1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #undef DEBUG 14 15 #include <linux/module.h> 16 #include <linux/string.h> 17 #include <linux/sched.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/seq_file.h> 24 #include <linux/ioport.h> 25 #include <linux/console.h> 26 #include <linux/utsname.h> 27 #include <linux/tty.h> 28 #include <linux/root_dev.h> 29 #include <linux/notifier.h> 30 #include <linux/cpu.h> 31 #include <linux/unistd.h> 32 #include <linux/serial.h> 33 #include <linux/serial_8250.h> 34 #include <linux/bootmem.h> 35 #include <linux/pci.h> 36 #include <linux/lockdep.h> 37 #include <linux/lmb.h> 38 #include <asm/io.h> 39 #include <asm/kdump.h> 40 #include <asm/prom.h> 41 #include <asm/processor.h> 42 #include <asm/pgtable.h> 43 #include <asm/smp.h> 44 #include <asm/elf.h> 45 #include <asm/machdep.h> 46 #include <asm/paca.h> 47 #include <asm/time.h> 48 #include <asm/cputable.h> 49 #include <asm/sections.h> 50 #include <asm/btext.h> 51 #include <asm/nvram.h> 52 #include <asm/setup.h> 53 #include <asm/system.h> 54 #include <asm/rtas.h> 55 #include <asm/iommu.h> 56 #include <asm/serial.h> 57 #include <asm/cache.h> 58 #include <asm/page.h> 59 #include <asm/mmu.h> 60 #include <asm/mmu-hash64.h> 61 #include <asm/firmware.h> 62 #include <asm/xmon.h> 63 #include <asm/udbg.h> 64 #include <asm/kexec.h> 65 #include <asm/swiotlb.h> 66 #include <asm/mmu_context.h> 67 68 #include "setup.h" 69 70 #ifdef DEBUG 71 #define DBG(fmt...) udbg_printf(fmt) 72 #else 73 #define DBG(fmt...) 74 #endif 75 76 int boot_cpuid = 0; 77 u64 ppc64_pft_size; 78 79 /* Pick defaults since we might want to patch instructions 80 * before we've read this from the device tree. 81 */ 82 struct ppc64_caches ppc64_caches = { 83 .dline_size = 0x40, 84 .log_dline_size = 6, 85 .iline_size = 0x40, 86 .log_iline_size = 6 87 }; 88 EXPORT_SYMBOL_GPL(ppc64_caches); 89 90 /* 91 * These are used in binfmt_elf.c to put aux entries on the stack 92 * for each elf executable being started. 93 */ 94 int dcache_bsize; 95 int icache_bsize; 96 int ucache_bsize; 97 98 #ifdef CONFIG_SMP 99 100 static int smt_enabled_cmdline; 101 102 /* Look for ibm,smt-enabled OF option */ 103 static void check_smt_enabled(void) 104 { 105 struct device_node *dn; 106 const char *smt_option; 107 108 /* Allow the command line to overrule the OF option */ 109 if (smt_enabled_cmdline) 110 return; 111 112 dn = of_find_node_by_path("/options"); 113 114 if (dn) { 115 smt_option = of_get_property(dn, "ibm,smt-enabled", NULL); 116 117 if (smt_option) { 118 if (!strcmp(smt_option, "on")) 119 smt_enabled_at_boot = 1; 120 else if (!strcmp(smt_option, "off")) 121 smt_enabled_at_boot = 0; 122 } 123 } 124 } 125 126 /* Look for smt-enabled= cmdline option */ 127 static int __init early_smt_enabled(char *p) 128 { 129 smt_enabled_cmdline = 1; 130 131 if (!p) 132 return 0; 133 134 if (!strcmp(p, "on") || !strcmp(p, "1")) 135 smt_enabled_at_boot = 1; 136 else if (!strcmp(p, "off") || !strcmp(p, "0")) 137 smt_enabled_at_boot = 0; 138 139 return 0; 140 } 141 early_param("smt-enabled", early_smt_enabled); 142 143 #else 144 #define check_smt_enabled() 145 #endif /* CONFIG_SMP */ 146 147 /* Put the paca pointer into r13 and SPRG_PACA */ 148 void __init setup_paca(int cpu) 149 { 150 local_paca = &paca[cpu]; 151 mtspr(SPRN_SPRG_PACA, local_paca); 152 #ifdef CONFIG_PPC_BOOK3E 153 mtspr(SPRN_SPRG_TLB_EXFRAME, local_paca->extlb); 154 #endif 155 } 156 157 /* 158 * Early initialization entry point. This is called by head.S 159 * with MMU translation disabled. We rely on the "feature" of 160 * the CPU that ignores the top 2 bits of the address in real 161 * mode so we can access kernel globals normally provided we 162 * only toy with things in the RMO region. From here, we do 163 * some early parsing of the device-tree to setup out LMB 164 * data structures, and allocate & initialize the hash table 165 * and segment tables so we can start running with translation 166 * enabled. 