xref: /openbmc/linux/arch/powerpc/kernel/setup_64.c (revision e23feb16)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #define DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/sections.h>
52 #include <asm/btext.h>
53 #include <asm/nvram.h>
54 #include <asm/setup.h>
55 #include <asm/rtas.h>
56 #include <asm/iommu.h>
57 #include <asm/serial.h>
58 #include <asm/cache.h>
59 #include <asm/page.h>
60 #include <asm/mmu.h>
61 #include <asm/firmware.h>
62 #include <asm/xmon.h>
63 #include <asm/udbg.h>
64 #include <asm/kexec.h>
65 #include <asm/mmu_context.h>
66 #include <asm/code-patching.h>
67 #include <asm/kvm_ppc.h>
68 #include <asm/hugetlb.h>
69 #include <asm/epapr_hcalls.h>
70 
71 #include "setup.h"
72 
73 #ifdef DEBUG
74 #define DBG(fmt...) udbg_printf(fmt)
75 #else
76 #define DBG(fmt...)
77 #endif
78 
79 int boot_cpuid = 0;
80 int spinning_secondaries;
81 u64 ppc64_pft_size;
82 
83 /* Pick defaults since we might want to patch instructions
84  * before we've read this from the device tree.
85  */
86 struct ppc64_caches ppc64_caches = {
87 	.dline_size = 0x40,
88 	.log_dline_size = 6,
89 	.iline_size = 0x40,
90 	.log_iline_size = 6
91 };
92 EXPORT_SYMBOL_GPL(ppc64_caches);
93 
94 /*
95  * These are used in binfmt_elf.c to put aux entries on the stack
96  * for each elf executable being started.
97  */
98 int dcache_bsize;
99 int icache_bsize;
100 int ucache_bsize;
101 
102 #ifdef CONFIG_SMP
103 
104 static char *smt_enabled_cmdline;
105 
106 /* Look for ibm,smt-enabled OF option */
107 static void check_smt_enabled(void)
108 {
109 	struct device_node *dn;
110 	const char *smt_option;
111 
112 	/* Default to enabling all threads */
113 	smt_enabled_at_boot = threads_per_core;
114 
115 	/* Allow the command line to overrule the OF option */
116 	if (smt_enabled_cmdline) {
117 		if (!strcmp(smt_enabled_cmdline, "on"))
118 			smt_enabled_at_boot = threads_per_core;
119 		else if (!strcmp(smt_enabled_cmdline, "off"))
120 			smt_enabled_at_boot = 0;
121 		else {
122 			long smt;
123 			int rc;
124 
125 			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
126 			if (!rc)
127 				smt_enabled_at_boot =
128 					min(threads_per_core, (int)smt);
129 		}
130 	} else {
131 		dn = of_find_node_by_path("/options");
132 		if (dn) {
133 			smt_option = of_get_property(dn, "ibm,smt-enabled",
134 						     NULL);
135 
136 			if (smt_option) {
137 				if (!strcmp(smt_option, "on"))
138 					smt_enabled_at_boot = threads_per_core;
139 				else if (!strcmp(smt_option, "off"))
140 					smt_enabled_at_boot = 0;
141 			}
142 
143 			of_node_put(dn);
144 		}
145 	}
146 }
147 
148 /* Look for smt-enabled= cmdline option */
149 static int __init early_smt_enabled(char *p)
150 {
151 	smt_enabled_cmdline = p;
152 	return 0;
153 }
154 early_param("smt-enabled", early_smt_enabled);
155 
156 #else
157 #define check_smt_enabled()
158 #endif /* CONFIG_SMP */
159 
160 /** Fix up paca fields required for the boot cpu */
161 static void fixup_boot_paca(void)
162 {
163 	/* The boot cpu is started */
164 	get_paca()->cpu_start = 1;
165 	/* Allow percpu accesses to work until we setup percpu data */
166 	get_paca()->data_offset = 0;
167 }
168 
169 /*
170  * Early initialization entry point. This is called by head.S
171  * with MMU translation disabled. We rely on the "feature" of
172  * the CPU that ignores the top 2 bits of the address in real
173  * mode so we can access kernel globals normally provided we
174  * only toy with things in the RMO region. From here, we do
175  * some early parsing of the device-tree to setup out MEMBLOCK
176  * data structures, and allocate & initialize the hash table
177  * and segment tables so we can start running with translation
178  * enabled.
