1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/export.h> 14 #include <linux/string.h> 15 #include <linux/sched.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/reboot.h> 19 #include <linux/delay.h> 20 #include <linux/initrd.h> 21 #include <linux/seq_file.h> 22 #include <linux/ioport.h> 23 #include <linux/console.h> 24 #include <linux/utsname.h> 25 #include <linux/tty.h> 26 #include <linux/root_dev.h> 27 #include <linux/notifier.h> 28 #include <linux/cpu.h> 29 #include <linux/unistd.h> 30 #include <linux/serial.h> 31 #include <linux/serial_8250.h> 32 #include <linux/bootmem.h> 33 #include <linux/pci.h> 34 #include <linux/lockdep.h> 35 #include <linux/memblock.h> 36 #include <linux/memory.h> 37 #include <linux/nmi.h> 38 39 #include <asm/debugfs.h> 40 #include <asm/io.h> 41 #include <asm/kdump.h> 42 #include <asm/prom.h> 43 #include <asm/processor.h> 44 #include <asm/pgtable.h> 45 #include <asm/smp.h> 46 #include <asm/elf.h> 47 #include <asm/machdep.h> 48 #include <asm/paca.h> 49 #include <asm/time.h> 50 #include <asm/cputable.h> 51 #include <asm/dt_cpu_ftrs.h> 52 #include <asm/sections.h> 53 #include <asm/btext.h> 54 #include <asm/nvram.h> 55 #include <asm/setup.h> 56 #include <asm/rtas.h> 57 #include <asm/iommu.h> 58 #include <asm/serial.h> 59 #include <asm/cache.h> 60 #include <asm/page.h> 61 #include <asm/mmu.h> 62 #include <asm/firmware.h> 63 #include <asm/xmon.h> 64 #include <asm/udbg.h> 65 #include <asm/kexec.h> 66 #include <asm/code-patching.h> 67 #include <asm/livepatch.h> 68 #include <asm/opal.h> 69 #include <asm/cputhreads.h> 70 #include <asm/hw_irq.h> 71 72 #include "setup.h" 73 74 #ifdef DEBUG 75 #define DBG(fmt...) udbg_printf(fmt) 76 #else 77 #define DBG(fmt...) 78 #endif 79 80 int spinning_secondaries; 81 u64 ppc64_pft_size; 82 83 struct ppc64_caches ppc64_caches = { 84 .l1d = { 85 .block_size = 0x40, 86 .log_block_size = 6, 87 }, 88 .l1i = { 89 .block_size = 0x40, 90 .log_block_size = 6 91 }, 92 }; 93 EXPORT_SYMBOL_GPL(ppc64_caches); 94 95 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 96 void __init setup_tlb_core_data(void) 97 { 98 int cpu; 99 100 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 101 102 for_each_possible_cpu(cpu) { 103 int first = cpu_first_thread_sibling(cpu); 104 105 /* 106 * If we boot via kdump on a non-primary thread, 107 * make sure we point at the thread that actually 108 * set up this TLB. 109 */ 110 if (cpu_first_thread_sibling(boot_cpuid) == first) 111 first = boot_cpuid; 112 113 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd; 114 115 /* 116 * If we have threads, we need either tlbsrx. 117 * or e6500 tablewalk mode, or else TLB handlers 118 * will be racy and could produce duplicate entries. 119 * Should we panic instead? 120 */ 121 WARN_ONCE(smt_enabled_at_boot >= 2 && 122 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 123 book3e_htw_mode != PPC_HTW_E6500, 124 "%s: unsupported MMU configuration\n", __func__); 125 } 126 } 127 #endif 128 129 #ifdef CONFIG_SMP 130 131 static char *smt_enabled_cmdline; 132 133 /* Look for ibm,smt-enabled OF option */ 134 void __init check_smt_enabled(void) 135 { 136 struct device_node *dn; 137 const char *smt_option; 138 139 /* Default to enabling all threads */ 140 smt_enabled_at_boot = threads_per_core; 141 142 /* Allow the command line to overrule the OF option */ 143 if (smt_enabled_cmdline) { 144 if (!strcmp(smt_enabled_cmdline, "on")) 145 smt_enabled_at_boot = threads_per_core; 146 else if (!strcmp(smt_enabled_cmdline, "off")) 147 smt_enabled_at_boot = 0; 148 else { 149 int smt; 150 int rc; 151 152 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 153 if (!rc) 154 smt_enabled_at_boot = 155 min(threads_per_core, smt); 156 } 157 } else { 158 dn = of_find_node_by_path("/options"); 159 if (dn) { 160 smt_option = of_get_property(dn, "ibm,smt-enabled", 161 NULL); 162 163 if (smt_option) { 164 if (!strcmp(smt_option, "on")) 165 smt_enabled_at_boot = threads_per_core; 166 else if (!strcmp(smt_option, "off")) 167 