xref: /openbmc/linux/arch/powerpc/kernel/setup_64.c (revision f32e5616)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/export.h>
14 #include <linux/string.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/reboot.h>
19 #include <linux/delay.h>
20 #include <linux/initrd.h>
21 #include <linux/seq_file.h>
22 #include <linux/ioport.h>
23 #include <linux/console.h>
24 #include <linux/utsname.h>
25 #include <linux/tty.h>
26 #include <linux/root_dev.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/unistd.h>
30 #include <linux/serial.h>
31 #include <linux/serial_8250.h>
32 #include <linux/memblock.h>
33 #include <linux/pci.h>
34 #include <linux/lockdep.h>
35 #include <linux/memory.h>
36 #include <linux/nmi.h>
37 
38 #include <asm/debugfs.h>
39 #include <asm/io.h>
40 #include <asm/kdump.h>
41 #include <asm/prom.h>
42 #include <asm/processor.h>
43 #include <asm/pgtable.h>
44 #include <asm/smp.h>
45 #include <asm/elf.h>
46 #include <asm/machdep.h>
47 #include <asm/paca.h>
48 #include <asm/time.h>
49 #include <asm/cputable.h>
50 #include <asm/dt_cpu_ftrs.h>
51 #include <asm/sections.h>
52 #include <asm/btext.h>
53 #include <asm/nvram.h>
54 #include <asm/setup.h>
55 #include <asm/rtas.h>
56 #include <asm/iommu.h>
57 #include <asm/serial.h>
58 #include <asm/cache.h>
59 #include <asm/page.h>
60 #include <asm/mmu.h>
61 #include <asm/firmware.h>
62 #include <asm/xmon.h>
63 #include <asm/udbg.h>
64 #include <asm/kexec.h>
65 #include <asm/code-patching.h>
66 #include <asm/livepatch.h>
67 #include <asm/opal.h>
68 #include <asm/cputhreads.h>
69 #include <asm/hw_irq.h>
70 #include <asm/feature-fixups.h>
71 
72 #include "setup.h"
73 
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
79 
80 int spinning_secondaries;
81 u64 ppc64_pft_size;
82 
83 struct ppc64_caches ppc64_caches = {
84 	.l1d = {
85 		.block_size = 0x40,
86 		.log_block_size = 6,
87 	},
88 	.l1i = {
89 		.block_size = 0x40,
90 		.log_block_size = 6
91 	},
92 };
93 EXPORT_SYMBOL_GPL(ppc64_caches);
94 
95 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96 void __init setup_tlb_core_data(void)
97 {
98 	int cpu;
99 
100 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
101 
102 	for_each_possible_cpu(cpu) {
103 		int first = cpu_first_thread_sibling(cpu);
104 
105 		/*
106 		 * If we boot via kdump on a non-primary thread,
107 		 * make sure we point at the thread that actually
108 		 * set up this TLB.
109 		 */
110 		if (cpu_first_thread_sibling(boot_cpuid) == first)
111 			first = boot_cpuid;
112 
113 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
114 
115 		/*
116 		 * If we have threads, we need either tlbsrx.
117 		 * or e6500 tablewalk mode, or else TLB handlers
118 		 * will be racy and could produce duplicate entries.
119 		 * Should we panic instead?
