xref: /openbmc/linux/arch/powerpc/kernel/setup_64.c (revision faa16bc4)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/export.h>
14 #include <linux/string.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/reboot.h>
19 #include <linux/delay.h>
20 #include <linux/initrd.h>
21 #include <linux/seq_file.h>
22 #include <linux/ioport.h>
23 #include <linux/console.h>
24 #include <linux/utsname.h>
25 #include <linux/tty.h>
26 #include <linux/root_dev.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/unistd.h>
30 #include <linux/serial.h>
31 #include <linux/serial_8250.h>
32 #include <linux/bootmem.h>
33 #include <linux/pci.h>
34 #include <linux/lockdep.h>
35 #include <linux/memblock.h>
36 #include <linux/memory.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/debugfs.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/dt_cpu_ftrs.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/code-patching.h>
67 #include <asm/livepatch.h>
68 #include <asm/opal.h>
69 #include <asm/cputhreads.h>
70 #include <asm/hw_irq.h>
71 
72 #include "setup.h"
73 
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
79 
80 int spinning_secondaries;
81 u64 ppc64_pft_size;
82 
83 struct ppc64_caches ppc64_caches = {
84 	.l1d = {
85 		.block_size = 0x40,
86 		.log_block_size = 6,
87 	},
88 	.l1i = {
89 		.block_size = 0x40,
90 		.log_block_size = 6
91 	},
92 };
93 EXPORT_SYMBOL_GPL(ppc64_caches);
94 
95 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96 void __init setup_tlb_core_data(void)
97 {
98 	int cpu;
99 
100 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
101 
102 	for_each_possible_cpu(cpu) {
103 		int first = cpu_first_thread_sibling(cpu);
104 
105 		/*
106 		 * If we boot via kdump on a non-primary thread,
107 		 * make sure we point at the thread that actually
108 		 * set up this TLB.
109 		 */
110 		if (cpu_first_thread_sibling(boot_cpuid) == first)
111 			first = boot_cpuid;
112 
113 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
114 
115 		/*
116 		 * If we have threads, we need either tlbsrx.
117 		 * or e6500 tablewalk mode, or else TLB handlers
118 		 * will be racy and could produce duplicate entries.
119 		 * Should we panic instead?
120 		 */
121 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
122 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
123 			  book3e_htw_mode != PPC_HTW_E6500,
124 			  "%s: unsupported MMU configuration\n", __func__);
125 	}
126 }
127 #endif
128 
129 #ifdef CONFIG_SMP
130 
131 static char *smt_enabled_cmdline;
132 
133 /* Look for ibm,smt-enabled OF option */
134 void __init check_smt_enabled(void)
135 {
136 	struct device_node *dn;
137 	const char *smt_option;
138 
139 	/* Default to enabling all threads */
140 	smt_enabled_at_boot = threads_per_core;
141 
142 	/* Allow the command line to overrule the OF option */
143 	if (smt_enabled_cmdline) {
144 		if (!strcmp(smt_enabled_cmdline, "on"))
145 			smt_enabled_at_boot = threads_per_core;
146 		else if (!strcmp(smt_enabled_cmdline, "off"))
147 			smt_enabled_at_boot = 0;
148 		else {
149 			int smt;
150 			int rc;
151 
152 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 			if (!rc)
154 				smt_enabled_at_boot =
155 					min(threads_per_core, smt);
156 		}
157 	} else {
158 		dn = of_find_node_by_path("/options");
159 		if (dn) {
160 			smt_option = of_get_property(dn, "ibm,smt-enabled",
161 						     NULL);
162 
163 			if (smt_option) {
164 				if (!strcmp(smt_option, "on"))
165 					smt_enabled_at_boot = threads_per_core;
166 				else if (!strcmp(smt_option, "off"))
167 					smt_enabled_at_boot = 0;
168 			}
169 
170 			of_node_put(dn);
171 		}
172 	}
173 }
174 
175 /* Look for smt-enabled= cmdline option */
176 static int __init early_smt_enabled(char *p)
177 {
178 	smt_enabled_cmdline = p;
179 	return 0;
180 }
181 early_param("smt-enabled", early_smt_enabled);
182 
183 #endif /* CONFIG_SMP */
184 
185 /** Fix up paca fields required for the boot cpu */
186 static void __init fixup_boot_paca(void)
187 {
188 	/* The boot cpu is started */
189 	get_paca()->cpu_start = 1;
190 	/* Allow percpu accesses to work until we setup percpu data */
191 	get_paca()->data_offset = 0;
192 	/* Mark interrupts disabled in PACA */
193 	irq_soft_mask_set(IRQS_DISABLED);
194 }
195 
196 static void __init configure_exceptions(void)
197 {
198 	/*
199 	 * Setup the trampolines from the lowmem exception vectors
200 	 * to the kdump kernel when not using a relocatable kernel.
