xref: /openbmc/linux/arch/powerpc/kernel/signal.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 /*
2  * Common signal handling code for both 32 and 64 bits
3  *
4  *    Copyright (c) 2007 Benjamin Herrenschmidt, IBM Corporation
5  *    Extracted from signal_32.c and signal_64.c
6  *
7  * This file is subject to the terms and conditions of the GNU General
8  * Public License.  See the file README.legal in the main directory of
9  * this archive for more details.
10  */
11 
12 #include <linux/resume_user_mode.h>
13 #include <linux/signal.h>
14 #include <linux/uprobes.h>
15 #include <linux/key.h>
16 #include <linux/context_tracking.h>
17 #include <linux/livepatch.h>
18 #include <linux/syscalls.h>
19 #include <asm/hw_breakpoint.h>
20 #include <linux/uaccess.h>
21 #include <asm/switch_to.h>
22 #include <asm/unistd.h>
23 #include <asm/debug.h>
24 #include <asm/tm.h>
25 
26 #include "signal.h"
27 
28 #ifdef CONFIG_VSX
29 unsigned long copy_fpr_to_user(void __user *to,
30 			       struct task_struct *task)
31 {
32 	u64 buf[ELF_NFPREG];
33 	int i;
34 
35 	/* save FPR copy to local buffer then write to the thread_struct */
36 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
37 		buf[i] = task->thread.TS_FPR(i);
38 	buf[i] = task->thread.fp_state.fpscr;
39 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
40 }
41 
42 unsigned long copy_fpr_from_user(struct task_struct *task,
43 				 void __user *from)
44 {
45 	u64 buf[ELF_NFPREG];
46 	int i;
47 
48 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
49 		return 1;
50 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
51 		task->thread.TS_FPR(i) = buf[i];
52 	task->thread.fp_state.fpscr = buf[i];
53 
54 	return 0;
55 }
56 
57 unsigned long copy_vsx_to_user(void __user *to,
58 			       struct task_struct *task)
59 {
60 	u64 buf[ELF_NVSRHALFREG];
61 	int i;
62 
63 	/* save FPR copy to local buffer then write to the thread_struct */
64 	for (i = 0; i < ELF_NVSRHALFREG; i++)
65 		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
66 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
67 }
68 
69 unsigned long copy_vsx_from_user(struct task_struct *task,
70 				 void __user *from)
71 {
72 	u64 buf[ELF_NVSRHALFREG];
73 	int i;
74 
75 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
76 		return 1;
77 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
78 		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
79 	return 0;
80 }
81 
82 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
83 unsigned long copy_ckfpr_to_user(void __user *to,
84 				  struct task_struct *task)
85 {
86 	u64 buf[ELF_NFPREG];
87 	int i;
88 
89 	/* save FPR copy to local buffer then write to the thread_struct */
90 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
91 		buf[i] = task->thread.TS_CKFPR(i);
92 	buf[i] = task->thread.ckfp_state.fpscr;
93 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
94 }
95 
96 unsigned long copy_ckfpr_from_user(struct task_struct *task,
97 					  void __user *from)
98 {
99 	u64 buf[ELF_NFPREG];
100 	int i;
101 
102 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
103 		return 1;
104 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
105 		task->thread.TS_CKFPR(i) = buf[i];
106 	task->thread.ckfp_state.fpscr = buf[i];
107 
108 	return 0;
109 }
110 
111 unsigned long copy_ckvsx_to_user(void __user *to,
112 				  struct task_struct *task)
113 {
114 	u64 buf[ELF_NVSRHALFREG];
115 	int i;
116 
117 	/* save FPR copy to local buffer then write to the thread_struct */
118 	for (i = 0; i < ELF_NVSRHALFREG; i++)
119 		buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
120 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
121 }
122 
123 unsigned long copy_ckvsx_from_user(struct task_struct *task,
124 					  void __user *from)
125 {
126 	u64 buf[ELF_NVSRHALFREG];
127 	int i;
128 
129 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
130 		return 1;
131 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
132 		task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
133 	return 0;
134 }
135 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
136 #endif
137 
138 /* Log an error when sending an unhandled signal to a process. Controlled
139  * through debug.exception-trace sysctl.