120 		 */
121 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
122 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
123 			  book3e_htw_mode != PPC_HTW_E6500,
124 			  "%s: unsupported MMU configuration\n", __func__);
125 	}
126 }
127 #endif
128 
129 #ifdef CONFIG_SMP
130 
131 static char *smt_enabled_cmdline;
132 
133 /* Look for ibm,smt-enabled OF option */
134 void __init check_smt_enabled(void)
135 {
136 	struct device_node *dn;
137 	const char *smt_option;
138 
139 	/* Default to enabling all threads */
140 	smt_enabled_at_boot = threads_per_core;
141 
142 	/* Allow the command line to overrule the OF option */
143 	if (smt_enabled_cmdline) {
144 		if (!strcmp(smt_enabled_cmdline, "on"))
145 			smt_enabled_at_boot = threads_per_core;
146 		else if (!strcmp(smt_enabled_cmdline, "off"))
147 			smt_enabled_at_boot = 0;
148 		else {
149 			int smt;
150 			int rc;
151 
152 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 			if (!rc)
154 				smt_enabled_at_boot =
155 					min(threads_per_core, smt);
156 		}
157 	} else {
158 		dn = of_find_node_by_path("/options");
159 		if (dn) {
160 			smt_option = of_get_property(dn, "ibm,smt-enabled",
161 						     NULL);
162 
163 			if (smt_option) {
164 				if (!strcmp(smt_option, "on"))
165 					smt_enabled_at_boot = threads_per_core;
166 				else if (!strcmp(smt_option, "off"))
167 					smt_enabled_at_boot = 0;
168 			}
169 
170 			of_node_put(dn);
171 		}
172 	}
173 }
174 
175 /* Look for smt-enabled= cmdline option */
176 static int __init early_smt_enabled(char *p)
177 {
178 	smt_enabled_cmdline = p;
179 	return 0;
180 }
181 early_param("smt-enabled", early_smt_enabled);
182 
183 #endif /* CONFIG_SMP */
184 
185 /** Fix up paca fields required for the boot cpu */
186 static void __init fixup_boot_paca(void)
187 {
188 	/* The boot cpu is started */
189 	get_paca()->cpu_start = 1;
190 	/* Allow percpu accesses to work until we setup percpu data */
191 	get_paca()->data_offset = 0;
192 	/* Mark interrupts disabled in PACA */
193 	irq_soft_mask_set(IRQS_DISABLED);
194 }
195 
196 static void __init configure_exceptions(void)
197 {
198 	/*
199 	 * Setup the trampolines from the lowmem exception vectors
200 	 * to the kdump kernel when not using a relocatable kernel.
201 	 */
202 	setup_kdump_trampoline();
203 
204 	/* Under a PAPR hypervisor, we need hypercalls */
205 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
206 		/* Enable AIL if possible */
207 		pseries_enable_reloc_on_exc();
208 
209 		/*
210 		 * Tell the hypervisor that we want our exceptions to
211 		 * be taken in little endian mode.
212 		 *
213 		 * We don't call this for big endian as our calling convention
214 		 * makes us always enter in BE, and the call may fail under
215 		 * some circumstances with kdump.
216 		 */
217 #ifdef __LITTLE_ENDIAN__
218 		pseries_little_endian_exceptions();
219 #endif
220 	} else {
221 		/* Set endian mode using OPAL */
222 		if (firmware_has_feature(FW_FEATURE_OPAL))
223 			opal_configure_cores();
224 
225 		/* AIL on native is done in cpu_ready_for_interrupts() */
226 	}
227 }
228 
229 static void cpu_ready_for_interrupts(void)
230 {
231 	/*
232 	 * Enable AIL if supported, and we are in hypervisor mode. This
233 	 * is called once for every processor.
234 	 *
235 	 * If we are not in hypervisor mode the job is done once for
236 	 * the whole partition in configure_exceptions().
237 	 */
238 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
239 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
240 		unsigned long lpcr = mfspr(SPRN_LPCR);
241 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
242 	}
243 
244 	/*
245 	 * Set HFSCR:TM based on CPU features:
246 	 * In the special case of TM no suspend (P9N DD2.1), Linux is
247 	 * told TM is off via the dt-ftrs but told to (partially) use
248 	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
249 	 * will be off from dt-ftrs but we need to turn it on for the
250 	 * no suspend case.