201 	 */
202 	setup_kdump_trampoline();
203 
204 	/* Under a PAPR hypervisor, we need hypercalls */
205 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
206 		/* Enable AIL if possible */
207 		pseries_enable_reloc_on_exc();
208 
209 		/*
210 		 * Tell the hypervisor that we want our exceptions to
211 		 * be taken in little endian mode.
212 		 *
213 		 * We don't call this for big endian as our calling convention
214 		 * makes us always enter in BE, and the call may fail under
215 		 * some circumstances with kdump.
216 		 */
217 #ifdef __LITTLE_ENDIAN__
218 		pseries_little_endian_exceptions();
219 #endif
220 	} else {
221 		/* Set endian mode using OPAL */
222 		if (firmware_has_feature(FW_FEATURE_OPAL))
223 			opal_configure_cores();
224 
225 		/* AIL on native is done in cpu_ready_for_interrupts() */
226 	}
227 }
228 
229 static void cpu_ready_for_interrupts(void)
230 {
231 	/*
232 	 * Enable AIL if supported, and we are in hypervisor mode. This
233 	 * is called once for every processor.
234 	 *
235 	 * If we are not in hypervisor mode the job is done once for
236 	 * the whole partition in configure_exceptions().
237 	 */
238 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
239 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
240 		unsigned long lpcr = mfspr(SPRN_LPCR);
241 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
242 	}
243 
244 	/*
245 	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
246 	 * early asm init because at that point we haven't updated our
247 	 * CPU features from firmware and device-tree. Here we have,
248 	 * so let's do it.
249 	 */
250 	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
251 		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
252 
253 	/* Set IR and DR in PACA MSR */
254 	get_paca()->kernel_msr = MSR_KERNEL;
255 }
256 
257 unsigned long spr_default_dscr = 0;
258 
259 void __init record_spr_defaults(void)
260 {
261 	if (early_cpu_has_feature(CPU_FTR_DSCR))
262 		spr_default_dscr = mfspr(SPRN_DSCR);
263 }
264 
265 /*
266  * Early initialization entry point. This is called by head.S
267  * with MMU translation disabled. We rely on the "feature" of
268  * the CPU that ignores the top 2 bits of the address in real
269  * mode so we can access kernel globals normally provided we
270  * only toy with things in the RMO region. From here, we do
271  * some early parsing of the device-tree to setup out MEMBLOCK
272  * data structures, and allocate & initialize the hash table
273  * and segment tables so we can start running with translation
274  * enabled.
275  *
276  * It is this function which will call the probe() callback of
277  * the various platform types and copy the matching one to the
278  * global ppc_md structure. Your platform can eventually do
279  * some very early initializations from the probe() routine, but
280  * this is not recommended, be very careful as, for example, the
281  * device-tree is not accessible via normal means at this point.
282  */
283 
284 void __init early_setup(unsigned long dt_ptr)
285 {
286 	static __initdata struct paca_struct boot_paca;
287 
288 	/* -------- printk is _NOT_ safe to use here ! ------- */
289 
290 	/* Try new device tree based feature discovery ... */
291 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
292 		/* Otherwise use the old style CPU table */
293 		identify_cpu(0, mfspr(SPRN_PVR));
294 
295 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
296 	initialise_paca(&boot_paca, 0);
297 	setup_paca(&boot_paca);
298 	fixup_boot_paca();
299 
300 	/* -------- printk is now safe to use ------- */
301 
302 	/* Enable early debugging if any specified (see udbg.h) */
303 	udbg_early_init();
304 
305  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
306 
307 	/*
308 	 * Do early initialization using the flattened device
309 	 * tree, such as retrieving the physical memory map or
310 	 * calculating/retrieving the hash table size.