179  *
180  * It is this function which will call the probe() callback of
181  * the various platform types and copy the matching one to the
182  * global ppc_md structure. Your platform can eventually do
183  * some very early initializations from the probe() routine, but
184  * this is not recommended, be very careful as, for example, the
185  * device-tree is not accessible via normal means at this point.
186  */
187 
188 void __init early_setup(unsigned long dt_ptr)
189 {
190 	static __initdata struct paca_struct boot_paca;
191 
192 	/* -------- printk is _NOT_ safe to use here ! ------- */
193 
194 	/* Identify CPU type */
195 	identify_cpu(0, mfspr(SPRN_PVR));
196 
197 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
198 	initialise_paca(&boot_paca, 0);
199 	setup_paca(&boot_paca);
200 	fixup_boot_paca();
201 
202 	/* Initialize lockdep early or else spinlocks will blow */
203 	lockdep_init();
204 
205 	/* -------- printk is now safe to use ------- */
206 
207 	/* Enable early debugging if any specified (see udbg.h) */
208 	udbg_early_init();
209 
210  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
211 
212 	/*
213 	 * Do early initialization using the flattened device
214 	 * tree, such as retrieving the physical memory map or
215 	 * calculating/retrieving the hash table size.
216 	 */
217 	early_init_devtree(__va(dt_ptr));
218 
219 	epapr_paravirt_early_init();
220 
221 	/* Now we know the logical id of our boot cpu, setup the paca. */
222 	setup_paca(&paca[boot_cpuid]);
223 	fixup_boot_paca();
224 
225 	/* Probe the machine type */
226 	probe_machine();
227 
228 	setup_kdump_trampoline();
229 
230 	DBG("Found, Initializing memory management...\n");
231 
232 	/* Initialize the hash table or TLB handling */
233 	early_init_mmu();
234 
235 	kvm_cma_reserve();
236 
237 	/*
238 	 * Reserve any gigantic pages requested on the command line.
239 	 * memblock needs to have been initialized by the time this is
240 	 * called since this will reserve memory.
241 	 */
242 	reserve_hugetlb_gpages();
243 
244 	DBG(" <- early_setup()\n");
245 
246 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
247 	/*
248 	 * This needs to be done *last* (after the above DBG() even)
249 	 *
250 	 * Right after we return from this function, we turn on the MMU
251 	 * which means the real-mode access trick that btext does will
252 	 * no longer work, it needs to switch to using a real MMU
253 	 * mapping. This call will ensure that it does
254 	 */
255 	btext_map();
256 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
257 }
258 
259 #ifdef CONFIG_SMP
260 void early_setup_secondary(void)
261 {
262 	/* Mark interrupts enabled in PACA */
263 	get_paca()->soft_enabled = 0;
264 
265 	/* Initialize the hash table or TLB handling */
266 	early_init_mmu_secondary();
267 }
268 
269 #endif /* CONFIG_SMP */
270 
271 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
272 void smp_release_cpus(void)
273 {
274 	unsigned long *ptr;
275 	int i;
276 
277 	DBG(" -> smp_release_cpus()\n");
278 
279 	/* All secondary cpus are spinning on a common spinloop, release them
280 	 * all now so they can start to spin on their individual paca
281 	 * spinloops. For non SMP kernels, the secondary cpus never get out
282 	 * of the common spinloop.