140  */
141 
142 int show_unhandled_signals = 1;
143 
144 /*
145  * Allocate space for the signal frame
146  */
147 static unsigned long get_tm_stackpointer(struct task_struct *tsk);
148 
149 void __user *get_sigframe(struct ksignal *ksig, struct task_struct *tsk,
150 			  size_t frame_size, int is_32)
151 {
152         unsigned long oldsp, newsp;
153 	unsigned long sp = get_tm_stackpointer(tsk);
154 
155         /* Default to using normal stack */
156 	if (is_32)
157 		oldsp = sp & 0x0ffffffffUL;
158 	else
159 		oldsp = sp;
160 	oldsp = sigsp(oldsp, ksig);
161 	newsp = (oldsp - frame_size) & ~0xFUL;
162 
163         return (void __user *)newsp;
164 }
165 
166 static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka,
167 				  int has_handler)
168 {
169 	unsigned long ret = regs->gpr[3];
170 	int restart = 1;
171 
172 	/* syscall ? */
173 	if (!trap_is_syscall(regs))
174 		return;
175 
176 	if (trap_norestart(regs))
177 		return;
178 
179 	/* error signalled ? */
180 	if (trap_is_scv(regs)) {
181 		/* 32-bit compat mode sign extend? */
182 		if (!IS_ERR_VALUE(ret))
183 			return;
184 		ret = -ret;
185 	} else if (!(regs->ccr & 0x10000000)) {
186 		return;
187 	}
188 
189 	switch (ret) {
190 	case ERESTART_RESTARTBLOCK:
191 	case ERESTARTNOHAND:
192 		/* ERESTARTNOHAND means that the syscall should only be
193 		 * restarted if there was no handler for the signal, and since
194 		 * we only get here if there is a handler, we dont restart.
195 		 */
196 		restart = !has_handler;
197 		break;
198 	case ERESTARTSYS:
199 		/* ERESTARTSYS means to restart the syscall if there is no
200 		 * handler or the handler was registered with SA_RESTART
201 		 */
202 		restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0;
203 		break;
204 	case ERESTARTNOINTR:
205 		/* ERESTARTNOINTR means that the syscall should be
206 		 * called again after the signal handler returns.
207 		 */
208 		break;
209 	default:
210 		return;
211 	}
212 	if (restart) {
213 		if (ret == ERESTART_RESTARTBLOCK)
214 			regs->gpr[0] = __NR_restart_syscall;
215 		else
216 			regs->gpr[3] = regs->orig_gpr3;
217 		regs_add_return_ip(regs, -4);
218 		regs->result = 0;
219 	} else {
220 		if (trap_is_scv(regs)) {
221 			regs->result = -EINTR;
222 			regs->gpr[3] = -EINTR;
223 		} else {
224 			regs->result = -EINTR;
225 			regs->gpr[3] = EINTR;
226 			regs->ccr |= 0x10000000;
227 		}
228 	}
229 }
230 
231 static void do_signal(struct task_struct *tsk)
232 {
233 	sigset_t *oldset = sigmask_to_save();
234 	struct ksignal ksig = { .sig = 0 };
235 	int ret;
236 
237 	BUG_ON(tsk != current);
238 
239 	get_signal(&ksig);
240 
241 	/* Is there any syscall restart business here ? */
242 	check_syscall_restart(tsk->thread.regs, &ksig.ka, ksig.sig > 0);
243 
244 	if (ksig.sig <= 0) {
245 		/* No signal to deliver -- put the saved sigmask back */
246 		restore_saved_sigmask();
247 		set_trap_norestart(tsk->thread.regs);
248 		return;               /* no signals delivered */
249 	}
250 
251         /*
252 	 * Reenable the DABR before delivering the signal to
253 	 * user space. The DABR will have been cleared if it
254 	 * triggered inside the kernel.
