_VSX
695 	/*
696 	 * Force the process to reload the VSX registers from
697 	 * current->thread when it next does VSX instruction.
698 	 */
699 	regs->msr &= ~MSR_VSX;
700 	if (msr & MSR_VSX) {
701 		/*
702 		 * Restore altivec registers from the stack to a local
703 		 * buffer, then write this out to the thread_struct
704 		 */
705 		if (copy_vsx_from_user(current, &sr->mc_vsregs))
706 			return 1;
707 		current->thread.used_vsr = true;
708 	} else if (current->thread.used_vsr)
709 		for (i = 0; i < 32 ; i++)
710 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
711 #endif /* CONFIG_VSX */
712 	/*
713 	 * force the process to reload the FP registers from
714 	 * current->thread when it next does FP instructions
715 	 */
716 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
717 
718 #ifdef CONFIG_SPE
719 	/* force the process to reload the spe registers from
720 	   current->thread when it next does spe instructions */
721 	regs->msr &= ~MSR_SPE;
722 	if (msr & MSR_SPE) {
723 		/* restore spe registers from the stack */
724 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
725 				     ELF_NEVRREG * sizeof(u32)))
726 			return 1;
727 		current->thread.used_spe = true;
728 	} else if (current->thread.used_spe)
729 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
730 
731 	/* Always get SPEFSCR back */
732 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
733 		return 1;
734 #endif /* CONFIG_SPE */
735 
736 	return 0;
737 }
738 
739 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
740 /*
741  * Restore the current user register values from the user stack, except for
742  * MSR, and recheckpoint the original checkpointed register state for processes
743  * in transactions.
744  */
745 static long restore_tm_user_regs(struct pt_regs *regs,
746 				 struct mcontext __user *sr,
747 				 struct mcontext __user *tm_sr)
748 {
749 	long err;
750 	unsigned long msr, msr_hi;
751 #ifdef CONFIG_VSX
752 	int i;
753 #endif
754 
755 	if (tm_suspend_disabled)
756 		return 1;
757 	/*
758 	 * restore general registers but not including MSR or SOFTE. Also
759 	 * take care of keeping r2 (TLS) intact if not a signal.
760 	 * See comment in signal_64.c:restore_tm_sigcontexts();
761 	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
762 	 * were set by the signal delivery.
763 	 */
764 	err = restore_general_regs(regs, tm_sr);
765 	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
766 
767 	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
768 
769 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
770 	if (err)
771 		return 1;
772 
773 	/* Restore the previous little-endian mode */
774 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
775 
776 #ifdef CONFIG_ALTIVEC
777 	regs->msr &= ~MSR_VEC;
778 	if (msr & MSR_VEC) {
779 		/* restore altivec registers from the stack */
780 		if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
781 				     sizeof(sr->mc_vregs)) ||
782 		    __copy_from_user(&current->thread.vr_state,
783 				     &tm_sr->mc_vregs,
784 				     sizeof(sr->mc_vregs)))
785 			return 1;
786 		current->thread.used_vr = true;
787 	} else if (current->thread.used_vr) {
788 		memset(&current->thread.vr_state, 0,
789 		       ELF_NVRREG * sizeof(vector128));
790 		memset(&current->thread.ckvr_state, 0,
791 		       ELF_NVRREG * sizeof(vector128));
792 	}
793 
794 	/* Always get VRSAVE back */
795 	if (__get_user(current->thread.ckvrsave,
796 		       (u32 __user *)&sr->mc_vregs[32]) ||
797 	    __get_user(current->thread.vrsave,
798 		       (u32 __user *)&tm_sr->mc_vregs[32]))
799 		return 1;
800 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
801 		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
802 #endif /* CONFIG_ALTIVEC */
803 
804 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
805 
806 	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
807 	    copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
808 		return 1;
809 
810 #ifdef CONFIG_VSX
811 	regs->msr &= ~MSR_VSX;
812 	if (msr & MSR_VSX) {
813 		/*
814 		 * Restore altivec registers from the stack to a local
815 		 * buffer, then write this out to the thread_struct
816 		 */
817 		if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
818 		    copy_ckvsx_from_user(current, &sr->mc_vsregs))
819 			return 1;
820 		current->thread.used_vsr = true;
821 	} else if (current->thread.used_vsr)
822 		for (i = 0; i < 32 ; i++) {
823 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
824 			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
825 		}
826 #endif /* CONFIG_VSX */
827 
828 #ifdef CONFIG_SPE
829 	/* SPE regs are not checkpointed with TM, so this section is
830 	 * simply the same as in restore_user_regs().
