xref: /openbmc/linux/arch/powerpc/kernel/setup_64.c (revision e9e8bcb8)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #undef DEBUG
14 
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <asm/io.h>
39 #include <asm/kdump.h>
40 #include <asm/prom.h>
41 #include <asm/processor.h>
42 #include <asm/pgtable.h>
43 #include <asm/smp.h>
44 #include <asm/elf.h>
45 #include <asm/machdep.h>
46 #include <asm/paca.h>
47 #include <asm/time.h>
48 #include <asm/cputable.h>
49 #include <asm/sections.h>
50 #include <asm/btext.h>
51 #include <asm/nvram.h>
52 #include <asm/setup.h>
53 #include <asm/system.h>
54 #include <asm/rtas.h>
55 #include <asm/iommu.h>
56 #include <asm/serial.h>
57 #include <asm/cache.h>
58 #include <asm/page.h>
59 #include <asm/mmu.h>
60 #include <asm/firmware.h>
61 #include <asm/xmon.h>
62 #include <asm/udbg.h>
63 #include <asm/kexec.h>
64 #include <asm/mmu_context.h>
65 #include <asm/code-patching.h>
66 
67 #include "setup.h"
68 
69 #ifdef DEBUG
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
74 
75 int boot_cpuid = 0;
76 int __initdata boot_cpu_count;
77 u64 ppc64_pft_size;
78 
79 /* Pick defaults since we might want to patch instructions
80  * before we've read this from the device tree.
81  */
82 struct ppc64_caches ppc64_caches = {
83 	.dline_size = 0x40,
84 	.log_dline_size = 6,
85 	.iline_size = 0x40,
86 	.log_iline_size = 6
87 };
88 EXPORT_SYMBOL_GPL(ppc64_caches);
89 
90 /*
91  * These are used in binfmt_elf.c to put aux entries on the stack
92  * for each elf executable being started.
93  */
94 int dcache_bsize;
95 int icache_bsize;
96 int ucache_bsize;
97 
98 #ifdef CONFIG_SMP
99 
100 static char *smt_enabled_cmdline;
101 
102 /* Look for ibm,smt-enabled OF option */
103 static void check_smt_enabled(void)
104 {
105 	struct device_node *dn;
106 	const char *smt_option;
107 
108 	/* Default to enabling all threads */
109 	smt_enabled_at_boot = threads_per_core;
110 
111 	/* Allow the command line to overrule the OF option */
112 	if (smt_enabled_cmdline) {
113 		if (!strcmp(smt_enabled_cmdline, "on"))
114 			smt_enabled_at_boot = threads_per_core;
115 		else if (!strcmp(smt_enabled_cmdline, "off"))
116 			smt_enabled_at_boot = 0;
117 		else {
118 			long smt;
119 			int rc;
120 
121 			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
122 			if (!rc)
123 				smt_enabled_at_boot =
124 					min(threads_per_core, (int)smt);
125 		}
126 	} else {
127 		dn = of_find_node_by_path("/options");
128 		if (dn) {
129 			smt_option = of_get_property(dn, "ibm,smt-enabled",
130 						     NULL);
131 
132 			if (smt_option) {
133 				if (!strcmp(smt_option, "on"))
134 					smt_enabled_at_boot = threads_per_core;
135 				else if (!strcmp(smt_option, "off"))
136 					smt_enabled_at_boot = 0;
137 			}
138 
139 			of_node_put(dn);
140 		}
141 	}
142 }
143 
144 /* Look for smt-enabled= cmdline option */
145 static int __init early_smt_enabled(char *p)
146 {
147 	smt_enabled_cmdline = p;
148 	return 0;
149 }
150 early_param("smt-enabled", early_smt_enabled);
151 
152 #else
153 #define check_smt_enabled()
154 #endif /* CONFIG_SMP */
155 
156 /*
157  * Early initialization entry point. This is called by head.S
158  * with MMU translation disabled. We rely on the "feature" of
159  * the CPU that ignores the top 2 bits of the address in real
160  * mode so we can access kernel globals normally provided we
161  * only toy with things in the RMO region. From here, we do
162  * some early parsing of the device-tree to setup out MEMBLOCK
163  * data structures, and allocate & initialize the hash table
164  * and segment tables so we can start running with translation
165  * enabled.