251 	 */
252 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
253 		if (cpu_has_feature(CPU_FTR_TM_COMP))
254 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
255 		else
256 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
257 	}
258 
259 	/* Set IR and DR in PACA MSR */
260 	get_paca()->kernel_msr = MSR_KERNEL;
261 }
262 
263 unsigned long spr_default_dscr = 0;
264 
265 void __init record_spr_defaults(void)
266 {
267 	if (early_cpu_has_feature(CPU_FTR_DSCR))
268 		spr_default_dscr = mfspr(SPRN_DSCR);
269 }
270 
271 /*
272  * Early initialization entry point. This is called by head.S
273  * with MMU translation disabled. We rely on the "feature" of
274  * the CPU that ignores the top 2 bits of the address in real
275  * mode so we can access kernel globals normally provided we
276  * only toy with things in the RMO region. From here, we do
277  * some early parsing of the device-tree to setup out MEMBLOCK
278  * data structures, and allocate & initialize the hash table
279  * and segment tables so we can start running with translation
280  * enabled.
281  *
282  * It is this function which will call the probe() callback of
283  * the various platform types and copy the matching one to the
284  * global ppc_md structure. Your platform can eventually do
285  * some very early initializations from the probe() routine, but
286  * this is not recommended, be very careful as, for example, the
287  * device-tree is not accessible via normal means at this point.
288  */
289 
290 void __init early_setup(unsigned long dt_ptr)
291 {
292 	static __initdata struct paca_struct boot_paca;
293 
294 	/* -------- printk is _NOT_ safe to use here ! ------- */
295 
296 	/* Try new device tree based feature discovery ... */
297 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
298 		/* Otherwise use the old style CPU table */
299 		identify_cpu(0, mfspr(SPRN_PVR));
300 
301 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
302 	initialise_paca(&boot_paca, 0);
303 	setup_paca(&boot_paca);
304 	fixup_boot_paca();
305 
306 	/* -------- printk is now safe to use ------- */
307 
308 	/* Enable early debugging if any specified (see udbg.h) */
309 	udbg_early_init();
310 
311  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
312 
313 	/*
314 	 * Do early initialization using the flattened device
315 	 * tree, such as retrieving the physical memory map or
316 	 * calculating/retrieving the hash table size.
317 	 */
318 	early_init_devtree(__va(dt_ptr));
319 
320 	/* Now we know the logical id of our boot cpu, setup the paca. */
321 	if (boot_cpuid != 0) {
322 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
323 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
324 	}
325 	setup_paca(paca_ptrs[boot_cpuid]);
326 	fixup_boot_paca();
327 
328 	/*
329 	 * Configure exception handlers. This include setting up trampolines
330 	 * if needed, setting exception endian mode, etc...
331 	 */
332 	configure_exceptions();
333 
334 	/* Apply all the dynamic patching */
335 	apply_feature_fixups();
336 	setup_feature_keys();
337 
338 	/* Initialize the hash table or TLB handling */
339 	early_init_mmu();
340 
341 	/*
342 	 * After firmware and early platform setup code has set things up,
343 	 * we note the SPR values for configurable control/performance
344 	 * registers, and use those as initial defaults.
345 	 */
346 	record_spr_defaults();
347 
348 	/*
349 	 * At this point, we can let interrupts switch to virtual mode
350 	 * (the MMU has been setup), so adjust the MSR in the PACA to
351 	 * have IR and DR set and enable AIL if it exists
352 	 */
353 	cpu_ready_for_interrupts();
354 
355 	/*
356 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
357 	 * will only actually get enabled on the boot cpu much later once
358 	 * ftrace itself has been initialized.