167 * 168 * It is this function which will call the probe() callback of 169 * the various platform types and copy the matching one to the 170 * global ppc_md structure. Your platform can eventually do 171 * some very early initializations from the probe() routine, but 172 * this is not recommended, be very careful as, for example, the 173 * device-tree is not accessible via normal means at this point. 174 */ 175 176 void __init early_setup(unsigned long dt_ptr) 177 { 178 /* -------- printk is _NOT_ safe to use here ! ------- */ 179 180 /* Fill in any unititialised pacas */ 181 initialise_pacas(); 182 183 /* Identify CPU type */ 184 identify_cpu(0, mfspr(SPRN_PVR)); 185 186 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 187 setup_paca(0); 188 189 /* Initialize lockdep early or else spinlocks will blow */ 190 lockdep_init(); 191 192 /* -------- printk is now safe to use ------- */ 193 194 /* Enable early debugging if any specified (see udbg.h) */ 195 udbg_early_init(); 196 197 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 198 199 /* 200 * Do early initialization using the flattened device 201 * tree, such as retrieving the physical memory map or 202 * calculating/retrieving the hash table size. 203 */ 204 early_init_devtree(__va(dt_ptr)); 205 206 /* Now we know the logical id of our boot cpu, setup the paca. */ 207 setup_paca(boot_cpuid); 208 209 /* Fix up paca fields required for the boot cpu */ 210 get_paca()->cpu_start = 1; 211 212 /* Probe the machine type */ 213 probe_machine(); 214 215 setup_kdump_trampoline(); 216 217 DBG("Found, Initializing memory management...\n"); 218 219 /* Initialize the hash table or TLB handling */ 220 early_init_mmu(); 221 222 DBG(" <- early_setup()\n"); 223 } 224 225 #ifdef CONFIG_SMP 226 void early_setup_secondary(void) 227 { 228 /* Mark interrupts enabled in PACA */ 229 get_paca()->soft_enabled = 0; 230 231 /* Initialize the hash table or TLB handling */ 232 early_init_mmu_secondary(); 233 } 234 235 #endif /* CONFIG_SMP */ 236 237 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC) 238 void smp_release_cpus(void) 239 { 240 unsigned long *ptr; 241 242 DBG(" -> smp_release_cpus()\n"); 243 244 /* All secondary cpus are spinning on a common spinloop, release them 245 * all now so they can start to spin on their individual paca 246 * spinloops. For non SMP kernels, the secondary cpus never get out 247 * of the common spinloop. 248 */ 249 250 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 251 - PHYSICAL_START); 252 *ptr = __pa(generic_secondary_smp_init); 253 mb(); 254 255 DBG(" <- smp_release_cpus()\n"); 256 } 257 #endif /* CONFIG_SMP || CONFIG_KEXEC */ 258 259 /* 260 * Initialize some remaining members of the ppc64_caches and systemcfg 261 * structures 262 * (at least until we get rid of them completely). This is mostly some 263 * cache informations about the CPU that will be used by cache flush 264 * routines and/or provided to userland 265 */ 266 static void __init initialize_cache_info(void) 267 { 268 struct device_node *np; 269 unsigned long num_cpus = 0; 270 271 DBG(" -> initialize_cache_info()\n"); 