166  *
167  * It is this function which will call the probe() callback of
168  * the various platform types and copy the matching one to the
169  * global ppc_md structure. Your platform can eventually do
170  * some very early initializations from the probe() routine, but
171  * this is not recommended, be very careful as, for example, the
172  * device-tree is not accessible via normal means at this point.
173  */
174 
175 void __init early_setup(unsigned long dt_ptr)
176 {
177 	/* -------- printk is _NOT_ safe to use here ! ------- */
178 
179 	/* Identify CPU type */
180 	identify_cpu(0, mfspr(SPRN_PVR));
181 
182 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
183 	initialise_paca(&boot_paca, 0);
184 	setup_paca(&boot_paca);
185 
186 	/* Initialize lockdep early or else spinlocks will blow */
187 	lockdep_init();
188 
189 	/* -------- printk is now safe to use ------- */
190 
191 	/* Enable early debugging if any specified (see udbg.h) */
192 	udbg_early_init();
193 
194  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
195 
196 	/*
197 	 * Do early initialization using the flattened device
198 	 * tree, such as retrieving the physical memory map or
199 	 * calculating/retrieving the hash table size.
200 	 */
201 	early_init_devtree(__va(dt_ptr));
202 
203 	/* Now we know the logical id of our boot cpu, setup the paca. */
204 	setup_paca(&paca[boot_cpuid]);
205 
206 	/* Fix up paca fields required for the boot cpu */
207 	get_paca()->cpu_start = 1;
208 
209 	/* Probe the machine type */
210 	probe_machine();
211 
212 	setup_kdump_trampoline();
213 
214 	DBG("Found, Initializing memory management...\n");
215 
216 	/* Initialize the hash table or TLB handling */
217 	early_init_mmu();
218 
219 	DBG(" <- early_setup()\n");
220 }
221 
222 #ifdef CONFIG_SMP
223 void early_setup_secondary(void)
224 {
225 	/* Mark interrupts enabled in PACA */
226 	get_paca()->soft_enabled = 0;
227 
228 	/* Initialize the hash table or TLB handling */
229 	early_init_mmu_secondary();
230 }
231 
232 #endif /* CONFIG_SMP */
233 
234 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
235 void smp_release_cpus(void)
236 {
237 	unsigned long *ptr;
238 	int i;
239 
240 	DBG(" -> smp_release_cpus()\n");
241 
242 	/* All secondary cpus are spinning on a common spinloop, release them
243 	 * all now so they can start to spin on their individual paca
244 	 * spinloops. For non SMP kernels, the secondary cpus never get out
245 	 * of the common spinloop.
246 	 */
247 
248 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
249 			- PHYSICAL_START);
250 	*ptr = __pa(generic_secondary_smp_init);
251 
252 	/* And wait a bit for them to catch up */
253 	for (i = 0; i < 100000; i++) {
254 		mb();
255 		HMT_low();
256 		if (boot_cpu_count == 0)
257 			break;
258 		udelay(1);
259 	}
260 	DBG("boot_cpu_count = %d\n", boot_cpu_count);
261 
262 	DBG(" <- smp_release_cpus()\n");
263 }
264 #endif /* CONFIG_SMP || CONFIG_KEXEC */
265 
266 /*
267  * Initialize some remaining members of the ppc64_caches and systemcfg
268  * structures
269  * (at least until we get rid of them completely). This is mostly some
270  * cache informations about the CPU that will be used by cache flush
271  * routines and/or provided to userland
272  */
273 static void __init initialize_cache_info(void)
274 {
275 	struct device_node *np;
276 	unsigned long num_cpus = 0;
277 
278 	DBG(" -> initialize_cache_info()\n");
279 
280 	for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
281 		num_cpus += 1;
282 
283 		/* We're assuming *all* of the CPUs have the same
284 		 * d-cache and i-cache sizes... -Peter
285 		 */
286 
287 		if ( num_cpus == 1 ) {
288 			const u32 *sizep, *lsizep;
289 			u32 size, lsize;
290 
291 			size = 0;
292 			lsize = cur_cpu_spec->dcache_bsize;
293 			sizep = of_get_property(np, "d-cache-size", NULL);
294 			if (sizep != NULL)
295 				size = *sizep;
296 			lsizep = of_get_property(np, "d-cache-block-size", NULL);
297 			/* fallback if block size missing */
298 			if (lsizep == NULL)
299 				lsizep = of_get_property(np, "d-cache-line-size", NULL);
300 			if (lsizep != NULL)
301 				lsize = *lsizep;
302 			if (sizep == 0 || lsizep == 0)
303 				DBG("Argh, can't find dcache properties ! "
304 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
305 
306 			ppc64_caches.dsize = size;
307 			ppc64_caches.dline_size = lsize;
308 			ppc64_caches.log_dline_size = __ilog2(lsize);