smt_enabled_at_boot = 0; 168 } 169 170 of_node_put(dn); 171 } 172 } 173 } 174 175 /* Look for smt-enabled= cmdline option */ 176 static int __init early_smt_enabled(char *p) 177 { 178 smt_enabled_cmdline = p; 179 return 0; 180 } 181 early_param("smt-enabled", early_smt_enabled); 182 183 #endif /* CONFIG_SMP */ 184 185 /** Fix up paca fields required for the boot cpu */ 186 static void __init fixup_boot_paca(void) 187 { 188 /* The boot cpu is started */ 189 get_paca()->cpu_start = 1; 190 /* Allow percpu accesses to work until we setup percpu data */ 191 get_paca()->data_offset = 0; 192 /* Mark interrupts disabled in PACA */ 193 irq_soft_mask_set(IRQS_DISABLED); 194 } 195 196 static void __init configure_exceptions(void) 197 { 198 /* 199 * Setup the trampolines from the lowmem exception vectors 200 * to the kdump kernel when not using a relocatable kernel. 201 */ 202 setup_kdump_trampoline(); 203 204 /* Under a PAPR hypervisor, we need hypercalls */ 205 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 206 /* Enable AIL if possible */ 207 pseries_enable_reloc_on_exc(); 208 209 /* 210 * Tell the hypervisor that we want our exceptions to 211 * be taken in little endian mode. 212 * 213 * We don't call this for big endian as our calling convention 214 * makes us always enter in BE, and the call may fail under 215 * some circumstances with kdump. 216 */ 217 #ifdef __LITTLE_ENDIAN__ 218 pseries_little_endian_exceptions(); 219 #endif 220 } else { 221 /* Set endian mode using OPAL */ 222 if (firmware_has_feature(FW_FEATURE_OPAL)) 223 opal_configure_cores(); 224 225 /* AIL on native is done in cpu_ready_for_interrupts() */ 226 } 227 } 228 229 static void cpu_ready_for_interrupts(void) 230 { 231 /* 232 * Enable AIL if supported, and we are in hypervisor mode. This 233 * is called once for every processor. 234 * 235 * If we are not in hypervisor mode the job is done once for 236 * the whole partition in configure_exceptions(). 237 */ 238 if (cpu_has_feature(CPU_FTR_HVMODE) && 239 cpu_has_feature(CPU_FTR_ARCH_207S)) { 240 unsigned long lpcr = mfspr(SPRN_LPCR); 241 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 242 } 243 244 /* 245 * Fixup HFSCR:TM based on CPU features. The bit is set by our 246 * early asm init because at that point we haven't updated our 247 * CPU features from firmware and device-tree. Here we have, 248 * so let's do it. 249 */ 250 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP)) 251 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); 252 253 /* Set IR and DR in PACA MSR */ 254 get_paca()->kernel_msr = MSR_KERNEL; 255 } 256 257 unsigned long spr_default_dscr = 0; 258 259 void __init record_spr_defaults(void) 260 { 261 if (early_cpu_has_feature(CPU_FTR_DSCR)) 262 spr_default_dscr = mfspr(SPRN_DSCR); 263 } 264 265 /* 266 * Early initialization entry point. This is called by head.S 267 * with MMU translation disabled. We rely on the "feature" of 268 * the CPU that ignores the top 2 bits of the address in real 269 * mode so we can access kernel globals normally provided we 270 * only toy with things in the RMO region. From here, we do 271 * some early parsing of the device-tree to setup out MEMBLOCK 272 * data structures, and allocate & initialize the hash table 273 * and segment tables so we can start running with translation 274 * enabled. 275 * 276 * It is this function which will call the probe() callback of 277 * the various platform types and copy the matching one to the 278 * global ppc_md structure. Your platform can eventually do 279 * some very early initializations from the probe() routine, but 280 * this is not recommended, be very careful as, for example, the 281 * device-tree is not accessible via normal means at this point. 