311 	 */
312 	early_init_devtree(__va(dt_ptr));
313 
314 	/* Now we know the logical id of our boot cpu, setup the paca. */
315 	if (boot_cpuid != 0) {
316 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
317 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
318 	}
319 	setup_paca(paca_ptrs[boot_cpuid]);
320 	fixup_boot_paca();
321 
322 	/*
323 	 * Configure exception handlers. This include setting up trampolines
324 	 * if needed, setting exception endian mode, etc...
325 	 */
326 	configure_exceptions();
327 
328 	/* Apply all the dynamic patching */
329 	apply_feature_fixups();
330 	setup_feature_keys();
331 
332 	/* Initialize the hash table or TLB handling */
333 	early_init_mmu();
334 
335 	/*
336 	 * After firmware and early platform setup code has set things up,
337 	 * we note the SPR values for configurable control/performance
338 	 * registers, and use those as initial defaults.
339 	 */
340 	record_spr_defaults();
341 
342 	/*
343 	 * At this point, we can let interrupts switch to virtual mode
344 	 * (the MMU has been setup), so adjust the MSR in the PACA to
345 	 * have IR and DR set and enable AIL if it exists
346 	 */
347 	cpu_ready_for_interrupts();
348 
349 	/*
350 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
351 	 * will only actually get enabled on the boot cpu much later once
352 	 * ftrace itself has been initialized.
353 	 */
354 	this_cpu_enable_ftrace();
355 
356 	DBG(" <- early_setup()\n");
357 
358 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
359 	/*
360 	 * This needs to be done *last* (after the above DBG() even)
361 	 *
362 	 * Right after we return from this function, we turn on the MMU
363 	 * which means the real-mode access trick that btext does will
364 	 * no longer work, it needs to switch to using a real MMU
365 	 * mapping. This call will ensure that it does
366 	 */
367 	btext_map();
368 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
369 }
370 
371 #ifdef CONFIG_SMP
372 void early_setup_secondary(void)
373 {
374 	/* Mark interrupts disabled in PACA */
375 	irq_soft_mask_set(IRQS_DISABLED);
376 
377 	/* Initialize the hash table or TLB handling */
378 	early_init_mmu_secondary();
379 
380 	/*
381 	 * At this point, we can let interrupts switch to virtual mode
382 	 * (the MMU has been setup), so adjust the MSR in the PACA to
383 	 * have IR and DR set.
384 	 */
385 	cpu_ready_for_interrupts();
386 }
387 
388 #endif /* CONFIG_SMP */
389 
390 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
391 static bool use_spinloop(void)
392 {
393 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
394 		/*
395 		 * See comments in head_64.S -- not all platforms insert
396 		 * secondaries at __secondary_hold and wait at the spin
397 		 * loop.
398 		 */
399 		if (firmware_has_feature(FW_FEATURE_OPAL))
400 			return false;
401 		return true;
402 	}
403 
404 	/*
405 	 * When book3e boots from kexec, the ePAPR spin table does
406 	 * not get used.
407 	 */
408 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
409 }
410 
411 void smp_release_cpus(void)
412 {
413 	unsigned long *ptr;
414 	int i;
415 
416 	if (!use_spinloop())
417 		return;
418 
419 	DBG(" -> smp_release_cpus()\n");
420 
421 	/* All secondary cpus are spinning on a common spinloop, release them
422 	 * all now so they can start to spin on their individual paca
423 	 * spinloops. For non SMP kernels, the secondary cpus never get out
424 	 * of the common spinloop.