831 	 */
832 	regs->msr &= ~MSR_SPE;
833 	if (msr & MSR_SPE) {
834 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
835 				     ELF_NEVRREG * sizeof(u32)))
836 			return 1;
837 		current->thread.used_spe = true;
838 	} else if (current->thread.used_spe)
839 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
840 
841 	/* Always get SPEFSCR back */
842 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
843 		       + ELF_NEVRREG))
844 		return 1;
845 #endif /* CONFIG_SPE */
846 
847 	/* Get the top half of the MSR from the user context */
848 	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
849 		return 1;
850 	msr_hi <<= 32;
851 	/* If TM bits are set to the reserved value, it's an invalid context */
852 	if (MSR_TM_RESV(msr_hi))
853 		return 1;
854 	/* Pull in the MSR TM bits from the user context */
855 	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
856 	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
857 	 * registers, including FP and V[S]Rs.  After recheckpointing, the
858 	 * transactional versions should be loaded.
859 	 */
860 	tm_enable();
861 	/* Make sure the transaction is marked as failed */
862 	current->thread.tm_texasr |= TEXASR_FS;
863 	/* This loads the checkpointed FP/VEC state, if used */
864 	tm_recheckpoint(&current->thread);
865 
866 	/* This loads the speculative FP/VEC state, if used */
867 	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
868 	if (msr & MSR_FP) {
869 		load_fp_state(&current->thread.fp_state);
870 		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
871 	}
872 #ifdef CONFIG_ALTIVEC
873 	if (msr & MSR_VEC) {
874 		load_vr_state(&current->thread.vr_state);
875 		regs->msr |= MSR_VEC;
876 	}
877 #endif
878 
879 	return 0;
880 }
881 #endif
882 
883 #ifdef CONFIG_PPC64
884 
885 #define copy_siginfo_to_user	copy_siginfo_to_user32
886 
887 #endif /* CONFIG_PPC64 */
888 
889 /*
890  * Set up a signal frame for a "real-time" signal handler
891  * (one which gets siginfo).
892  */
893 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
894 		       struct task_struct *tsk)
895 {
896 	struct rt_sigframe __user *rt_sf;
897 	struct mcontext __user *frame;
898 	struct mcontext __user *tm_frame = NULL;
899 	void __user *addr;
900 	unsigned long newsp = 0;
901 	int sigret;
902 	unsigned long tramp;
903 	struct pt_regs *regs = tsk->thread.regs;
904 
905 	BUG_ON(tsk != current);
906 
907 	/* Set up Signal Frame */
908 	/* Put a Real Time Context onto stack */
909 	rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
910 	addr = rt_sf;
911 	if (unlikely(rt_sf == NULL))
912 		goto badframe;
913 
914 	/* Put the siginfo & fill in most of the ucontext */
915 	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
916 	    || __put_user(0, &rt_sf->uc.uc_flags)
917 	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
918 	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
919 		    &rt_sf->uc.uc_regs)
920 	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
921 		goto badframe;
922 
923 	/* Save user registers on the stack */
924 	frame = &rt_sf->uc.uc_mcontext;
925 	addr = frame;
926 	if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
927 		sigret = 0;
928 		tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
929 	} else {
930 		sigret = __NR_rt_sigreturn;
931 		tramp = (unsigned long) frame->tramp;
932 	}
933 
934 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
935 	tm_frame = &rt_sf->uc_transact.uc_mcontext;
936 	if (MSR_TM_ACTIVE(regs->msr)) {
937 		if (__put_user((unsigned long)&rt_sf->uc_transact,
938 			       &rt_sf->uc.uc_link) ||
939 		    __put_user((unsigned long)tm_frame,
940 			       &rt_sf->uc_transact.uc_regs))
941 			goto badframe;
942 		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
943 			goto badframe;
944 	}
945 	else
946 #endif
947 	{
948 		if (__put_user(0, &rt_sf->uc.uc_link))
949 			goto badframe;
950 		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
951 			goto badframe;
952 	}
953 	regs->link = tramp;
954 
955 	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
956 
957 	/* create a stack frame for the caller of the handler */
958 	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