255 	 */
256 	if (!IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
257 		int i;
258 
259 		for (i = 0; i < nr_wp_slots(); i++) {
260 			if (tsk->thread.hw_brk[i].address && tsk->thread.hw_brk[i].type)
261 				__set_breakpoint(i, &tsk->thread.hw_brk[i]);
262 		}
263 	}
264 
265 	/* Re-enable the breakpoints for the signal stack */
266 	thread_change_pc(tsk, tsk->thread.regs);
267 
268 	rseq_signal_deliver(&ksig, tsk->thread.regs);
269 
270 	if (is_32bit_task()) {
271         	if (ksig.ka.sa.sa_flags & SA_SIGINFO)
272 			ret = handle_rt_signal32(&ksig, oldset, tsk);
273 		else
274 			ret = handle_signal32(&ksig, oldset, tsk);
275 	} else {
276 		ret = handle_rt_signal64(&ksig, oldset, tsk);
277 	}
278 
279 	set_trap_norestart(tsk->thread.regs);
280 	signal_setup_done(ret, &ksig, test_thread_flag(TIF_SINGLESTEP));
281 }
282 
283 void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags)
284 {
285 	if (thread_info_flags & _TIF_UPROBE)
286 		uprobe_notify_resume(regs);
287 
288 	if (thread_info_flags & _TIF_PATCH_PENDING)
289 		klp_update_patch_state(current);
290 
291 	if (thread_info_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
292 		BUG_ON(regs != current->thread.regs);
293 		do_signal(current);
294 	}
295 
296 	if (thread_info_flags & _TIF_NOTIFY_RESUME)
297 		resume_user_mode_work(regs);
298 }
299 
300 static unsigned long get_tm_stackpointer(struct task_struct *tsk)
301 {
302 	/* When in an active transaction that takes a signal, we need to be
303 	 * careful with the stack.  It's possible that the stack has moved back
304 	 * up after the tbegin.  The obvious case here is when the tbegin is
305 	 * called inside a function that returns before a tend.  In this case,
306 	 * the stack is part of the checkpointed transactional memory state.
307 	 * If we write over this non transactionally or in suspend, we are in
308 	 * trouble because if we get a tm abort, the program counter and stack
309 	 * pointer will be back at the tbegin but our in memory stack won't be
310 	 * valid anymore.
311 	 *
312 	 * To avoid this, when taking a signal in an active transaction, we
313 	 * need to use the stack pointer from the checkpointed state, rather
314 	 * than the speculated state.  This ensures that the signal context
315 	 * (written tm suspended) will be written below the stack required for
316 	 * the rollback.  The transaction is aborted because of the treclaim,
317 	 * so any memory written between the tbegin and the signal will be
318 	 * rolled back anyway.
319 	 *
320 	 * For signals taken in non-TM or suspended mode, we use the
321 	 * normal/non-checkpointed stack pointer.
322 	 */
323 	struct pt_regs *regs = tsk->thread.regs;
324 	unsigned long ret = regs->gpr[1];
325 
326 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
327 	BUG_ON(tsk != current);
328 
329 	if (MSR_TM_ACTIVE(regs->msr)) {
330 		preempt_disable();
331 		tm_reclaim_current(TM_CAUSE_SIGNAL);
332 		if (MSR_TM_TRANSACTIONAL(regs->msr))
333 			ret = tsk->thread.ckpt_regs.gpr[1];
334 
335 		/*
336 		 * If we treclaim, we must clear the current thread's TM bits
337 		 * before re-enabling preemption. Otherwise we might be
338 		 * preempted and have the live MSR[TS] changed behind our back
339 		 * (tm_recheckpoint_new_task() would recheckpoint). Besides, we
340 		 * enter the signal handler in non-transactional state.
341 		 */
342 		regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
343 		preempt_enable();
344 	}
345 #endif
346 	return ret;
347 }
348 
349 static const char fm32[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %08lx lr %08lx\n";
350 static const char fm64[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %016lx lr %016lx\n";
351 
352 void signal_fault(struct task_struct *tsk, struct pt_regs *regs,
353 		  const char *where, void __user *ptr)
354 {
355 	if (show_unhandled_signals)
356 		printk_ratelimited(regs->msr & MSR_64BIT ? fm64 : fm32, tsk->comm,
357 				   task_pid_nr(tsk), where, ptr, regs->nip, regs->link);
358 }
359