282 */ 283 284 void __init early_setup(unsigned long dt_ptr) 285 { 286 static __initdata struct paca_struct boot_paca; 287 288 /* -------- printk is _NOT_ safe to use here ! ------- */ 289 290 /* Try new device tree based feature discovery ... */ 291 if (!dt_cpu_ftrs_init(__va(dt_ptr))) 292 /* Otherwise use the old style CPU table */ 293 identify_cpu(0, mfspr(SPRN_PVR)); 294 295 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 296 initialise_paca(&boot_paca, 0); 297 setup_paca(&boot_paca); 298 fixup_boot_paca(); 299 300 /* -------- printk is now safe to use ------- */ 301 302 /* Enable early debugging if any specified (see udbg.h) */ 303 udbg_early_init(); 304 305 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 306 307 /* 308 * Do early initialization using the flattened device 309 * tree, such as retrieving the physical memory map or 310 * calculating/retrieving the hash table size. 311 */ 312 early_init_devtree(__va(dt_ptr)); 313 314 /* Now we know the logical id of our boot cpu, setup the paca. */ 315 if (boot_cpuid != 0) { 316 /* Poison paca_ptrs[0] again if it's not the boot cpu */ 317 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0])); 318 } 319 setup_paca(paca_ptrs[boot_cpuid]); 320 fixup_boot_paca(); 321 322 /* 323 * Configure exception handlers. This include setting up trampolines 324 * if needed, setting exception endian mode, etc... 325 */ 326 configure_exceptions(); 327 328 /* Apply all the dynamic patching */ 329 apply_feature_fixups(); 330 setup_feature_keys(); 331 332 /* Initialize the hash table or TLB handling */ 333 early_init_mmu(); 334 335 /* 336 * After firmware and early platform setup code has set things up, 337 * we note the SPR values for configurable control/performance 338 * registers, and use those as initial defaults. 339 */ 340 record_spr_defaults(); 341 342 /* 343 * At this point, we can let interrupts switch to virtual mode 344 * (the MMU has been setup), so adjust the MSR in the PACA to 345 * have IR and DR set and enable AIL if it exists 346 */ 347 cpu_ready_for_interrupts(); 348 349 /* 350 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it 351 * will only actually get enabled on the boot cpu much later once 352 * ftrace itself has been initialized. 353 */ 354 this_cpu_enable_ftrace(); 355 356 DBG(" <- early_setup()\n"); 357 358 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 359 /* 360 * This needs to be done *last* (after the above DBG() even) 361 * 362 * Right after we return from this function, we turn on the MMU 363 * which means the real-mode access trick that btext does will 364 * no longer work, it needs to switch to using a real MMU 365 * mapping. This call will ensure that it does 366 */ 367 btext_map(); 368 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 369 } 370 371 #ifdef CONFIG_SMP 372 void early_setup_secondary(void) 373 { 374 /* Mark interrupts disabled in PACA */ 375 irq_soft_mask_set(IRQS_DISABLED); 376 377 /* Initialize the hash table or TLB handling */ 378 early_init_mmu_secondary(); 379 380 /* 381 * At this point, we can let interrupts switch to virtual mode 382 * (the MMU has been setup), so adjust the MSR in the PACA to 383 * have IR and DR set. 384 */ 385 cpu_ready_for_interrupts(); 386 } 387 388 #endif /* CONFIG_SMP */ 389 390 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 391 static bool use_spinloop(void) 392 { 393 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 394 /* 395 * See comments in head_64.S -- not all platforms insert 396 * secondaries at __secondary_hold and wait at the spin 397 * loop. 398 */ 399 if (firmware_has_feature(FW_FEATURE_OPAL)) 400 return false; 401 return true; 402 } 403 404 /* 405 * When book3e boots from kexec, the ePAPR spin table does 406 * not get used. 407 */ 408 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 409 } 410 411 void smp_release_cpus(void) 412 { 413 unsigned long *ptr; 414 int i; 415 416 if (!use_spinloop()) 417 return; 418 419 DBG(" -> smp_release_cpus()\n"); 420 421 /* All secondary cpus are spinning on a common spinloop, release them 422 * all now so they can start to spin on their individual paca 423 * spinloops. For non SMP kernels, the secondary cpus never get out 424 * of the common spinloop. 