309 			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
310 
311 			size = 0;
312 			lsize = cur_cpu_spec->icache_bsize;
313 			sizep = of_get_property(np, "i-cache-size", NULL);
314 			if (sizep != NULL)
315 				size = *sizep;
316 			lsizep = of_get_property(np, "i-cache-block-size", NULL);
317 			if (lsizep == NULL)
318 				lsizep = of_get_property(np, "i-cache-line-size", NULL);
319 			if (lsizep != NULL)
320 				lsize = *lsizep;
321 			if (sizep == 0 || lsizep == 0)
322 				DBG("Argh, can't find icache properties ! "
323 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
324 
325 			ppc64_caches.isize = size;
326 			ppc64_caches.iline_size = lsize;
327 			ppc64_caches.log_iline_size = __ilog2(lsize);
328 			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
329 		}
330 	}
331 
332 	DBG(" <- initialize_cache_info()\n");
333 }
334 
335 
336 /*
337  * Do some initial setup of the system.  The parameters are those which
338  * were passed in from the bootloader.
339  */
340 void __init setup_system(void)
341 {
342 	DBG(" -> setup_system()\n");
343 
344 	/* Apply the CPUs-specific and firmware specific fixups to kernel
345 	 * text (nop out sections not relevant to this CPU or this firmware)
346 	 */
347 	do_feature_fixups(cur_cpu_spec->cpu_features,
348 			  &__start___ftr_fixup, &__stop___ftr_fixup);
349 	do_feature_fixups(cur_cpu_spec->mmu_features,
350 			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
351 	do_feature_fixups(powerpc_firmware_features,
352 			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
353 	do_lwsync_fixups(cur_cpu_spec->cpu_features,
354 			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
355 
356 	/*
357 	 * Unflatten the device-tree passed by prom_init or kexec
358 	 */
359 	unflatten_device_tree();
360 
361 	/*
362 	 * Fill the ppc64_caches & systemcfg structures with informations
363  	 * retrieved from the device-tree.
364 	 */
365 	initialize_cache_info();
366 
367 #ifdef CONFIG_PPC_RTAS
368 	/*
369 	 * Initialize RTAS if available
370 	 */
371 	rtas_initialize();
372 #endif /* CONFIG_PPC_RTAS */
373 
374 	/*
375 	 * Check if we have an initrd provided via the device-tree
376 	 */
377 	check_for_initrd();
378 
379 	/*
380 	 * Do some platform specific early initializations, that includes
381 	 * setting up the hash table pointers. It also sets up some interrupt-mapping
382 	 * related options that will be used by finish_device_tree()
383 	 */
384 	if (ppc_md.init_early)
385 		ppc_md.init_early();
386 
387  	/*
388 	 * We can discover serial ports now since the above did setup the
389 	 * hash table management for us, thus ioremap works. We do that early
390 	 * so that further code can be debugged
391 	 */
392 	find_legacy_serial_ports();
393 
394 	/*
395 	 * Register early console
396 	 */
397 	register_early_udbg_console();
398 
399 	/*
400 	 * Initialize xmon
401 	 */
402 	xmon_setup();
403 
404 	smp_setup_cpu_maps();
405 	check_smt_enabled();
406 
407 #ifdef CONFIG_SMP
408 	/* Release secondary cpus out of their spinloops at 0x60 now that
409 	 * we can map physical -> logical CPU ids
410 	 */
411 	smp_release_cpus();
412 #endif
413 
414 	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
415 
416 	printk("-----------------------------------------------------\n");
417 	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
418 	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
419 	if (ppc64_caches.dline_size != 0x80)
420 		printk("ppc64_caches.dcache_line_size = 0x%x\n",
421 		       ppc64_caches.dline_size);
422 	if (ppc64_caches.iline_size != 0x80)
423 		printk("ppc64_caches.icache_line_size = 0x%x\n",
424 		       ppc64_caches.iline_size);
425 #ifdef CONFIG_PPC_STD_MMU_64
426 	if (htab_address)
427 		printk("htab_address                  = 0x%p\n", htab_address);
428 	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
429 #endif /* CONFIG_PPC_STD_MMU_64 */
430 	if (PHYSICAL_START > 0)
431 		printk("physical_start                = 0x%llx\n",
432 		       (unsigned long long)PHYSICAL_START);
433 	printk("-----------------------------------------------------\n");
434 
435 	DBG(" <- setup_system()\n");
436 }
437 
438 /* This returns the limit below which memory accesses to the linear
439  * mapping are guarnateed not to cause a TLB or SLB miss. This is
440  * used to allocate interrupt or emergency stacks for which our
441  * exception entry path doesn't deal with being interrupted.