359 	 */
360 	this_cpu_enable_ftrace();
361 
362 	DBG(" <- early_setup()\n");
363 
364 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
365 	/*
366 	 * This needs to be done *last* (after the above DBG() even)
367 	 *
368 	 * Right after we return from this function, we turn on the MMU
369 	 * which means the real-mode access trick that btext does will
370 	 * no longer work, it needs to switch to using a real MMU
371 	 * mapping. This call will ensure that it does
372 	 */
373 	btext_map();
374 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
375 }
376 
377 #ifdef CONFIG_SMP
378 void early_setup_secondary(void)
379 {
380 	/* Mark interrupts disabled in PACA */
381 	irq_soft_mask_set(IRQS_DISABLED);
382 
383 	/* Initialize the hash table or TLB handling */
384 	early_init_mmu_secondary();
385 
386 	/*
387 	 * At this point, we can let interrupts switch to virtual mode
388 	 * (the MMU has been setup), so adjust the MSR in the PACA to
389 	 * have IR and DR set.
390 	 */
391 	cpu_ready_for_interrupts();
392 }
393 
394 #endif /* CONFIG_SMP */
395 
396 void panic_smp_self_stop(void)
397 {
398 	hard_irq_disable();
399 	spin_begin();
400 	while (1)
401 		spin_cpu_relax();
402 }
403 
404 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
405 static bool use_spinloop(void)
406 {
407 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
408 		/*
409 		 * See comments in head_64.S -- not all platforms insert
410 		 * secondaries at __secondary_hold and wait at the spin
411 		 * loop.
412 		 */
413 		if (firmware_has_feature(FW_FEATURE_OPAL))
414 			return false;
415 		return true;
416 	}
417 
418 	/*
419 	 * When book3e boots from kexec, the ePAPR spin table does
420 	 * not get used.
421 	 */
422 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
423 }
424 
425 void smp_release_cpus(void)
426 {
427 	unsigned long *ptr;
428 	int i;
429 
430 	if (!use_spinloop())
431 		return;
432 
433 	DBG(" -> smp_release_cpus()\n");
434 
435 	/* All secondary cpus are spinning on a common spinloop, release them
436 	 * all now so they can start to spin on their individual paca
437 	 * spinloops. For non SMP kernels, the secondary cpus never get out
438 	 * of the common spinloop.
439 	 */
440 
441 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
442 			- PHYSICAL_START);
443 	*ptr = ppc_function_entry(generic_secondary_smp_init);
444 
445 	/* And wait a bit for them to catch up */
446 	for (i = 0; i < 100000; i++) {
447 		mb();
448 		HMT_low();
449 		if (spinning_secondaries == 0)
450 			break;
451 		udelay(1);
452 	}
453 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
454 
455 	DBG(" <- smp_release_cpus()\n");
456 }
457 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
458 
459 /*
460  * Initialize some remaining members of the ppc64_caches and systemcfg
461  * structures
462  * (at least until we get rid of them completely). This is mostly some
463  * cache informations about the CPU that will be used by cache flush
464  * routines and/or provided to userland
465  */
466 
467 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
468 			    u32 bsize, u32 sets)
469 {
470 	info->size = size;
471 	info->sets = sets;
472 	info->line_size = lsize;
473 	info->block_size = bsize;
474 	info->log_block_size = __ilog2(bsize);
475 	if (bsize)
476 		info->blocks_per_page = PAGE_SIZE / bsize;
477 	else
478 		info->blocks_per_page = 0;
479 
480 	if (sets == 0)
481 		info->assoc = 0xffff;
482 	else
483 		info->assoc = size / (sets * lsize);
484 }
485 
486 static bool __init parse_cache_info(struct device_node *np,
487 				    bool icache,
488 				    struct ppc_cache_info *info)
489 {
490 	static const char *ipropnames[] __initdata = {
491 		"i-cache-size",
492 		"i-cache-sets",
493 		"i-cache-block-size",
494 		"i-cache-line-size",
495 	};
496 	static const char *dpropnames[] __initdata = {
497 		"d-cache-size",
498 		"d-cache-sets",
499 		"d-cache-block-size",
500 		"d-cache-line-size",
501 	};
502 	const char **propnames = icache ? ipropnames : dpropnames;
503 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
504 	u32 size, lsize, bsize, sets;
505 	bool success = true;
506 
507 	size = 0;
508 	sets = -1u;
509 	lsize = bsize = cur_cpu_spec->dcache_bsize;
510 	sizep = of_get_property(np, propnames[0], NULL);
511 	if (sizep != NULL)
512 		size = be32_to_cpu(*sizep);
513 	setsp = of_get_property(np, propnames[1], NULL);
514 	if (setsp != NULL)
515 		sets = be32_to_cpu(*setsp);
516 	bsizep = of_get_property(np, propnames[2], NULL);
517 	lsizep = of_get_property(np, propnames[3], NULL);
518 	if (bsizep == NULL)
519 		bsizep = lsizep;
520 	if (lsizep != NULL)
521 		lsize = be32_to_cpu(*lsizep);
522 	if (bsizep != NULL)
523 		bsize = be32_to_cpu(*bsizep);
524 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
525 		success = false;
526 
527 	/*
528 	 * OF is weird .. it represents fully associative caches
529 	 * as "1 way" which doesn't make much sense and doesn't
530 	 * leave room for direct mapped. We'll assume that 0
531 	 * in OF means direct mapped for that reason.