959 	addr = (void __user *)regs->gpr[1];
960 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
961 		goto badframe;
962 
963 	/* Fill registers for signal handler */
964 	regs->gpr[1] = newsp;
965 	regs->gpr[3] = ksig->sig;
966 	regs->gpr[4] = (unsigned long) &rt_sf->info;
967 	regs->gpr[5] = (unsigned long) &rt_sf->uc;
968 	regs->gpr[6] = (unsigned long) rt_sf;
969 	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
970 	/* enter the signal handler in native-endian mode */
971 	regs->msr &= ~MSR_LE;
972 	regs->msr |= (MSR_KERNEL & MSR_LE);
973 	return 0;
974 
975 badframe:
976 	if (show_unhandled_signals)
977 		printk_ratelimited(KERN_INFO
978 				   "%s[%d]: bad frame in handle_rt_signal32: "
979 				   "%p nip %08lx lr %08lx\n",
980 				   tsk->comm, tsk->pid,
981 				   addr, regs->nip, regs->link);
982 
983 	return 1;
984 }
985 
986 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
987 {
988 	sigset_t set;
989 	struct mcontext __user *mcp;
990 
991 	if (get_sigset_t(&set, &ucp->uc_sigmask))
992 		return -EFAULT;
993 #ifdef CONFIG_PPC64
994 	{
995 		u32 cmcp;
996 
997 		if (__get_user(cmcp, &ucp->uc_regs))
998 			return -EFAULT;
999 		mcp = (struct mcontext __user *)(u64)cmcp;
1000 		/* no need to check access_ok(mcp), since mcp < 4GB */
1001 	}
1002 #else
1003 	if (__get_user(mcp, &ucp->uc_regs))
1004 		return -EFAULT;
1005 	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1006 		return -EFAULT;
1007 #endif
1008 	set_current_blocked(&set);
1009 	if (restore_user_regs(regs, mcp, sig))
1010 		return -EFAULT;
1011 
1012 	return 0;
1013 }
1014 
1015 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1016 static int do_setcontext_tm(struct ucontext __user *ucp,
1017 			    struct ucontext __user *tm_ucp,
1018 			    struct pt_regs *regs)
1019 {
1020 	sigset_t set;
1021 	struct mcontext __user *mcp;
1022 	struct mcontext __user *tm_mcp;
1023 	u32 cmcp;
1024 	u32 tm_cmcp;
1025 
1026 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1027 		return -EFAULT;
1028 
1029 	if (__get_user(cmcp, &ucp->uc_regs) ||
1030 	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1031 		return -EFAULT;
1032 	mcp = (struct mcontext __user *)(u64)cmcp;
1033 	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1034 	/* no need to check access_ok(mcp), since mcp < 4GB */
1035 
1036 	set_current_blocked(&set);
1037 	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1038 		return -EFAULT;
1039 
1040 	return 0;
1041 }
1042 #endif
1043 
1044 long sys_swapcontext(struct ucontext __user *old_ctx,
1045 		     struct ucontext __user *new_ctx,
1046 		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1047 {
1048 	unsigned char tmp __maybe_unused;
1049 	int ctx_has_vsx_region = 0;
1050 
1051 #ifdef CONFIG_PPC64
1052 	unsigned long new_msr = 0;
1053 
1054 	if (new_ctx) {
1055 		struct mcontext __user *mcp;
1056 		u32 cmcp;
1057 
1058 		/*
1059 		 * Get pointer to the real mcontext.  No need for
1060 		 * access_ok since we are dealing with compat
1061 		 * pointers.
1062 		 */
1063 		if (__get_user(cmcp, &new_ctx->uc_regs))
1064 			return -EFAULT;
1065 		mcp = (struct mcontext __user *)(u64)cmcp;
1066 		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1067 			return -EFAULT;
1068 	}
1069 	/*
1070 	 * Check that the context is not smaller than the original
1071 	 * size (with VMX but without VSX)
1072 	 */
1073 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1074 		return -EINVAL;
1075 	/*
1076 	 * If the new context state sets the MSR VSX bits but
1077 	 * it doesn't provide VSX state.
1078 	 */
1079 	if ((ctx_size < sizeof(struct ucontext)) &&
1080 	    (new_msr & MSR_VSX))
1081 		return -EINVAL;
1082 	/* Does the context have enough room to store VSX data? */
1083 	if (ctx_size >= sizeof(struct ucontext))
1084 		ctx_has_vsx_region = 1;
1085 #else
1086 	/* Context size is for future use. Right now, we only make sure
1087 	 * we are passed something we understand
1088 	 */
1089 	if (ctx_size < sizeof(struct ucontext))
1090 		return -EINVAL;
1091 #endif
1092 	if (old_ctx != NULL) {
1093 		struct mcontext __user *mctx;
1094 
1095 		/*
1096 		 * old_ctx might not be 16-byte aligned, in which
1097 		 * case old_ctx->uc_mcontext won't be either.