283 	 */
284 
285 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
286 			- PHYSICAL_START);
287 	*ptr = __pa(generic_secondary_smp_init);
288 
289 	/* And wait a bit for them to catch up */
290 	for (i = 0; i < 100000; i++) {
291 		mb();
292 		HMT_low();
293 		if (spinning_secondaries == 0)
294 			break;
295 		udelay(1);
296 	}
297 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
298 
299 	DBG(" <- smp_release_cpus()\n");
300 }
301 #endif /* CONFIG_SMP || CONFIG_KEXEC */
302 
303 /*
304  * Initialize some remaining members of the ppc64_caches and systemcfg
305  * structures
306  * (at least until we get rid of them completely). This is mostly some
307  * cache informations about the CPU that will be used by cache flush
308  * routines and/or provided to userland
309  */
310 static void __init initialize_cache_info(void)
311 {
312 	struct device_node *np;
313 	unsigned long num_cpus = 0;
314 
315 	DBG(" -> initialize_cache_info()\n");
316 
317 	for_each_node_by_type(np, "cpu") {
318 		num_cpus += 1;
319 
320 		/*
321 		 * We're assuming *all* of the CPUs have the same
322 		 * d-cache and i-cache sizes... -Peter
323 		 */
324 		if (num_cpus == 1) {
325 			const __be32 *sizep, *lsizep;
326 			u32 size, lsize;
327 
328 			size = 0;
329 			lsize = cur_cpu_spec->dcache_bsize;
330 			sizep = of_get_property(np, "d-cache-size", NULL);
331 			if (sizep != NULL)
332 				size = be32_to_cpu(*sizep);
333 			lsizep = of_get_property(np, "d-cache-block-size",
334 						 NULL);
335 			/* fallback if block size missing */
336 			if (lsizep == NULL)
337 				lsizep = of_get_property(np,
338 							 "d-cache-line-size",
339 							 NULL);
340 			if (lsizep != NULL)
341 				lsize = be32_to_cpu(*lsizep);
342 			if (sizep == NULL || lsizep == NULL)
343 				DBG("Argh, can't find dcache properties ! "
344 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
345 
346 			ppc64_caches.dsize = size;
347 			ppc64_caches.dline_size = lsize;
348 			ppc64_caches.log_dline_size = __ilog2(lsize);
349 			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
350 
351 			size = 0;
352 			lsize = cur_cpu_spec->icache_bsize;
353 			sizep = of_get_property(np, "i-cache-size", NULL);
354 			if (sizep != NULL)
355 				size = be32_to_cpu(*sizep);
356 			lsizep = of_get_property(np, "i-cache-block-size",
357 						 NULL);
358 			if (lsizep == NULL)
359 				lsizep = of_get_property(np,
360 							 "i-cache-line-size",
361 							 NULL);
362 			if (lsizep != NULL)
363 				lsize = be32_to_cpu(*lsizep);
364 			if (sizep == NULL || lsizep == NULL)
365 				DBG("Argh, can't find icache properties ! "
366 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
367 
368 			ppc64_caches.isize = size;
369 			ppc64_caches.iline_size = lsize;
370 			ppc64_caches.log_iline_size = __ilog2(lsize);
371 			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
372 		}
373 	}
374 
375 	DBG(" <- initialize_cache_info()\n");
376 }
377 
378 
379 /*
380  * Do some initial setup of the system.  The parameters are those which
381  * were passed in from the bootloader.
382  */
383 void __init setup_system(void)
384 {
385 	DBG(" -> setup_system()\n");
386 
387 	/* Apply the CPUs-specific and firmware specific fixups to kernel
388 	 * text (nop out sections not relevant to this CPU or this firmware)
389 	 */
390 	do_feature_fixups(cur_cpu_spec->cpu_features,
391 			  &__start___ftr_fixup, &__stop___ftr_fixup);
392 	do_feature_fixups(cur_cpu_spec->mmu_features,
393 			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
394 	do_feature_fixups(powerpc_firmware_features,
395 			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
396 	do_lwsync_fixups(cur_cpu_spec->cpu_features,
397 			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
398 	do_final_fixups();
399 
400 	/*
401 	 * Unflatten the device-tree passed by prom_init or kexec
402 	 */
403 	unflatten_device_tree();
404 
405 	/*
406 	 * Fill the ppc64_caches & systemcfg structures with informations
407  	 * retrieved from the device-tree.
408 	 */
409 	initialize_cache_info();
410 
411 #ifdef CONFIG_PPC_RTAS
412 	/*
413 	 * Initialize RTAS if available
414 	 */
415 	rtas_initialize();
416 #endif /* CONFIG_PPC_RTAS */
417 
418 	/*
419 	 * Check if we have an initrd provided via the device-tree
420 	 */
421 	check_for_initrd();
422 
423 	/*
424 	 * Do some platform specific early initializations, that includes
425 	 * setting up the hash table pointers. It also sets up some interrupt-mapping
426 	 * related options that will be used by finish_device_tree()
427 	 */
428 	if (ppc_md.init_early)
429 		ppc_md.init_early();
430 
431  	/*
432 	 * We can discover serial ports now since the above did setup the
433 	 * hash table management for us, thus ioremap works. We do that early
434 	 * so that further code can be debugged
435 	 */
436 	find_legacy_serial_ports();
437 
438 	/*
439 	 * Register early console
440 	 */
441 	register_early_udbg_console();
442 
443 	/*
444 	 * Initialize xmon
445 	 */
446 	xmon_setup();
447 
448 	smp_setup_cpu_maps();
449 	check_smt_enabled();
450 
451 #ifdef CONFIG_SMP
452 	/* Release secondary cpus out of their spinloops at 0x60 now that
453 	 * we can map physical -> logical CPU ids
454 	 */
455 	smp_release_cpus();
456 #endif
457 
458 	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
459 
460 	printk("-----------------------------------------------------\n");
461 	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
462 	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
463 	if (ppc64_caches.dline_size != 0x80)
464 		printk("ppc64_caches.dcache_line_size = 0x%x\n",
465 		       ppc64_caches.dline_size);
466 	if (ppc64_caches.iline_size != 0x80)
467 		printk("ppc64_caches.icache_line_size = 0x%x\n",
468 		       ppc64_caches.iline_size);
469 #ifdef CONFIG_PPC_STD_MMU_64
470 	if (htab_address)
471 		printk("htab_address                  = 0x%p\n", htab_address);
472 	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
473 #endif /* CONFIG_PPC_STD_MMU_64 */
474 	if (PHYSICAL_START > 0)
475 		printk("physical_start                = 0x%llx\n",
476 		       (unsigned long long)PHYSICAL_START);
477 	printk("-----------------------------------------------------\n");
478 
479 	DBG(" <- setup_system()\n");
480 }
481 
482 /* This returns the limit below which memory accesses to the linear
483  * mapping are guarnateed not to cause a TLB or SLB miss. This is
484  * used to allocate interrupt or emergency stacks for which our
485  * exception entry path doesn't deal with being interrupted.