425 */ 426 427 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 428 - PHYSICAL_START); 429 *ptr = ppc_function_entry(generic_secondary_smp_init); 430 431 /* And wait a bit for them to catch up */ 432 for (i = 0; i < 100000; i++) { 433 mb(); 434 HMT_low(); 435 if (spinning_secondaries == 0) 436 break; 437 udelay(1); 438 } 439 DBG("spinning_secondaries = %d\n", spinning_secondaries); 440 441 DBG(" <- smp_release_cpus()\n"); 442 } 443 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 444 445 /* 446 * Initialize some remaining members of the ppc64_caches and systemcfg 447 * structures 448 * (at least until we get rid of them completely). This is mostly some 449 * cache informations about the CPU that will be used by cache flush 450 * routines and/or provided to userland 451 */ 452 453 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 454 u32 bsize, u32 sets) 455 { 456 info->size = size; 457 info->sets = sets; 458 info->line_size = lsize; 459 info->block_size = bsize; 460 info->log_block_size = __ilog2(bsize); 461 if (bsize) 462 info->blocks_per_page = PAGE_SIZE / bsize; 463 else 464 info->blocks_per_page = 0; 465 466 if (sets == 0) 467 info->assoc = 0xffff; 468 else 469 info->assoc = size / (sets * lsize); 470 } 471 472 static bool __init parse_cache_info(struct device_node *np, 473 bool icache, 474 struct ppc_cache_info *info) 475 { 476 static const char *ipropnames[] __initdata = { 477 "i-cache-size", 478 "i-cache-sets", 479 "i-cache-block-size", 480 "i-cache-line-size", 481 }; 482 static const char *dpropnames[] __initdata = { 483 "d-cache-size", 484 "d-cache-sets", 485 "d-cache-block-size", 486 "d-cache-line-size", 487 }; 488 const char **propnames = icache ? ipropnames : dpropnames; 489 const __be32 *sizep, *lsizep, *bsizep, *setsp; 490 u32 size, lsize, bsize, sets; 491 bool success = true; 492 493 size = 0; 494 sets = -1u; 495 lsize = bsize = cur_cpu_spec->dcache_bsize; 496 sizep = of_get_property(np, propnames[0], NULL); 497 if (sizep != NULL) 498 size = be32_to_cpu(*sizep); 499 setsp = of_get_property(np, propnames[1], NULL); 500 if (setsp != NULL) 501 sets = be32_to_cpu(*setsp); 502 bsizep = of_get_property(np, propnames[2], NULL); 503 lsizep = of_get_property(np, propnames[3], NULL); 504 if (bsizep == NULL) 505 bsizep = lsizep; 506 if (lsizep != NULL) 507 lsize = be32_to_cpu(*lsizep); 508 if (bsizep != NULL) 509 bsize = be32_to_cpu(*bsizep); 510 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 511 success = false; 512 513 /* 514 * OF is weird .. it represents fully associative caches 515 * as "1 way" which doesn't make much sense and doesn't 516 * leave room for direct mapped. We'll assume that 0 517 * in OF means direct mapped for that reason. 518 */ 519 if (sets == 1) 520 sets = 0; 521 else if (sets == 0) 522 sets = 1; 523 524 init_cache_info(info, size, lsize, bsize, sets); 525 526 return success; 527 } 528 529 void __init initialize_cache_info(void) 530 { 531 struct device_node *cpu = NULL, *l2, *l3 = NULL; 532 u32 pvr; 533 534 DBG(" -> initialize_cache_info()\n"); 535 536 /* 537 * All shipping POWER8 machines have a firmware bug that 538 * puts incorrect information in the device-tree. This will 539 * be (hopefully) fixed for future chips but for now hard 540 * code the values if we are running on one of these 541 */ 542 pvr = PVR_VER(mfspr(SPRN_PVR)); 543 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 544 pvr == PVR_POWER8NVL) { 545 /* size lsize blk sets */ 546 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 547 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 548 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 549 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 550 } else 551 cpu = of_find_node_by_type(NULL, "cpu"); 552 553 /* 554 * We're assuming *all* of the CPUs have the same 555 * d-cache and i-cache sizes... -Peter 556 */ 557 if (cpu) { 558 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 559 DBG("Argh, can't find dcache properties !\n"); 560 561 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 562 DBG("Argh, can't find icache properties !