425 	 */
426 
427 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
428 			- PHYSICAL_START);
429 	*ptr = ppc_function_entry(generic_secondary_smp_init);
430 
431 	/* And wait a bit for them to catch up */
432 	for (i = 0; i < 100000; i++) {
433 		mb();
434 		HMT_low();
435 		if (spinning_secondaries == 0)
436 			break;
437 		udelay(1);
438 	}
439 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
440 
441 	DBG(" <- smp_release_cpus()\n");
442 }
443 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
444 
445 /*
446  * Initialize some remaining members of the ppc64_caches and systemcfg
447  * structures
448  * (at least until we get rid of them completely). This is mostly some
449  * cache informations about the CPU that will be used by cache flush
450  * routines and/or provided to userland
451  */
452 
453 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
454 			    u32 bsize, u32 sets)
455 {
456 	info->size = size;
457 	info->sets = sets;
458 	info->line_size = lsize;
459 	info->block_size = bsize;
460 	info->log_block_size = __ilog2(bsize);
461 	if (bsize)
462 		info->blocks_per_page = PAGE_SIZE / bsize;
463 	else
464 		info->blocks_per_page = 0;
465 
466 	if (sets == 0)
467 		info->assoc = 0xffff;
468 	else
469 		info->assoc = size / (sets * lsize);
470 }
471 
472 static bool __init parse_cache_info(struct device_node *np,
473 				    bool icache,
474 				    struct ppc_cache_info *info)
475 {
476 	static const char *ipropnames[] __initdata = {
477 		"i-cache-size",
478 		"i-cache-sets",
479 		"i-cache-block-size",
480 		"i-cache-line-size",
481 	};
482 	static const char *dpropnames[] __initdata = {
483 		"d-cache-size",
484 		"d-cache-sets",
485 		"d-cache-block-size",
486 		"d-cache-line-size",
487 	};
488 	const char **propnames = icache ? ipropnames : dpropnames;
489 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
490 	u32 size, lsize, bsize, sets;
491 	bool success = true;
492 
493 	size = 0;
494 	sets = -1u;
495 	lsize = bsize = cur_cpu_spec->dcache_bsize;
496 	sizep = of_get_property(np, propnames[0], NULL);
497 	if (sizep != NULL)
498 		size = be32_to_cpu(*sizep);
499 	setsp = of_get_property(np, propnames[1], NULL);
500 	if (setsp != NULL)
501 		sets = be32_to_cpu(*setsp);
502 	bsizep = of_get_property(np, propnames[2], NULL);
503 	lsizep = of_get_property(np, propnames[3], NULL);
504 	if (bsizep == NULL)
505 		bsizep = lsizep;
506 	if (lsizep != NULL)
507 		lsize = be32_to_cpu(*lsizep);
508 	if (bsizep != NULL)
509 		bsize = be32_to_cpu(*bsizep);
510 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
511 		success = false;
512 
513 	/*
514 	 * OF is weird .. it represents fully associative caches
515 	 * as "1 way" which doesn't make much sense and doesn't
516 	 * leave room for direct mapped. We'll assume that 0
517 	 * in OF means direct mapped for that reason.
518 	 */
519 	if (sets == 1)
520 		sets = 0;
521 	else if (sets == 0)
522 		sets = 1;
523 
524 	init_cache_info(info, size, lsize, bsize, sets);
525 
526 	return success;
527 }
528 
529 void __init initialize_cache_info(void)
530 {
531 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
532 	u32 pvr;
533 
534 	DBG(" -> initialize_cache_info()\n");
535 
536 	/*
537 	 * All shipping POWER8 machines have a firmware bug that
538 	 * puts incorrect information in the device-tree. This will
539 	 * be (hopefully) fixed for future chips but for now hard
540 	 * code the values if we are running on one of these
541 	 */
542 	pvr = PVR_VER(mfspr(SPRN_PVR));
543 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
544 	    pvr == PVR_POWER8NVL) {
545 						/* size    lsize   blk  sets */
546 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
547 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
548 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
549 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
550 	} else
551 		cpu = of_find_node_by_type(NULL, "cpu");
552 
553 	/*
554 	 * We're assuming *all* of the CPUs have the same
555 	 * d-cache and i-cache sizes... -Peter
556 	 */
557 	if (cpu) {
558 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
559 			DBG("Argh, can't find dcache properties !\n");
560 
561 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
562 			DBG("Argh, can't find icache properties !\n");
563 
564 		/*
565 		 * Try to find the L2 and L3 if any. Assume they are
566 		 * unified and use the D-side properties.