272 273 for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) { 274 num_cpus += 1; 275 276 /* We're assuming *all* of the CPUs have the same 277 * d-cache and i-cache sizes... -Peter 278 */ 279 280 if ( num_cpus == 1 ) { 281 const u32 *sizep, *lsizep; 282 u32 size, lsize; 283 284 size = 0; 285 lsize = cur_cpu_spec->dcache_bsize; 286 sizep = of_get_property(np, "d-cache-size", NULL); 287 if (sizep != NULL) 288 size = *sizep; 289 lsizep = of_get_property(np, "d-cache-block-size", NULL); 290 /* fallback if block size missing */ 291 if (lsizep == NULL) 292 lsizep = of_get_property(np, "d-cache-line-size", NULL); 293 if (lsizep != NULL) 294 lsize = *lsizep; 295 if (sizep == 0 || lsizep == 0) 296 DBG("Argh, can't find dcache properties ! " 297 "sizep: %p, lsizep: %p\n", sizep, lsizep); 298 299 ppc64_caches.dsize = size; 300 ppc64_caches.dline_size = lsize; 301 ppc64_caches.log_dline_size = __ilog2(lsize); 302 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize; 303 304 size = 0; 305 lsize = cur_cpu_spec->icache_bsize; 306 sizep = of_get_property(np, "i-cache-size", NULL); 307 if (sizep != NULL) 308 size = *sizep; 309 lsizep = of_get_property(np, "i-cache-block-size", NULL); 310 if (lsizep == NULL) 311 lsizep = of_get_property(np, "i-cache-line-size", NULL); 312 if (lsizep != NULL) 313 lsize = *lsizep; 314 if (sizep == 0 || lsizep == 0) 315 DBG("Argh, can't find icache properties ! " 316 "sizep: %p, lsizep: %p\n", sizep, lsizep); 317 318 ppc64_caches.isize = size; 319 ppc64_caches.iline_size = lsize; 320 ppc64_caches.log_iline_size = __ilog2(lsize); 321 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize; 322 } 323 } 324 325 DBG(" <- initialize_cache_info()\n"); 326 } 327 328 329 /* 330 * Do some initial setup of the system. The parameters are those which 331 * were passed in from the bootloader. 332 */ 333 void __init setup_system(void) 334 { 335 DBG(" -> setup_system()\n"); 336 337 /* Apply the CPUs-specific and firmware specific fixups to kernel 338 * text (nop out sections not relevant to this CPU or this firmware) 339 */ 340 do_feature_fixups(cur_cpu_spec->cpu_features, 341 &__start___ftr_fixup, &__stop___ftr_fixup); 342 do_feature_fixups(cur_cpu_spec->mmu_features, 343 &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup); 344 do_feature_fixups(powerpc_firmware_features, 345 &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup); 346 do_lwsync_fixups(cur_cpu_spec->cpu_features, 347 &__start___lwsync_fixup, &__stop___lwsync_fixup); 348 349 /* 350 * Unflatten the device-tree passed by prom_init or kexec 351 */ 352 unflatten_device_tree(); 353 354 /* 355 * Fill the ppc64_caches & systemcfg structures with informations 356 * retrieved from the device-tree. 357 */ 358 initialize_cache_info(); 359 360 /* 361 * Initialize irq remapping subsystem 362 */ 363 irq_early_init(); 364 365 #ifdef CONFIG_PPC_RTAS 366 /* 367 * Initialize RTAS if available 368 */ 369 rtas_initialize(); 370 #endif /* CONFIG_PPC_RTAS */ 371 372 /* 373 * Check if we have an initrd provided via the device-tree 374 */ 375 check_for_initrd(); 376 377 /* 378 * Do some platform specific early initializations, that includes 379 * setting up the hash table pointers. It also sets up some interrupt-mapping 380 * related options that will be used by finish_device_tree() 381 */ 382 if (ppc_md.init_early) 383 ppc_md.init_early(); 384 385 /* 386 * We can discover serial ports now since the above did setup the 387 * hash table management for us, thus ioremap works. We do that early 388 * so that