\n"); 563 564 /* 565 * Try to find the L2 and L3 if any. Assume they are 566 * unified and use the D-side properties. 567 */ 568 l2 = of_find_next_cache_node(cpu); 569 of_node_put(cpu); 570 if (l2) { 571 parse_cache_info(l2, false, &ppc64_caches.l2); 572 l3 = of_find_next_cache_node(l2); 573 of_node_put(l2); 574 } 575 if (l3) { 576 parse_cache_info(l3, false, &ppc64_caches.l3); 577 of_node_put(l3); 578 } 579 } 580 581 /* For use by binfmt_elf */ 582 dcache_bsize = ppc64_caches.l1d.block_size; 583 icache_bsize = ppc64_caches.l1i.block_size; 584 585 cur_cpu_spec->dcache_bsize = dcache_bsize; 586 cur_cpu_spec->icache_bsize = icache_bsize; 587 588 DBG(" <- initialize_cache_info()\n"); 589 } 590 591 /* 592 * This returns the limit below which memory accesses to the linear 593 * mapping are guarnateed not to cause an architectural exception (e.g., 594 * TLB or SLB miss fault). 595 * 596 * This is used to allocate PACAs and various interrupt stacks that 597 * that are accessed early in interrupt handlers that must not cause 598 * re-entrant interrupts. 599 */ 600 __init u64 ppc64_bolted_size(void) 601 { 602 #ifdef CONFIG_PPC_BOOK3E 603 /* Freescale BookE bolts the entire linear mapping */ 604 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ 605 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 606 return linear_map_top; 607 /* Other BookE, we assume the first GB is bolted */ 608 return 1ul << 30; 609 #else 610 /* BookS radix, does not take faults on linear mapping */ 611 if (early_radix_enabled()) 612 return ULONG_MAX; 613 614 /* BookS hash, the first segment is bolted */ 615 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) 616 return 1UL << SID_SHIFT_1T; 617 return 1UL << SID_SHIFT; 618 #endif 619 } 620 621 static void *__init alloc_stack(unsigned long limit, int cpu) 622 { 623 unsigned long pa; 624 625 pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit, 626 early_cpu_to_node(cpu), MEMBLOCK_NONE); 627 if (!pa) { 628 pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); 629 if (!pa) 630 panic("cannot allocate stacks"); 631 } 632 633 return __va(pa); 634 } 635 636 void __init irqstack_early_init(void) 637 { 638 u64 limit = ppc64_bolted_size(); 639 unsigned int i; 640 641 /* 642 * Interrupt stacks must be in the first segment since we 643 * cannot afford to take SLB misses on them. They are not 644 * accessed in realmode. 645 */ 646 for_each_possible_cpu(i) { 647 softirq_ctx[i] = alloc_stack(limit, i); 648 hardirq_ctx[i] = alloc_stack(limit, i); 649 } 650 } 651 652 #ifdef CONFIG_PPC_BOOK3E 653 void __init exc_lvl_early_init(void) 654 { 655 unsigned int i; 656 657 for_each_possible_cpu(i) { 658 void *sp; 659 660 sp = alloc_stack(ULONG_MAX, i); 661 critirq_ctx[i] = sp; 662 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE; 663 664 sp = alloc_stack(ULONG_MAX, i); 665 dbgirq_ctx[i] = sp; 666 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE; 667 668 sp = alloc_stack(ULONG_MAX, i); 669 mcheckirq_ctx[i] = sp; 670 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE; 671 } 672 673 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 674 patch_exception(0x040, exc_debug_debug_book3e); 675 } 676 #endif 677 678 /* 679 * Emergency stacks are used for a range of things, from asynchronous 680 * NMIs (system reset, machine check) to synchronous, process context. 681 * We set preempt_count to zero, even though that isn't necessarily correct. To 682 * get the right value we'd need to copy it from the previous thread_info, but 683 * doing that might fault causing more problems. 684 * TODO: what to do with accounting? 685 */ 686 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu) 687 { 688 ti->task = NULL; 689 ti->cpu = cpu; 690 ti->preempt_count = 0; 691 ti->local_flags = 0; 692 ti->flags = 0; 693 klp_init_thread_info(ti); 694 } 695 696 /* 697 * Stack space used when we detect a bad kernel stack pointer, and 698 * early in SMP boots before relocation is enabled. Exclusive emergency 699 * stack for machine checks. 