1098 		 * Because we have the old_ctx->uc_pad2 field
1099 		 * before old_ctx->uc_mcontext, we need to round down
1100 		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1101 		 */
1102 		mctx = (struct mcontext __user *)
1103 			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1104 		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1105 		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1106 		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1107 		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1108 			return -EFAULT;
1109 	}
1110 	if (new_ctx == NULL)
1111 		return 0;
1112 	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1113 	    || __get_user(tmp, (u8 __user *) new_ctx)
1114 	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1115 		return -EFAULT;
1116 
1117 	/*
1118 	 * If we get a fault copying the context into the kernel's
1119 	 * image of the user's registers, we can't just return -EFAULT
1120 	 * because the user's registers will be corrupted.  For instance
1121 	 * the NIP value may have been updated but not some of the
1122 	 * other registers.  Given that we have done the access_ok
1123 	 * and successfully read the first and last bytes of the region
1124 	 * above, this should only happen in an out-of-memory situation
1125 	 * or if another thread unmaps the region containing the context.
1126 	 * We kill the task with a SIGSEGV in this situation.
1127 	 */
1128 	if (do_setcontext(new_ctx, regs, 0))
1129 		do_exit(SIGSEGV);
1130 
1131 	set_thread_flag(TIF_RESTOREALL);
1132 	return 0;
1133 }
1134 
1135 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1136 		     struct pt_regs *regs)
1137 {
1138 	struct rt_sigframe __user *rt_sf;
1139 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1140 	struct ucontext __user *uc_transact;
1141 	unsigned long msr_hi;
1142 	unsigned long tmp;
1143 	int tm_restore = 0;
1144 #endif
1145 	/* Always make any pending restarted system calls return -EINTR */
1146 	current->restart_block.fn = do_no_restart_syscall;
1147 
1148 	rt_sf = (struct rt_sigframe __user *)
1149 		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1150 	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1151 		goto bad;
1152 
1153 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1154 	/*
1155 	 * If there is a transactional state then throw it away.
1156 	 * The purpose of a sigreturn is to destroy all traces of the
1157 	 * signal frame, this includes any transactional state created
1158 	 * within in. We only check for suspended as we can never be
1159 	 * active in the kernel, we are active, there is nothing better to
1160 	 * do than go ahead and Bad Thing later.
1161 	 * The cause is not important as there will never be a
1162 	 * recheckpoint so it's not user visible.
1163 	 */
1164 	if (MSR_TM_SUSPENDED(mfmsr()))
1165 		tm_reclaim_current(0);
1166 
1167 	if (__get_user(tmp, &rt_sf->uc.uc_link))
1168 		goto bad;
1169 	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1170 	if (uc_transact) {
1171 		u32 cmcp;
1172 		struct mcontext __user *mcp;
1173 
1174 		if (__get_user(cmcp, &uc_transact->uc_regs))
1175 			return -EFAULT;
1176 		mcp = (struct mcontext __user *)(u64)cmcp;
1177 		/* The top 32 bits of the MSR are stashed in the transactional
1178 		 * ucontext. */
1179 		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1180 			goto bad;
1181 
1182 		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1183 			/* We only recheckpoint on return if we're
1184 			 * transaction.