further code can be debugged 389 */ 390 find_legacy_serial_ports(); 391 392 /* 393 * Register early console 394 */ 395 register_early_udbg_console(); 396 397 /* 398 * Initialize xmon 399 */ 400 xmon_setup(); 401 402 check_smt_enabled(); 403 smp_setup_cpu_maps(); 404 405 #ifdef CONFIG_SMP 406 /* Release secondary cpus out of their spinloops at 0x60 now that 407 * we can map physical -> logical CPU ids 408 */ 409 smp_release_cpus(); 410 #endif 411 412 printk("Starting Linux PPC64 %s\n", init_utsname()->version); 413 414 printk("-----------------------------------------------------\n"); 415 printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size); 416 printk("physicalMemorySize = 0x%llx\n", lmb_phys_mem_size()); 417 if (ppc64_caches.dline_size != 0x80) 418 printk("ppc64_caches.dcache_line_size = 0x%x\n", 419 ppc64_caches.dline_size); 420 if (ppc64_caches.iline_size != 0x80) 421 printk("ppc64_caches.icache_line_size = 0x%x\n", 422 ppc64_caches.iline_size); 423 #ifdef CONFIG_PPC_STD_MMU_64 424 if (htab_address) 425 printk("htab_address = 0x%p\n", htab_address); 426 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask); 427 #endif /* CONFIG_PPC_STD_MMU_64 */ 428 if (PHYSICAL_START > 0) 429 printk("physical_start = 0x%llx\n", 430 (unsigned long long)PHYSICAL_START); 431 printk("-----------------------------------------------------\n"); 432 433 DBG(" <- setup_system()\n"); 434 } 435 436 #ifdef CONFIG_IRQSTACKS 437 static void __init irqstack_early_init(void) 438 { 439 unsigned int i; 440 441 /* 442 * interrupt stacks must be under 256MB, we cannot afford to take 443 * SLB misses on them. 444 */ 445 for_each_possible_cpu(i) { 446 softirq_ctx[i] = (struct thread_info *) 447 __va(lmb_alloc_base(THREAD_SIZE, 448 THREAD_SIZE, 0x10000000)); 449 hardirq_ctx[i] = (struct thread_info *) 450 __va(lmb_alloc_base(THREAD_SIZE, 451 THREAD_SIZE, 0x10000000)); 452 } 453 } 454 #else 455 #define irqstack_early_init() 456 #endif 457 458 #ifdef CONFIG_PPC_BOOK3E 459 static void __init exc_lvl_early_init(void) 460 { 461 unsigned int i; 462 463 for_each_possible_cpu(i) { 464 critirq_ctx[i] = (struct thread_info *) 465 __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); 466 dbgirq_ctx[i] = (struct thread_info *) 467 __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); 468 mcheckirq_ctx[i] = (struct thread_info *) 469 __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE)); 470 } 471 } 472 #else 473 #define exc_lvl_early_init() 474 #endif 475 476 /* 477 * Stack space used when we detect a bad kernel stack pointer, and 478 * early in SMP boots before relocation is enabled. 479 */ 480 static void __init emergency_stack_init(void) 481 { 482 unsigned long limit; 483 unsigned int i; 484 485 /* 486 * Emergency stacks must be under 256MB, we cannot afford to take 487 * SLB misses on them. The ABI also requires them to be 128-byte 488 * aligned. 489 * 490 * Since we use these as temporary stacks during secondary CPU 491 * bringup, we need to get at them in real mode. This means they 492 * must also be within the RMO region. 493 */ 494 limit = min(0x10000000ULL, lmb.rmo_size); 495 496 for_each_possible_cpu(i) { 497 unsigned long sp; 498 sp = lmb_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); 499 sp += THREAD_SIZE; 500 paca[i].emergency_sp = __va(sp); 501 } 502 } 503 504 /* 505 * Called into from start_kernel, after lock_kernel has been called. 506 * Initializes bootmem, which is unsed to manage page allocation until 507 * mem_init is called. 