567 		 */
568 		l2 = of_find_next_cache_node(cpu);
569 		of_node_put(cpu);
570 		if (l2) {
571 			parse_cache_info(l2, false, &ppc64_caches.l2);
572 			l3 = of_find_next_cache_node(l2);
573 			of_node_put(l2);
574 		}
575 		if (l3) {
576 			parse_cache_info(l3, false, &ppc64_caches.l3);
577 			of_node_put(l3);
578 		}
579 	}
580 
581 	/* For use by binfmt_elf */
582 	dcache_bsize = ppc64_caches.l1d.block_size;
583 	icache_bsize = ppc64_caches.l1i.block_size;
584 
585 	cur_cpu_spec->dcache_bsize = dcache_bsize;
586 	cur_cpu_spec->icache_bsize = icache_bsize;
587 
588 	DBG(" <- initialize_cache_info()\n");
589 }
590 
591 /*
592  * This returns the limit below which memory accesses to the linear
593  * mapping are guarnateed not to cause an architectural exception (e.g.,
594  * TLB or SLB miss fault).
595  *
596  * This is used to allocate PACAs and various interrupt stacks that
597  * that are accessed early in interrupt handlers that must not cause
598  * re-entrant interrupts.
599  */
600 __init u64 ppc64_bolted_size(void)
601 {
602 #ifdef CONFIG_PPC_BOOK3E
603 	/* Freescale BookE bolts the entire linear mapping */
604 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
605 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
606 		return linear_map_top;
607 	/* Other BookE, we assume the first GB is bolted */
608 	return 1ul << 30;
609 #else
610 	/* BookS radix, does not take faults on linear mapping */
611 	if (early_radix_enabled())
612 		return ULONG_MAX;
613 
614 	/* BookS hash, the first segment is bolted */
615 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
616 		return 1UL << SID_SHIFT_1T;
617 	return 1UL << SID_SHIFT;
618 #endif
619 }
620 
621 static void *__init alloc_stack(unsigned long limit, int cpu)
622 {
623 	unsigned long pa;
624 
625 	pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
626 					early_cpu_to_node(cpu), MEMBLOCK_NONE);
627 	if (!pa) {
628 		pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
629 		if (!pa)
630 			panic("cannot allocate stacks");
631 	}
632 
633 	return __va(pa);
634 }
635 
636 void __init irqstack_early_init(void)
637 {
638 	u64 limit = ppc64_bolted_size();
639 	unsigned int i;
640 
641 	/*
642 	 * Interrupt stacks must be in the first segment since we
643 	 * cannot afford to take SLB misses on them. They are not
644 	 * accessed in realmode.
645 	 */
646 	for_each_possible_cpu(i) {
647 		softirq_ctx[i] = alloc_stack(limit, i);
648 		hardirq_ctx[i] = alloc_stack(limit, i);
649 	}
650 }
651 
652 #ifdef CONFIG_PPC_BOOK3E
653 void __init exc_lvl_early_init(void)
654 {
655 	unsigned int i;
656 
657 	for_each_possible_cpu(i) {
658 		void *sp;
659 
660 		sp = alloc_stack(ULONG_MAX, i);
661 		critirq_ctx[i] = sp;
662 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
663 
664 		sp = alloc_stack(ULONG_MAX, i);
665 		dbgirq_ctx[i] = sp;
666 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
667 
668 		sp = alloc_stack(ULONG_MAX, i);
669 		mcheckirq_ctx[i] = sp;
670 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
671 	}
672 
673 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
674 		patch_exception(0x040, exc_debug_debug_book3e);
675 }
676 #endif
677 
678 /*
679  * Emergency stacks are used for a range of things, from asynchronous
680  * NMIs (system reset, machine check) to synchronous, process context.
681  * We set preempt_count to zero, even though that isn't necessarily correct. To
682  * get the right value we'd need to copy it from the previous thread_info, but
683  * doing that might fault causing more problems.
684  * TODO: what to do with accounting?
685  */
686 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
687 {
688 	ti->task = NULL;
689 	ti->cpu = cpu;
690 	ti->preempt_count = 0;
691 	ti->local_flags = 0;
692 	ti->flags = 0;
693 	klp_init_thread_info(ti);
694 }
695 
696 /*
697  * Stack space used when we detect a bad kernel stack pointer, and
698  * early in SMP boots before relocation is enabled. Exclusive emergency
699  * stack for machine checks.