442  */
443 static u64 safe_stack_limit(void)
444 {
445 #ifdef CONFIG_PPC_BOOK3E
446 	/* Freescale BookE bolts the entire linear mapping */
447 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
448 		return linear_map_top;
449 	/* Other BookE, we assume the first GB is bolted */
450 	return 1ul << 30;
451 #else
452 	/* BookS, the first segment is bolted */
453 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
454 		return 1UL << SID_SHIFT_1T;
455 	return 1UL << SID_SHIFT;
456 #endif
457 }
458 
459 static void __init irqstack_early_init(void)
460 {
461 	u64 limit = safe_stack_limit();
462 	unsigned int i;
463 
464 	/*
465 	 * Interrupt stacks must be in the first segment since we
466 	 * cannot afford to take SLB misses on them.
467 	 */
468 	for_each_possible_cpu(i) {
469 		softirq_ctx[i] = (struct thread_info *)
470 			__va(memblock_alloc_base(THREAD_SIZE,
471 					    THREAD_SIZE, limit));
472 		hardirq_ctx[i] = (struct thread_info *)
473 			__va(memblock_alloc_base(THREAD_SIZE,
474 					    THREAD_SIZE, limit));
475 	}
476 }
477 
478 #ifdef CONFIG_PPC_BOOK3E
479 static void __init exc_lvl_early_init(void)
480 {
481 	extern unsigned int interrupt_base_book3e;
482 	extern unsigned int exc_debug_debug_book3e;
483 
484 	unsigned int i;
485 
486 	for_each_possible_cpu(i) {
487 		critirq_ctx[i] = (struct thread_info *)
488 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
489 		dbgirq_ctx[i] = (struct thread_info *)
490 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
491 		mcheckirq_ctx[i] = (struct thread_info *)
492 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
493 	}
494 
495 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
496 		patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
497 			     (unsigned long)&exc_debug_debug_book3e, 0);
498 }
499 #else
500 #define exc_lvl_early_init()
501 #endif
502 
503 /*
504  * Stack space used when we detect a bad kernel stack pointer, and
505  * early in SMP boots before relocation is enabled.
506  */
507 static void __init emergency_stack_init(void)
508 {
509 	u64 limit;
510 	unsigned int i;
511 
512 	/*
513 	 * Emergency stacks must be under 256MB, we cannot afford to take
514 	 * SLB misses on them. The ABI also requires them to be 128-byte
515 	 * aligned.
516 	 *
517 	 * Since we use these as temporary stacks during secondary CPU
518 	 * bringup, we need to get at them in real mode. This means they
519 	 * must also be within the RMO region.
520 	 */
521 	limit = min(safe_stack_limit(), ppc64_rma_size);
522 
523 	for_each_possible_cpu(i) {
524 		unsigned long sp;
525 		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
526 		sp += THREAD_SIZE;
527 		paca[i].emergency_sp = __va(sp);
528 	}
529 }
530 
531 /*
532  * Called into from start_kernel this initializes bootmem, which is used
533  * to manage page allocation until mem_init is called.
534  */
535 void __init setup_arch(char **cmdline_p)
536 {
537 	ppc64_boot_msg(0x12, "Setup Arch");
538 
539 	*cmdline_p = cmd_line;
540 
541 	/*
542 	 * Set cache line size based on type of cpu as a default.