532 	 */
533 	if (sets == 1)
534 		sets = 0;
535 	else if (sets == 0)
536 		sets = 1;
537 
538 	init_cache_info(info, size, lsize, bsize, sets);
539 
540 	return success;
541 }
542 
543 void __init initialize_cache_info(void)
544 {
545 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
546 	u32 pvr;
547 
548 	DBG(" -> initialize_cache_info()\n");
549 
550 	/*
551 	 * All shipping POWER8 machines have a firmware bug that
552 	 * puts incorrect information in the device-tree. This will
553 	 * be (hopefully) fixed for future chips but for now hard
554 	 * code the values if we are running on one of these
555 	 */
556 	pvr = PVR_VER(mfspr(SPRN_PVR));
557 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
558 	    pvr == PVR_POWER8NVL) {
559 						/* size    lsize   blk  sets */
560 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
561 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
562 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
563 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
564 	} else
565 		cpu = of_find_node_by_type(NULL, "cpu");
566 
567 	/*
568 	 * We're assuming *all* of the CPUs have the same
569 	 * d-cache and i-cache sizes... -Peter
570 	 */
571 	if (cpu) {
572 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
573 			DBG("Argh, can't find dcache properties !\n");
574 
575 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
576 			DBG("Argh, can't find icache properties !\n");
577 
578 		/*
579 		 * Try to find the L2 and L3 if any. Assume they are
580 		 * unified and use the D-side properties.
581 		 */
582 		l2 = of_find_next_cache_node(cpu);
583 		of_node_put(cpu);
584 		if (l2) {
585 			parse_cache_info(l2, false, &ppc64_caches.l2);
586 			l3 = of_find_next_cache_node(l2);
587 			of_node_put(l2);
588 		}
589 		if (l3) {
590 			parse_cache_info(l3, false, &ppc64_caches.l3);
591 			of_node_put(l3);
592 		}
593 	}
594 
595 	/* For use by binfmt_elf */
596 	dcache_bsize = ppc64_caches.l1d.block_size;
597 	icache_bsize = ppc64_caches.l1i.block_size;
598 
599 	cur_cpu_spec->dcache_bsize = dcache_bsize;
600 	cur_cpu_spec->icache_bsize = icache_bsize;
601 
602 	DBG(" <- initialize_cache_info()\n");
603 }
604 
605 /*
606  * This returns the limit below which memory accesses to the linear
607  * mapping are guarnateed not to cause an architectural exception (e.g.,
608  * TLB or SLB miss fault).
609  *
610  * This is used to allocate PACAs and various interrupt stacks that
611  * that are accessed early in interrupt handlers that must not cause
612  * re-entrant interrupts.