700  */
701 void __init emergency_stack_init(void)
702 {
703 	u64 limit;
704 	unsigned int i;
705 
706 	/*
707 	 * Emergency stacks must be under 256MB, we cannot afford to take
708 	 * SLB misses on them. The ABI also requires them to be 128-byte
709 	 * aligned.
710 	 *
711 	 * Since we use these as temporary stacks during secondary CPU
712 	 * bringup, machine check, system reset, and HMI, we need to get
713 	 * at them in real mode. This means they must also be within the RMO
714 	 * region.
715 	 *
716 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
717 	 * initialized in kernel/irq.c. These are initialized here in order
718 	 * to have emergency stacks available as early as possible.
719 	 */
720 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
721 
722 	for_each_possible_cpu(i) {
723 		struct thread_info *ti;
724 
725 		ti = alloc_stack(limit, i);
726 		memset(ti, 0, THREAD_SIZE);
727 		emerg_stack_init_thread_info(ti, i);
728 		paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
729 
730 #ifdef CONFIG_PPC_BOOK3S_64
731 		/* emergency stack for NMI exception handling. */
732 		ti = alloc_stack(limit, i);
733 		memset(ti, 0, THREAD_SIZE);
734 		emerg_stack_init_thread_info(ti, i);
735 		paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
736 
737 		/* emergency stack for machine check exception handling. */
738 		ti = alloc_stack(limit, i);
739 		memset(ti, 0, THREAD_SIZE);
740 		emerg_stack_init_thread_info(ti, i);
741 		paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
742 #endif
743 	}
744 }
745 
746 #ifdef CONFIG_SMP
747 #define PCPU_DYN_SIZE		()
748 
749 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
750 {
751 	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
752 				    __pa(MAX_DMA_ADDRESS));
753 }
754 
755 static void __init pcpu_fc_free(void *ptr, size_t size)
756 {
757 	free_bootmem(__pa(ptr), size);
758 }
759 
760 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
761 {
762 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
763 		return LOCAL_DISTANCE;
764 	else
765 		return REMOTE_DISTANCE;
766 }
767 
768 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
769 EXPORT_SYMBOL(__per_cpu_offset);
770 
771 void __init setup_per_cpu_areas(void)
772 {
773 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
774 	size_t atom_size;
775 	unsigned long delta;
776 	unsigned int cpu;
777 	int rc;
778 
779 	/*
780 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
781 	 * to group units.  For larger mappings, use 1M atom which
782 	 * should be large enough to contain a number of units.
783 	 */
784 	if (mmu_linear_psize == MMU_PAGE_4K)
785 		atom_size = PAGE_SIZE;
786 	else
787 		atom_size = 1 << 20;
788 
789 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
790 				    pcpu_fc_alloc, pcpu_fc_free);
791 	if (rc < 0)
792 		panic("cannot initialize percpu area (err=%d)", rc);
793 
794 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
795 	for_each_possible_cpu(cpu) {
796                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
797 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
798 	}
799 }
800 #endif
801 
802 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
803 unsigned long memory_block_size_bytes(void)
804 {
805 	if (ppc_md.memory_block_size)
806 		return ppc_md.memory_block_size();
807 
808 	return MIN_MEMORY_BLOCK_SIZE;
809 }
810 #endif
811 
812 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
813 struct ppc_pci_io ppc_pci_io;
814 EXPORT_SYMBOL(ppc_pci_io);
815 #endif
816 
817 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
818 u64 hw_nmi_get_sample_period(int watchdog_thresh)
819 {
820 	return ppc_proc_freq * watchdog_thresh;
821 }
822 #endif
823 
824 /*
825  * The perf based hardlockup detector breaks PMU event based branches, so
826  * disable it by default. Book3S has a soft-nmi hardlockup detector based
827  * on the decrementer interrupt, so it does not suffer from this problem.
828  *
829  * It is likely to get false positives in VM guests, so disable it there
830  * by default too.