700 */ 701 void __init emergency_stack_init(void) 702 { 703 u64 limit; 704 unsigned int i; 705 706 /* 707 * Emergency stacks must be under 256MB, we cannot afford to take 708 * SLB misses on them. The ABI also requires them to be 128-byte 709 * aligned. 710 * 711 * Since we use these as temporary stacks during secondary CPU 712 * bringup, machine check, system reset, and HMI, we need to get 713 * at them in real mode. This means they must also be within the RMO 714 * region. 715 * 716 * The IRQ stacks allocated elsewhere in this file are zeroed and 717 * initialized in kernel/irq.c. These are initialized here in order 718 * to have emergency stacks available as early as possible. 719 */ 720 limit = min(ppc64_bolted_size(), ppc64_rma_size); 721 722 for_each_possible_cpu(i) { 723 struct thread_info *ti; 724 725 ti = alloc_stack(limit, i); 726 memset(ti, 0, THREAD_SIZE); 727 emerg_stack_init_thread_info(ti, i); 728 paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE; 729 730 #ifdef CONFIG_PPC_BOOK3S_64 731 /* emergency stack for NMI exception handling. */ 732 ti = alloc_stack(limit, i); 733 memset(ti, 0, THREAD_SIZE); 734 emerg_stack_init_thread_info(ti, i); 735 paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE; 736 737 /* emergency stack for machine check exception handling. */ 738 ti = alloc_stack(limit, i); 739 memset(ti, 0, THREAD_SIZE); 740 emerg_stack_init_thread_info(ti, i); 741 paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE; 742 #endif 743 } 744 } 745 746 #ifdef CONFIG_SMP 747 #define PCPU_DYN_SIZE () 748 749 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 750 { 751 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align, 752 __pa(MAX_DMA_ADDRESS)); 753 } 754 755 static void __init pcpu_fc_free(void *ptr, size_t size) 756 { 757 free_bootmem(__pa(ptr), size); 758 } 759 760 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 761 { 762 if (early_cpu_to_node(from) == early_cpu_to_node(to)) 763 return LOCAL_DISTANCE; 764 else 765 return REMOTE_DISTANCE; 766 } 767 768 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 769 EXPORT_SYMBOL(__per_cpu_offset); 770 771 void __init setup_per_cpu_areas(void) 772 { 773 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 774 size_t atom_size; 775 unsigned long delta; 776 unsigned int cpu; 777 int rc; 778 779 /* 780 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 781 * to group units. For larger mappings, use 1M atom which 782 * should be large enough to contain a number of units. 783 */ 784 if (mmu_linear_psize == MMU_PAGE_4K) 785 atom_size = PAGE_SIZE; 786 else 787 atom_size = 1 << 20; 788 789 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 790 pcpu_fc_alloc, pcpu_fc_free); 791 if (rc < 0) 792 panic("cannot initialize percpu area (err=%d)", rc); 793 794 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 795 for_each_possible_cpu(cpu) { 796 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 797 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu]; 798 } 799 } 800 #endif 801 802 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 803 unsigned long memory_block_size_bytes(void) 804 { 805 if (ppc_md.memory_block_size) 806 return ppc_md.memory_block_size(); 807 808 return MIN_MEMORY_BLOCK_SIZE; 809 } 810 #endif 811 812 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 813 struct ppc_pci_io ppc_pci_io; 814 EXPORT_SYMBOL(ppc_pci_io); 815 #endif 816 817 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 818 u64 hw_nmi_get_sample_period(int watchdog_thresh) 819 { 820 return ppc_proc_freq * watchdog_thresh; 821 } 822 #endif 823 824 /* 825 * The perf based hardlockup detector breaks PMU event based branches, so 826 * disable it by default. Book3S has a soft-nmi hardlockup detector based 827 * on the decrementer interrupt, so it does not suffer from this problem. 