1185 			 */
1186 			tm_restore = 1;
1187 			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1188 				goto bad;
1189 		}
1190 	}
1191 	if (!tm_restore)
1192 		/* Fall through, for non-TM restore */
1193 #endif
1194 	if (do_setcontext(&rt_sf->uc, regs, 1))
1195 		goto bad;
1196 
1197 	/*
1198 	 * It's not clear whether or why it is desirable to save the
1199 	 * sigaltstack setting on signal delivery and restore it on
1200 	 * signal return.  But other architectures do this and we have
1201 	 * always done it up until now so it is probably better not to
1202 	 * change it.  -- paulus
1203 	 */
1204 #ifdef CONFIG_PPC64
1205 	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1206 		goto bad;
1207 #else
1208 	if (restore_altstack(&rt_sf->uc.uc_stack))
1209 		goto bad;
1210 #endif
1211 	set_thread_flag(TIF_RESTOREALL);
1212 	return 0;
1213 
1214  bad:
1215 	if (show_unhandled_signals)
1216 		printk_ratelimited(KERN_INFO
1217 				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1218 				   "%p nip %08lx lr %08lx\n",
1219 				   current->comm, current->pid,
1220 				   rt_sf, regs->nip, regs->link);
1221 
1222 	force_sig(SIGSEGV, current);
1223 	return 0;
1224 }
1225 
1226 #ifdef CONFIG_PPC32
1227 int sys_debug_setcontext(struct ucontext __user *ctx,
1228 			 int ndbg, struct sig_dbg_op __user *dbg,
1229 			 int r6, int r7, int r8,
1230 			 struct pt_regs *regs)
1231 {
1232 	struct sig_dbg_op op;
1233 	int i;
1234 	unsigned char tmp __maybe_unused;
1235 	unsigned long new_msr = regs->msr;
1236 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1237 	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1238 #endif
1239 
1240 	for (i=0; i<ndbg; i++) {
1241 		if (copy_from_user(&op, dbg + i, sizeof(op)))
1242 			return -EFAULT;
1243 		switch (op.dbg_type) {
1244 		case SIG_DBG_SINGLE_STEPPING:
1245 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1246 			if (op.dbg_value) {
1247 				new_msr |= MSR_DE;
1248 				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1249 			} else {
1250 				new_dbcr0 &= ~DBCR0_IC;
1251 				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1252 						current->thread.debug.dbcr1)) {
1253 					new_msr &= ~MSR_DE;
1254 					new_dbcr0 &= ~DBCR0_IDM;
1255 				}
1256 			}
1257 #else
1258 			if (op.dbg_value)
1259 				new_msr |= MSR_SE;
1260 			else
1261 				new_msr &= ~MSR_SE;
1262 #endif
1263 			break;
1264 		case SIG_DBG_BRANCH_TRACING:
1265 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1266 			return -EINVAL;
1267 #else
1268 			if (op.dbg_value)
1269 				new_msr |= MSR_BE;
1270 			else
1271 				new_msr &= ~MSR_BE;
1272 #endif
1273 			break;
1274 
1275 		default:
1276 			return -EINVAL;
1277 		}
1278 	}
1279 
1280 	/* We wait until here to actually install the values in the
1281 	   registers so if we fail in the above loop, it will not
1282 	   affect the contents of these registers.  After this point,
1283 	   failure is a problem, anyway, and it's very unlikely unless
1284 	   the user is really doing something wrong. */
1285 	regs->msr = new_msr;
1286 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1287 	current->thread.debug.dbcr0 = new_dbcr0;
1288 #endif
1289 
1290 	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1291 	    || __get_user(tmp, (u8 __user *) ctx)
1292 	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1293 		return -EFAULT;
1294 
1295 	/*
1296 	 * If we get a fault copying the context into the kernel's
1297 	 * image of the user's registers, we can't just return -EFAULT
1298 	 * because the user's registers will be corrupted.  For instance
1299 	 * the NIP value may have been updated but not some of the
1300 	 * other registers.  Given that we have done the access_ok
1301 	 * and successfully read the first and last bytes of the region
1302 	 * above, this should only happen in an out-of-memory situation
1303 	 * or if another thread unmaps the region containing the context.
1304 	 * We kill the task with a SIGSEGV in this situation.