613  */
614 __init u64 ppc64_bolted_size(void)
615 {
616 #ifdef CONFIG_PPC_BOOK3E
617 	/* Freescale BookE bolts the entire linear mapping */
618 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
619 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
620 		return linear_map_top;
621 	/* Other BookE, we assume the first GB is bolted */
622 	return 1ul << 30;
623 #else
624 	/* BookS radix, does not take faults on linear mapping */
625 	if (early_radix_enabled())
626 		return ULONG_MAX;
627 
628 	/* BookS hash, the first segment is bolted */
629 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
630 		return 1UL << SID_SHIFT_1T;
631 	return 1UL << SID_SHIFT;
632 #endif
633 }
634 
635 static void *__init alloc_stack(unsigned long limit, int cpu)
636 {
637 	unsigned long pa;
638 
639 	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
640 
641 	pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
642 					early_cpu_to_node(cpu), MEMBLOCK_NONE);
643 	if (!pa) {
644 		pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
645 		if (!pa)
646 			panic("cannot allocate stacks");
647 	}
648 
649 	return __va(pa);
650 }
651 
652 void __init irqstack_early_init(void)
653 {
654 	u64 limit = ppc64_bolted_size();
655 	unsigned int i;
656 
657 	/*
658 	 * Interrupt stacks must be in the first segment since we
659 	 * cannot afford to take SLB misses on them. They are not
660 	 * accessed in realmode.
661 	 */
662 	for_each_possible_cpu(i) {
663 		softirq_ctx[i] = alloc_stack(limit, i);
664 		hardirq_ctx[i] = alloc_stack(limit, i);
665 	}
666 }
667 
668 #ifdef CONFIG_PPC_BOOK3E
669 void __init exc_lvl_early_init(void)
670 {
671 	unsigned int i;
672 
673 	for_each_possible_cpu(i) {
674 		void *sp;
675 
676 		sp = alloc_stack(ULONG_MAX, i);
677 		critirq_ctx[i] = sp;
678 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
679 
680 		sp = alloc_stack(ULONG_MAX, i);
681 		dbgirq_ctx[i] = sp;
682 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
683 
684 		sp = alloc_stack(ULONG_MAX, i);
685 		mcheckirq_ctx[i] = sp;
686 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
687 	}
688 
689 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
690 		patch_exception(0x040, exc_debug_debug_book3e);
691 }
692 #endif
693 
694 /*
695  * Emergency stacks are used for a range of things, from asynchronous
696  * NMIs (system reset, machine check) to synchronous, process context.
697  * We set preempt_count to zero, even though that isn't necessarily correct. To
698  * get the right value we'd need to copy it from the previous thread_info, but
699  * doing that might fault causing more problems.
700  * TODO: what to do with accounting?
701  */
702 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
703 {
704 	ti->task = NULL;
705 	ti->cpu = cpu;
706 	ti->preempt_count = 0;
707 	ti->local_flags = 0;
708 	ti->flags = 0;
709 	klp_init_thread_info(ti);
710 }
711 
712 /*
713  * Stack space used when we detect a bad kernel stack pointer, and
714  * early in SMP boots before relocation is enabled. Exclusive emergency
715  * stack for machine checks.
716  */
717 void __init emergency_stack_init(void)
718 {
719 	u64 limit;
720 	unsigned int i;
721 
722 	/*
723 	 * Emergency stacks must be under 256MB, we cannot afford to take
724 	 * SLB misses on them. The ABI also requires them to be 128-byte
725 	 * aligned.
726 	 *
727 	 * Since we use these as temporary stacks during secondary CPU
728 	 * bringup, machine check, system reset, and HMI, we need to get
729 	 * at them in real mode. This means they must also be within the RMO
730 	 * region.
731 	 *
732 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
733 	 * initialized in kernel/irq.c. These are initialized here in order
734 	 * to have emergency stacks available as early as possible.