508 */ 509 void __init setup_arch(char **cmdline_p) 510 { 511 ppc64_boot_msg(0x12, "Setup Arch"); 512 513 *cmdline_p = cmd_line; 514 515 /* 516 * Set cache line size based on type of cpu as a default. 517 * Systems with OF can look in the properties on the cpu node(s) 518 * for a possibly more accurate value. 519 */ 520 dcache_bsize = ppc64_caches.dline_size; 521 icache_bsize = ppc64_caches.iline_size; 522 523 /* reboot on panic */ 524 panic_timeout = 180; 525 526 if (ppc_md.panic) 527 setup_panic(); 528 529 init_mm.start_code = (unsigned long)_stext; 530 init_mm.end_code = (unsigned long) _etext; 531 init_mm.end_data = (unsigned long) _edata; 532 init_mm.brk = klimit; 533 534 irqstack_early_init(); 535 exc_lvl_early_init(); 536 emergency_stack_init(); 537 538 #ifdef CONFIG_PPC_STD_MMU_64 539 stabs_alloc(); 540 #endif 541 /* set up the bootmem stuff with available memory */ 542 do_init_bootmem(); 543 sparse_init(); 544 545 #ifdef CONFIG_DUMMY_CONSOLE 546 conswitchp = &dummy_con; 547 #endif 548 549 if (ppc_md.setup_arch) 550 ppc_md.setup_arch(); 551 552 #ifdef CONFIG_SWIOTLB 553 if (ppc_swiotlb_enable) 554 swiotlb_init(); 555 #endif 556 557 paging_init(); 558 559 /* Initialize the MMU context management stuff */ 560 mmu_context_init(); 561 562 ppc64_boot_msg(0x15, "Setup Done"); 563 } 564 565 566 /* ToDo: do something useful if ppc_md is not yet setup. */ 567 #define PPC64_LINUX_FUNCTION 0x0f000000 568 #define PPC64_IPL_MESSAGE 0xc0000000 569 #define PPC64_TERM_MESSAGE 0xb0000000 570 571 static void ppc64_do_msg(unsigned int src, const char *msg) 572 { 573 if (ppc_md.progress) { 574 char buf[128]; 575 576 sprintf(buf, "%08X\n", src); 577 ppc_md.progress(buf, 0); 578 snprintf(buf, 128, "%s", msg); 579 ppc_md.progress(buf, 0); 580 } 581 } 582 583 /* Print a boot progress message. */ 584 void ppc64_boot_msg(unsigned int src, const char *msg) 585 { 586 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg); 587 printk("[boot]%04x %s\n", src, msg); 588 } 589 590 void cpu_die(void) 591 { 592 if (ppc_md.cpu_die) 593 ppc_md.cpu_die(); 594 } 595 596 #ifdef CONFIG_SMP 597 #define PCPU_DYN_SIZE () 598 599 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 600 { 601 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align, 602 __pa(MAX_DMA_ADDRESS)); 603 } 604 605 static void __init pcpu_fc_free(void *ptr, size_t size) 606 { 607 free_bootmem(__pa(ptr), size); 608 } 609 610 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 611 { 612 if (cpu_to_node(from) == cpu_to_node(to)) 613 return LOCAL_DISTANCE; 614 else 615 return REMOTE_DISTANCE; 616 } 617 618 void __init setup_per_cpu_areas(void) 619 { 620 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 621 size_t atom_size; 622 unsigned long delta; 623 unsigned int cpu; 624 int rc; 625 626 /* 627 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 628 * to group units. For larger mappings, use 1M atom which 629 * should be large enough to contain a number of units. 630 */ 631 if (mmu_linear_psize == MMU_PAGE_4K) 632 atom_size = PAGE_SIZE; 633 else 634 atom_size = 1 << 20; 635 636 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 637 pcpu_fc_alloc, pcpu_fc_free); 638 if (rc < 0) 639 panic("cannot initialize percpu area (err=%d)", rc); 640 641 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 642 for_each_possible_cpu(cpu) 643 paca[cpu].data_offset = delta + pcpu_unit_offsets[cpu]; 644 } 645 #endif 646 647 648 #ifdef CONFIG_PPC_INDIRECT_IO 649 struct ppc_pci_io ppc_pci_io; 650 EXPORT_SYMBOL(ppc_pci_io); 651 #endif /* CONFIG_PPC_INDIRECT_IO */ 652 653