1305 	 */
1306 	if (do_setcontext(ctx, regs, 1)) {
1307 		if (show_unhandled_signals)
1308 			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1309 					   "sys_debug_setcontext: %p nip %08lx "
1310 					   "lr %08lx\n",
1311 					   current->comm, current->pid,
1312 					   ctx, regs->nip, regs->link);
1313 
1314 		force_sig(SIGSEGV, current);
1315 		goto out;
1316 	}
1317 
1318 	/*
1319 	 * It's not clear whether or why it is desirable to save the
1320 	 * sigaltstack setting on signal delivery and restore it on
1321 	 * signal return.  But other architectures do this and we have
1322 	 * always done it up until now so it is probably better not to
1323 	 * change it.  -- paulus
1324 	 */
1325 	restore_altstack(&ctx->uc_stack);
1326 
1327 	set_thread_flag(TIF_RESTOREALL);
1328  out:
1329 	return 0;
1330 }
1331 #endif
1332 
1333 /*
1334  * OK, we're invoking a handler
1335  */
1336 int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1337 		struct task_struct *tsk)
1338 {
1339 	struct sigcontext __user *sc;
1340 	struct sigframe __user *frame;
1341 	struct mcontext __user *tm_mctx = NULL;
1342 	unsigned long newsp = 0;
1343 	int sigret;
1344 	unsigned long tramp;
1345 	struct pt_regs *regs = tsk->thread.regs;
1346 
1347 	BUG_ON(tsk != current);
1348 
1349 	/* Set up Signal Frame */
1350 	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1351 	if (unlikely(frame == NULL))
1352 		goto badframe;
1353 	sc = (struct sigcontext __user *) &frame->sctx;
1354 
1355 #if _NSIG != 64
1356 #error "Please adjust handle_signal()"
1357 #endif
1358 	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1359 	    || __put_user(oldset->sig[0], &sc->oldmask)
1360 #ifdef CONFIG_PPC64
1361 	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1362 #else
1363 	    || __put_user(oldset->sig[1], &sc->_unused[3])
1364 #endif
1365 	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1366 	    || __put_user(ksig->sig, &sc->signal))
1367 		goto badframe;
1368 
1369 	if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1370 		sigret = 0;
1371 		tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1372 	} else {
1373 		sigret = __NR_sigreturn;
1374 		tramp = (unsigned long) frame->mctx.tramp;
1375 	}
1376 
1377 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1378 	tm_mctx = &frame->mctx_transact;
1379 	if (MSR_TM_ACTIVE(regs->msr)) {
1380 		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1381 				      sigret))
1382 			goto badframe;
1383 	}
1384 	else
1385 #endif
1386 	{
1387 		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1388 			goto badframe;
1389 	}
1390 
1391 	regs->link = tramp;
1392 
1393 	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1394 
1395 	/* create a stack frame for the caller of the handler */
1396 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1397 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1398 		goto badframe;
1399 
1400 	regs->gpr[1] = newsp;
1401 	regs->gpr[3] = ksig->sig;
1402 	regs->gpr[4] = (unsigned long) sc;
1403 	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1404 	/* enter the signal handler in big-endian mode */
1405 	regs->msr &= ~MSR_LE;
1406 	return 0;
1407 
1408 badframe:
1409 	if (show_unhandled_signals)
1410 		printk_ratelimited(KERN_INFO
1411 				   "%s[%d]: bad frame in handle_signal32: "
1412 				   "%p nip %08lx lr %08lx\n",
1413 				   tsk->comm, tsk->pid,
1414 				   frame, regs->nip, regs->link);
1415 
1416 	return 1;
1417 }
1418 
1419 /*
1420  * Do a signal return; undo the signal stack.
1421  */
1422 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1423 		       struct pt_regs *regs)
1424 {
1425 	struct sigframe __user *sf;
1426 	struct sigcontext __user *sc;
1427 	struct sigcontext sigctx;
1428 	struct mcontext __user *sr;
1429 	void __user *addr;
1430 	sigset_t set;
1431 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1432 	struct mcontext __user *mcp, *tm_mcp;
1433 	unsigned long msr_hi;
1434 #endif
1435 
1436 	/* Always make any pending restarted system calls return -EINTR */
1437 	current->restart_block.fn = do_no_restart_syscall;
1438 
1439 	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1440 	sc = &sf->sctx;
1441 	addr = sc;
1442 	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1443 		goto badframe;
1444 
1445 #ifdef CONFIG_PPC64
1446 	/*
1447 	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1448 	 * unused part of the signal stackframe
1449 	 */
1450 	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1451 #else
1452 	set.sig[0] = sigctx.oldmask;
1453 	set.sig[1] = sigctx._unused[3];
1454 #endif
1455 	set_current_blocked(&set);
1456 
1457 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1458 	mcp = (struct mcontext __user *)&sf->mctx;
1459 	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1460 	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1461 		goto badframe;
1462 	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1463 		if (!cpu_has_feature(CPU_FTR_TM))
1464 			goto badframe;
1465 		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1466 			goto badframe;
1467 	} else
1468 #endif
1469 	{
1470 		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1471 		addr = sr;
1472 		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1473 		    || restore_user_regs(regs, sr, 1))
1474 			goto badframe;
1475 	}
1476 
1477 	set_thread_flag(TIF_RESTOREALL);
1478 	return 0;
1479 
1480 badframe:
1481 	if (show_unhandled_signals)
1482 		printk_ratelimited(KERN_INFO
1483 				   "%s[%d]: bad frame in sys_sigreturn: "
1484 				   "%p nip %08lx lr %08lx\n",
1485 				   current->comm, current->pid,
1486 				   addr, regs->nip, regs->link);
1487 
1488 	force_sig(SIGSEGV, current);
1489 	return 0;
1490 }
1491