486  */
487 static u64 safe_stack_limit(void)
488 {
489 #ifdef CONFIG_PPC_BOOK3E
490 	/* Freescale BookE bolts the entire linear mapping */
491 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
492 		return linear_map_top;
493 	/* Other BookE, we assume the first GB is bolted */
494 	return 1ul << 30;
495 #else
496 	/* BookS, the first segment is bolted */
497 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
498 		return 1UL << SID_SHIFT_1T;
499 	return 1UL << SID_SHIFT;
500 #endif
501 }
502 
503 static void __init irqstack_early_init(void)
504 {
505 	u64 limit = safe_stack_limit();
506 	unsigned int i;
507 
508 	/*
509 	 * Interrupt stacks must be in the first segment since we
510 	 * cannot afford to take SLB misses on them.
511 	 */
512 	for_each_possible_cpu(i) {
513 		softirq_ctx[i] = (struct thread_info *)
514 			__va(memblock_alloc_base(THREAD_SIZE,
515 					    THREAD_SIZE, limit));
516 		hardirq_ctx[i] = (struct thread_info *)
517 			__va(memblock_alloc_base(THREAD_SIZE,
518 					    THREAD_SIZE, limit));
519 	}
520 }
521 
522 #ifdef CONFIG_PPC_BOOK3E
523 static void __init exc_lvl_early_init(void)
524 {
525 	extern unsigned int interrupt_base_book3e;
526 	extern unsigned int exc_debug_debug_book3e;
527 
528 	unsigned int i;
529 
530 	for_each_possible_cpu(i) {
531 		critirq_ctx[i] = (struct thread_info *)
532 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
533 		dbgirq_ctx[i] = (struct thread_info *)
534 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
535 		mcheckirq_ctx[i] = (struct thread_info *)
536 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
537 	}
538 
539 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
540 		patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
541 			     (unsigned long)&exc_debug_debug_book3e, 0);
542 }
543 #else
544 #define exc_lvl_early_init()
545 #endif
546 
547 /*
548  * Stack space used when we detect a bad kernel stack pointer, and
549  * early in SMP boots before relocation is enabled.
550  */
551 static void __init emergency_stack_init(void)
552 {
553 	u64 limit;
554 	unsigned int i;
555 
556 	/*
557 	 * Emergency stacks must be under 256MB, we cannot afford to take
558 	 * SLB misses on them. The ABI also requires them to be 128-byte
559 	 * aligned.
560 	 *
561 	 * Since we use these as temporary stacks during secondary CPU
562 	 * bringup, we need to get at them in real mode. This means they
563 	 * must also be within the RMO region.
564 	 */
565 	limit = min(safe_stack_limit(), ppc64_rma_size);
566 
567 	for_each_possible_cpu(i) {
568 		unsigned long sp;
569 		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
570 		sp += THREAD_SIZE;
571 		paca[i].emergency_sp = __va(sp);
572 	}
573 }
574 
575 /*
576  * Called into from start_kernel this initializes bootmem, which is used
577  * to manage page allocation until mem_init is called.
578  */
579 void __init setup_arch(char **cmdline_p)
580 {
581 	ppc64_boot_msg(0x12, "Setup Arch");
582 
583 	*cmdline_p = cmd_line;
584 
585 	/*
586 	 * Set cache line size based on type of cpu as a default.