735 	 */
736 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
737 
738 	for_each_possible_cpu(i) {
739 		struct thread_info *ti;
740 
741 		ti = alloc_stack(limit, i);
742 		memset(ti, 0, THREAD_SIZE);
743 		emerg_stack_init_thread_info(ti, i);
744 		paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
745 
746 #ifdef CONFIG_PPC_BOOK3S_64
747 		/* emergency stack for NMI exception handling. */
748 		ti = alloc_stack(limit, i);
749 		memset(ti, 0, THREAD_SIZE);
750 		emerg_stack_init_thread_info(ti, i);
751 		paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
752 
753 		/* emergency stack for machine check exception handling. */
754 		ti = alloc_stack(limit, i);
755 		memset(ti, 0, THREAD_SIZE);
756 		emerg_stack_init_thread_info(ti, i);
757 		paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
758 #endif
759 	}
760 }
761 
762 #ifdef CONFIG_SMP
763 #define PCPU_DYN_SIZE		()
764 
765 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
766 {
767 	return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
768 				      MEMBLOCK_ALLOC_ACCESSIBLE,
769 				      early_cpu_to_node(cpu));
770 
771 }
772 
773 static void __init pcpu_fc_free(void *ptr, size_t size)
774 {
775 	memblock_free(__pa(ptr), size);
776 }
777 
778 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
779 {
780 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
781 		return LOCAL_DISTANCE;
782 	else
783 		return REMOTE_DISTANCE;
784 }
785 
786 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
787 EXPORT_SYMBOL(__per_cpu_offset);
788 
789 void __init setup_per_cpu_areas(void)
790 {
791 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
792 	size_t atom_size;
793 	unsigned long delta;
794 	unsigned int cpu;
795 	int rc;
796 
797 	/*
798 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
799 	 * to group units.  For larger mappings, use 1M atom which
800 	 * should be large enough to contain a number of units.
801 	 */
802 	if (mmu_linear_psize == MMU_PAGE_4K)
803 		atom_size = PAGE_SIZE;
804 	else
805 		atom_size = 1 << 20;
806 
807 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
808 				    pcpu_fc_alloc, pcpu_fc_free);
809 	if (rc < 0)
810 		panic("cannot initialize percpu area (err=%d)", rc);
811 
812 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
813 	for_each_possible_cpu(cpu) {
814                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
815 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
816 	}
817 }
818 #endif
819 
820 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
821 unsigned long memory_block_size_bytes(void)
822 {
823 	if (ppc_md.memory_block_size)
824 		return ppc_md.memory_block_size();
825 
826 	return MIN_MEMORY_BLOCK_SIZE;
827 }
828 #endif
829 
830 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
831 struct ppc_pci_io ppc_pci_io;
832 EXPORT_SYMBOL(ppc_pci_io);
833 #endif
834 
835 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
836 u64 hw_nmi_get_sample_period(int watchdog_thresh)
837 {
838 	return ppc_proc_freq * watchdog_thresh;
839 }
840 #endif
841 
842 /*
843  * The perf based hardlockup detector breaks PMU event based branches, so
844  * disable it by default. Book3S has a soft-nmi hardlockup detector based
845  * on the decrementer interrupt, so it does not suffer from this problem.
846  *
847  * It is likely to get false positives in VM guests, so disable it there
848  * by default too.
849  */
850 static int __init disable_hardlockup_detector(void)
851 {
852 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
853 	hardlockup_detector_disable();
854 #else
855 	if (firmware_has_feature(FW_FEATURE_LPAR))
856 		hardlockup_detector_disable();
857 #endif
858 
859 	return 0;
860 }
861 early_initcall(disable_hardlockup_detector);
862 
863 #ifdef CONFIG_PPC_BOOK3S_64
864 static enum l1d_flush_type enabled_flush_types;
865 static void *l1d_flush_fallback_area;
866 static bool no_rfi_flush;
867 bool rfi_flush;
868 
869 static int __init handle_no_rfi_flush(char *p)
870 {
871 	pr_info("rfi-flush: disabled on command line.");
872 	no_rfi_flush = true;
873 	return 0;
874 }
875 early_param("no_rfi_flush", handle_no_rfi_flush);
876 
877 /*
878  * The RFI flush is not KPTI, but because users will see doco that says to use
879  * nopti we hijack that option here to also disable the RFI flush.