828 * 829 * It is likely to get false positives in VM guests, so disable it there 830 * by default too. 831 */ 832 static int __init disable_hardlockup_detector(void) 833 { 834 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 835 hardlockup_detector_disable(); 836 #else 837 if (firmware_has_feature(FW_FEATURE_LPAR)) 838 hardlockup_detector_disable(); 839 #endif 840 841 return 0; 842 } 843 early_initcall(disable_hardlockup_detector); 844 845 #ifdef CONFIG_PPC_BOOK3S_64 846 static enum l1d_flush_type enabled_flush_types; 847 static void *l1d_flush_fallback_area; 848 static bool no_rfi_flush; 849 bool rfi_flush; 850 851 static int __init handle_no_rfi_flush(char *p) 852 { 853 pr_info("rfi-flush: disabled on command line."); 854 no_rfi_flush = true; 855 return 0; 856 } 857 early_param("no_rfi_flush", handle_no_rfi_flush); 858 859 /* 860 * The RFI flush is not KPTI, but because users will see doco that says to use 861 * nopti we hijack that option here to also disable the RFI flush. 862 */ 863 static int __init handle_no_pti(char *p) 864 { 865 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); 866 handle_no_rfi_flush(NULL); 867 return 0; 868 } 869 early_param("nopti", handle_no_pti); 870 871 static void do_nothing(void *unused) 872 { 873 /* 874 * We don't need to do the flush explicitly, just enter+exit kernel is 875 * sufficient, the RFI exit handlers will do the right thing. 876 */ 877 } 878 879 void rfi_flush_enable(bool enable) 880 { 881 if (enable) { 882 do_rfi_flush_fixups(enabled_flush_types); 883 on_each_cpu(do_nothing, NULL, 1); 884 } else 885 do_rfi_flush_fixups(L1D_FLUSH_NONE); 886 887 rfi_flush = enable; 888 } 889 890 static void __ref init_fallback_flush(void) 891 { 892 u64 l1d_size, limit; 893 int cpu; 894 895 /* Only allocate the fallback flush area once (at boot time). */ 896 if (l1d_flush_fallback_area) 897 return; 898 899 l1d_size = ppc64_caches.l1d.size; 900 901 /* 902 * If there is no d-cache-size property in the device tree, l1d_size 903 * could be zero. That leads to the loop in the asm wrapping around to 904 * 2^64-1, and then walking off the end of the fallback area and 905 * eventually causing a page fault which is fatal. Just default to 906 * something vaguely sane. 907 */ 908 if (!l1d_size) 909 l1d_size = (64 * 1024); 910 911 limit = min(ppc64_bolted_size(), ppc64_rma_size); 912 913 /* 914 * Align to L1d size, and size it at 2x L1d size, to catch possible 915 * hardware prefetch runoff. We don't have a recipe for load patterns to 916 * reliably avoid the prefetcher. 917 */ 918 l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit)); 919 memset(l1d_flush_fallback_area, 0, l1d_size * 2); 920 921 for_each_possible_cpu(cpu) { 922 struct paca_struct *paca = paca_ptrs[cpu]; 923 paca->rfi_flush_fallback_area = l1d_flush_fallback_area; 924 paca->l1d_flush_size = l1d_size; 925 } 926 } 927 928 void setup_rfi_flush(enum l1d_flush_type types, bool enable) 929 { 930 if (types & L1D_FLUSH_FALLBACK) { 931 pr_info("rfi-flush: fallback displacement flush available\n"); 932 init_fallback_flush(); 933 } 934 935 if (types & L1D_FLUSH_ORI) 936 pr_info("rfi-flush: ori type flush available\n"); 937 938 if (types & L1D_FLUSH_MTTRIG) 939 pr_info("rfi-flush: mttrig type flush available\n"); 940 941 enabled_flush_types = types; 942 943 if (!no_rfi_flush) 944 rfi_flush_enable(enable); 945 } 946 947 #ifdef CONFIG_DEBUG_FS 948 static int rfi_flush_set(void *data, u64 val) 949 { 950 bool enable; 951 952 if (val == 1) 953 enable = true; 954 else if (val == 0) 955 enable = false; 956 else 957 return -EINVAL; 958 959 /* Only do anything if we're changing state */ 960 if (enable != rfi_flush) 961 rfi_flush_enable(enable); 962 963 return 0; 964 } 965 966 static int rfi_flush_get(void *data, u64 *val) 967 { 968 *val = rfi_flush ? 1 : 0; 969 return 0; 970 } 971 972 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); 973 974 static __init int rfi_flush_debugfs_init(void) 975 { 976 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush); 977 return 0; 978 } 979 device_initcall(rfi_flush_debugfs_init); 980 #endif 981 #endif /* CONFIG_PPC_BOOK3S_64 */ 982