543 	 * Systems with OF can look in the properties on the cpu node(s)
544 	 * for a possibly more accurate value.
545 	 */
546 	dcache_bsize = ppc64_caches.dline_size;
547 	icache_bsize = ppc64_caches.iline_size;
548 
549 	/* reboot on panic */
550 	panic_timeout = 180;
551 
552 	if (ppc_md.panic)
553 		setup_panic();
554 
555 	init_mm.start_code = (unsigned long)_stext;
556 	init_mm.end_code = (unsigned long) _etext;
557 	init_mm.end_data = (unsigned long) _edata;
558 	init_mm.brk = klimit;
559 
560 	irqstack_early_init();
561 	exc_lvl_early_init();
562 	emergency_stack_init();
563 
564 #ifdef CONFIG_PPC_STD_MMU_64
565 	stabs_alloc();
566 #endif
567 	/* set up the bootmem stuff with available memory */
568 	do_init_bootmem();
569 	sparse_init();
570 
571 #ifdef CONFIG_DUMMY_CONSOLE
572 	conswitchp = &dummy_con;
573 #endif
574 
575 	if (ppc_md.setup_arch)
576 		ppc_md.setup_arch();
577 
578 	paging_init();
579 
580 	/* Initialize the MMU context management stuff */
581 	mmu_context_init();
582 
583 	ppc64_boot_msg(0x15, "Setup Done");
584 }
585 
586 
587 /* ToDo: do something useful if ppc_md is not yet setup. */
588 #define PPC64_LINUX_FUNCTION 0x0f000000
589 #define PPC64_IPL_MESSAGE 0xc0000000
590 #define PPC64_TERM_MESSAGE 0xb0000000
591 
592 static void ppc64_do_msg(unsigned int src, const char *msg)
593 {
594 	if (ppc_md.progress) {
595 		char buf[128];
596 
597 		sprintf(buf, "%08X\n", src);
598 		ppc_md.progress(buf, 0);
599 		snprintf(buf, 128, "%s", msg);
600 		ppc_md.progress(buf, 0);
601 	}
602 }
603 
604 /* Print a boot progress message. */
605 void ppc64_boot_msg(unsigned int src, const char *msg)
606 {
607 	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
608 	printk("[boot]%04x %s\n", src, msg);
609 }
610 
611 #ifdef CONFIG_SMP
612 #define PCPU_DYN_SIZE		()
613 
614 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
615 {
616 	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
617 				    __pa(MAX_DMA_ADDRESS));
618 }
619 
620 static void __init pcpu_fc_free(void *ptr, size_t size)
621 {
622 	free_bootmem(__pa(ptr), size);
623 }
624 
625 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
626 {
627 	if (cpu_to_node(from) == cpu_to_node(to))
628 		return LOCAL_DISTANCE;
629 	else
630 		return REMOTE_DISTANCE;
631 }
632 
633 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
634 EXPORT_SYMBOL(__per_cpu_offset);
635 
636 void __init setup_per_cpu_areas(void)
637 {
638 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
639 	size_t atom_size;
640 	unsigned long delta;
641 	unsigned int cpu;
642 	int rc;
643 
644 	/*
645 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
646 	 * to group units.  For larger mappings, use 1M atom which
647 	 * should be large enough to contain a number of units.
648 	 */
649 	if (mmu_linear_psize == MMU_PAGE_4K)
650 		atom_size = PAGE_SIZE;
651 	else
652 		atom_size = 1 << 20;
653 
654 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
655 				    pcpu_fc_alloc, pcpu_fc_free);
656 	if (rc < 0)
657 		panic("cannot initialize percpu area (err=%d)", rc);
658 
659 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
660 	for_each_possible_cpu(cpu) {
661                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
662 		paca[cpu].data_offset = __per_cpu_offset[cpu];
663 	}
664 }
665 #endif
666 
667 
668 #ifdef CONFIG_PPC_INDIRECT_IO
669 struct ppc_pci_io ppc_pci_io;
670 EXPORT_SYMBOL(ppc_pci_io);
671 #endif /* CONFIG_PPC_INDIRECT_IO */
672 
673