831  */
832 static int __init disable_hardlockup_detector(void)
833 {
834 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
835 	hardlockup_detector_disable();
836 #else
837 	if (firmware_has_feature(FW_FEATURE_LPAR))
838 		hardlockup_detector_disable();
839 #endif
840 
841 	return 0;
842 }
843 early_initcall(disable_hardlockup_detector);
844 
845 #ifdef CONFIG_PPC_BOOK3S_64
846 static enum l1d_flush_type enabled_flush_types;
847 static void *l1d_flush_fallback_area;
848 static bool no_rfi_flush;
849 bool rfi_flush;
850 
851 static int __init handle_no_rfi_flush(char *p)
852 {
853 	pr_info("rfi-flush: disabled on command line.");
854 	no_rfi_flush = true;
855 	return 0;
856 }
857 early_param("no_rfi_flush", handle_no_rfi_flush);
858 
859 /*
860  * The RFI flush is not KPTI, but because users will see doco that says to use
861  * nopti we hijack that option here to also disable the RFI flush.
862  */
863 static int __init handle_no_pti(char *p)
864 {
865 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
866 	handle_no_rfi_flush(NULL);
867 	return 0;
868 }
869 early_param("nopti", handle_no_pti);
870 
871 static void do_nothing(void *unused)
872 {
873 	/*
874 	 * We don't need to do the flush explicitly, just enter+exit kernel is
875 	 * sufficient, the RFI exit handlers will do the right thing.
876 	 */
877 }
878 
879 void rfi_flush_enable(bool enable)
880 {
881 	if (enable) {
882 		do_rfi_flush_fixups(enabled_flush_types);
883 		on_each_cpu(do_nothing, NULL, 1);
884 	} else
885 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
886 
887 	rfi_flush = enable;
888 }
889 
890 static void __ref init_fallback_flush(void)
891 {
892 	u64 l1d_size, limit;
893 	int cpu;
894 
895 	/* Only allocate the fallback flush area once (at boot time). */
896 	if (l1d_flush_fallback_area)
897 		return;
898 
899 	l1d_size = ppc64_caches.l1d.size;
900 
901 	/*
902 	 * If there is no d-cache-size property in the device tree, l1d_size
903 	 * could be zero. That leads to the loop in the asm wrapping around to
904 	 * 2^64-1, and then walking off the end of the fallback area and
905 	 * eventually causing a page fault which is fatal. Just default to
906 	 * something vaguely sane.
907 	 */
908 	if (!l1d_size)
909 		l1d_size = (64 * 1024);
910 
911 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
912 
913 	/*
914 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
915 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
916 	 * reliably avoid the prefetcher.
917 	 */
918 	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
919 	memset(l1d_flush_fallback_area, 0, l1d_size * 2);
920 
921 	for_each_possible_cpu(cpu) {
922 		struct paca_struct *paca = paca_ptrs[cpu];
923 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
924 		paca->l1d_flush_size = l1d_size;
925 	}
926 }
927 
928 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
929 {
930 	if (types & L1D_FLUSH_FALLBACK) {
931 		pr_info("rfi-flush: fallback displacement flush available\n");
932 		init_fallback_flush();
933 	}
934 
935 	if (types & L1D_FLUSH_ORI)
936 		pr_info("rfi-flush: ori type flush available\n");
937 
938 	if (types & L1D_FLUSH_MTTRIG)
939 		pr_info("rfi-flush: mttrig type flush available\n");
940 
941 	enabled_flush_types = types;
942 
943 	if (!no_rfi_flush)
944 		rfi_flush_enable(enable);
945 }
946 
947 #ifdef CONFIG_DEBUG_FS
948 static int rfi_flush_set(void *data, u64 val)
949 {
950 	bool enable;
951 
952 	if (val == 1)
953 		enable = true;
954 	else if (val == 0)
955 		enable = false;
956 	else
957 		return -EINVAL;
958 
959 	/* Only do anything if we're changing state */
960 	if (enable != rfi_flush)
961 		rfi_flush_enable(enable);
962 
963 	return 0;
964 }
965 
966 static int rfi_flush_get(void *data, u64 *val)
967 {
968 	*val = rfi_flush ? 1 : 0;
969 	return 0;
970 }
971 
972 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
973 
974 static __init int rfi_flush_debugfs_init(void)
975 {
976 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
977 	return 0;
978 }
979 device_initcall(rfi_flush_debugfs_init);
980 #endif
981 #endif /* CONFIG_PPC_BOOK3S_64 */
982