587 	 * Systems with OF can look in the properties on the cpu node(s)
588 	 * for a possibly more accurate value.
589 	 */
590 	dcache_bsize = ppc64_caches.dline_size;
591 	icache_bsize = ppc64_caches.iline_size;
592 
593 	/* reboot on panic */
594 	panic_timeout = 180;
595 
596 	if (ppc_md.panic)
597 		setup_panic();
598 
599 	init_mm.start_code = (unsigned long)_stext;
600 	init_mm.end_code = (unsigned long) _etext;
601 	init_mm.end_data = (unsigned long) _edata;
602 	init_mm.brk = klimit;
603 #ifdef CONFIG_PPC_64K_PAGES
604 	init_mm.context.pte_frag = NULL;
605 #endif
606 	irqstack_early_init();
607 	exc_lvl_early_init();
608 	emergency_stack_init();
609 
610 #ifdef CONFIG_PPC_STD_MMU_64
611 	stabs_alloc();
612 #endif
613 	/* set up the bootmem stuff with available memory */
614 	do_init_bootmem();
615 	sparse_init();
616 
617 #ifdef CONFIG_DUMMY_CONSOLE
618 	conswitchp = &dummy_con;
619 #endif
620 
621 	if (ppc_md.setup_arch)
622 		ppc_md.setup_arch();
623 
624 	paging_init();
625 
626 	/* Initialize the MMU context management stuff */
627 	mmu_context_init();
628 
629 	/* Interrupt code needs to be 64K-aligned */
630 	if ((unsigned long)_stext & 0xffff)
631 		panic("Kernelbase not 64K-aligned (0x%lx)!\n",
632 		      (unsigned long)_stext);
633 
634 	ppc64_boot_msg(0x15, "Setup Done");
635 }
636 
637 
638 /* ToDo: do something useful if ppc_md is not yet setup. */
639 #define PPC64_LINUX_FUNCTION 0x0f000000
640 #define PPC64_IPL_MESSAGE 0xc0000000
641 #define PPC64_TERM_MESSAGE 0xb0000000
642 
643 static void ppc64_do_msg(unsigned int src, const char *msg)
644 {
645 	if (ppc_md.progress) {
646 		char buf[128];
647 
648 		sprintf(buf, "%08X\n", src);
649 		ppc_md.progress(buf, 0);
650 		snprintf(buf, 128, "%s", msg);
651 		ppc_md.progress(buf, 0);
652 	}
653 }
654 
655 /* Print a boot progress message. */
656 void ppc64_boot_msg(unsigned int src, const char *msg)
657 {
658 	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
659 	printk("[boot]%04x %s\n", src, msg);
660 }
661 
662 #ifdef CONFIG_SMP
663 #define PCPU_DYN_SIZE		()
664 
665 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
666 {
667 	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
668 				    __pa(MAX_DMA_ADDRESS));
669 }
670 
671 static void __init pcpu_fc_free(void *ptr, size_t size)
672 {
673 	free_bootmem(__pa(ptr), size);
674 }
675 
676 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
677 {
678 	if (cpu_to_node(from) == cpu_to_node(to))
679 		return LOCAL_DISTANCE;
680 	else
681 		return REMOTE_DISTANCE;
682 }
683 
684 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
685 EXPORT_SYMBOL(__per_cpu_offset);
686 
687 void __init setup_per_cpu_areas(void)
688 {
689 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
690 	size_t atom_size;
691 	unsigned long delta;
692 	unsigned int cpu;
693 	int rc;
694 
695 	/*
696 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
697 	 * to group units.  For larger mappings, use 1M atom which
698 	 * should be large enough to contain a number of units.
699 	 */
700 	if (mmu_linear_psize == MMU_PAGE_4K)
701 		atom_size = PAGE_SIZE;
702 	else
703 		atom_size = 1 << 20;
704 
705 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
706 				    pcpu_fc_alloc, pcpu_fc_free);
707 	if (rc < 0)
708 		panic("cannot initialize percpu area (err=%d)", rc);
709 
710 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
711 	for_each_possible_cpu(cpu) {
712                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
713 		paca[cpu].data_offset = __per_cpu_offset[cpu];
714 	}
715 }
716 #endif
717 
718 
719 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
720 struct ppc_pci_io ppc_pci_io;
721 EXPORT_SYMBOL(ppc_pci_io);
722 #endif
723