880  */
881 static int __init handle_no_pti(char *p)
882 {
883 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
884 	handle_no_rfi_flush(NULL);
885 	return 0;
886 }
887 early_param("nopti", handle_no_pti);
888 
889 static void do_nothing(void *unused)
890 {
891 	/*
892 	 * We don't need to do the flush explicitly, just enter+exit kernel is
893 	 * sufficient, the RFI exit handlers will do the right thing.
894 	 */
895 }
896 
897 void rfi_flush_enable(bool enable)
898 {
899 	if (enable) {
900 		do_rfi_flush_fixups(enabled_flush_types);
901 		on_each_cpu(do_nothing, NULL, 1);
902 	} else
903 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
904 
905 	rfi_flush = enable;
906 }
907 
908 static void __ref init_fallback_flush(void)
909 {
910 	u64 l1d_size, limit;
911 	int cpu;
912 
913 	/* Only allocate the fallback flush area once (at boot time). */
914 	if (l1d_flush_fallback_area)
915 		return;
916 
917 	l1d_size = ppc64_caches.l1d.size;
918 
919 	/*
920 	 * If there is no d-cache-size property in the device tree, l1d_size
921 	 * could be zero. That leads to the loop in the asm wrapping around to
922 	 * 2^64-1, and then walking off the end of the fallback area and
923 	 * eventually causing a page fault which is fatal. Just default to
924 	 * something vaguely sane.
925 	 */
926 	if (!l1d_size)
927 		l1d_size = (64 * 1024);
928 
929 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
930 
931 	/*
932 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
933 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
934 	 * reliably avoid the prefetcher.
935 	 */
936 	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
937 	memset(l1d_flush_fallback_area, 0, l1d_size * 2);
938 
939 	for_each_possible_cpu(cpu) {
940 		struct paca_struct *paca = paca_ptrs[cpu];
941 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
942 		paca->l1d_flush_size = l1d_size;
943 	}
944 }
945 
946 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
947 {
948 	if (types & L1D_FLUSH_FALLBACK) {
949 		pr_info("rfi-flush: fallback displacement flush available\n");
950 		init_fallback_flush();
951 	}
952 
953 	if (types & L1D_FLUSH_ORI)
954 		pr_info("rfi-flush: ori type flush available\n");
955 
956 	if (types & L1D_FLUSH_MTTRIG)
957 		pr_info("rfi-flush: mttrig type flush available\n");
958 
959 	enabled_flush_types = types;
960 
961 	if (!no_rfi_flush)
962 		rfi_flush_enable(enable);
963 }
964 
965 #ifdef CONFIG_DEBUG_FS
966 static int rfi_flush_set(void *data, u64 val)
967 {
968 	bool enable;
969 
970 	if (val == 1)
971 		enable = true;
972 	else if (val == 0)
973 		enable = false;
974 	else
975 		return -EINVAL;
976 
977 	/* Only do anything if we're changing state */
978 	if (enable != rfi_flush)
979 		rfi_flush_enable(enable);
980 
981 	return 0;
982 }
983 
984 static int rfi_flush_get(void *data, u64 *val)
985 {
986 	*val = rfi_flush ? 1 : 0;
987 	return 0;
988 }
989 
990 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
991 
992 static __init int rfi_flush_debugfs_init(void)
993 {
994 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
995 	return 0;
996 }
997 device_initcall(rfi_flush_debugfs_init);
998 #endif
999 #endif /* CONFIG_PPC_BOOK3S_64 */
1000