xref: /openbmc/linux/arch/powerpc/kernel/setup_64.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #define DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/memory.h>
40 
41 #include <asm/io.h>
42 #include <asm/kdump.h>
43 #include <asm/prom.h>
44 #include <asm/processor.h>
45 #include <asm/pgtable.h>
46 #include <asm/smp.h>
47 #include <asm/elf.h>
48 #include <asm/machdep.h>
49 #include <asm/paca.h>
50 #include <asm/time.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/mmu_context.h>
67 #include <asm/code-patching.h>
68 #include <asm/kvm_ppc.h>
69 #include <asm/hugetlb.h>
70 #include <asm/epapr_hcalls.h>
71 
72 #ifdef DEBUG
73 #define DBG(fmt...) udbg_printf(fmt)
74 #else
75 #define DBG(fmt...)
76 #endif
77 
78 int spinning_secondaries;
79 u64 ppc64_pft_size;
80 
81 /* Pick defaults since we might want to patch instructions
82  * before we've read this from the device tree.
83  */
84 struct ppc64_caches ppc64_caches = {
85 	.dline_size = 0x40,
86 	.log_dline_size = 6,
87 	.iline_size = 0x40,
88 	.log_iline_size = 6
89 };
90 EXPORT_SYMBOL_GPL(ppc64_caches);
91 
92 /*
93  * These are used in binfmt_elf.c to put aux entries on the stack
94  * for each elf executable being started.
95  */
96 int dcache_bsize;
97 int icache_bsize;
98 int ucache_bsize;
99 
100 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
101 static void setup_tlb_core_data(void)
102 {
103 	int cpu;
104 
105 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
106 
107 	for_each_possible_cpu(cpu) {
108 		int first = cpu_first_thread_sibling(cpu);
109 
110 		paca[cpu].tcd_ptr = &paca[first].tcd;
111 
112 		/*
113 		 * If we have threads, we need either tlbsrx.
114 		 * or e6500 tablewalk mode, or else TLB handlers
115 		 * will be racy and could produce duplicate entries.
116 		 */
117 		if (smt_enabled_at_boot >= 2 &&
118 		    !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
119 		    book3e_htw_mode != PPC_HTW_E6500) {
120 			/* Should we panic instead? */
121 			WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n",
122 				  __func__);
123 		}
124 	}
125 }
126 #else
127 static void setup_tlb_core_data(void)
128 {
129 }
130 #endif
131 
132 #ifdef CONFIG_SMP
133 
134 static char *smt_enabled_cmdline;
135 
136 /* Look for ibm,smt-enabled OF option */
137 static void check_smt_enabled(void)
138 {
139 	struct device_node *dn;
140 	const char *smt_option;
141 
142 	/* Default to enabling all threads */
143 	smt_enabled_at_boot = threads_per_core;
144 
145 	/* Allow the command line to overrule the OF option */
146 	if (smt_enabled_cmdline) {
147 		if (!strcmp(smt_enabled_cmdline, "on"))
148 			smt_enabled_at_boot = threads_per_core;
149 		else if (!strcmp(smt_enabled_cmdline, "off"))
150 			smt_enabled_at_boot = 0;
151 		else {
152 			int smt;
153 			int rc;
154 
155 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
156 			if (!rc)
157 				smt_enabled_at_boot =
158 					min(threads_per_core, smt);
159 		}
160 	} else {
161 		dn = of_find_node_by_path("/options");
162 		if (dn) {
163 			smt_option = of_get_property(dn, "ibm,smt-enabled",
164 						     NULL);
165 
166 			if (smt_option) {
167 				if (!strcmp(smt_option, "on"))
168 					smt_enabled_at_boot = threads_per_core;
169 				else if (!strcmp(smt_option, "off"))
170 					smt_enabled_at_boot = 0;
171 			}
172 
173 			of_node_put(dn);
174 		}
175 	}
176 }
177 
178 /* Look for smt-enabled= cmdline option */
179 static int __init early_smt_enabled(char *p)
180 {
181 	smt_enabled_cmdline = p;
182 	return 0;
183 }
184 early_param("smt-enabled", early_smt_enabled);
185 
186 #else
187 #define check_smt_enabled()
188 #endif /* CONFIG_SMP */
189 
190 /** Fix up paca fields required for the boot cpu */
191 static void fixup_boot_paca(void)
192 {
193 	/* The boot cpu is started */
194 	get_paca()->cpu_start = 1;
195 	/* Allow percpu accesses to work until we setup percpu data */
196 	get_paca()->data_offset = 0;
197 }
198 
199 static void cpu_ready_for_interrupts(void)
200 {
201 	/* Set IR and DR in PACA MSR */
202 	get_paca()->kernel_msr = MSR_KERNEL;
203 
204 	/*
205 	 * Enable AIL if supported, and we are in hypervisor mode. If we are
206 	 * not in hypervisor mode, we enable relocation-on interrupts later
207 	 * in pSeries_setup_arch() using the H_SET_MODE hcall.
208 	 */
209 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
210 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
211 		unsigned long lpcr = mfspr(SPRN_LPCR);
212 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
213 	}
214 }
215 
216 /*
217  * Early initialization entry point. This is called by head.S
218  * with MMU translation disabled. We rely on the "feature" of
219  * the CPU that ignores the top 2 bits of the address in real
220  * mode so we can access kernel globals normally provided we
221  * only toy with things in the RMO region. From here, we do
222  * some early parsing of the device-tree to setup out MEMBLOCK
223  * data structures, and allocate & initialize the hash table
224  * and segment tables so we can start running with translation
225  * enabled.
226  *
227  * It is this function which will call the probe() callback of
228  * the various platform types and copy the matching one to the
229  * global ppc_md structure. Your platform can eventually do
230  * some very early initializations from the probe() routine, but
231  * this is not recommended, be very careful as, for example, the
232  * device-tree is not accessible via normal means at this point.
233  */
234 
235 void __init early_setup(unsigned long dt_ptr)
236 {
237 	static __initdata struct paca_struct boot_paca;
238 
239 	/* -------- printk is _NOT_ safe to use here ! ------- */
240 
241 	/* Identify CPU type */
242 	identify_cpu(0, mfspr(SPRN_PVR));
243 
244 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
245 	initialise_paca(&boot_paca, 0);
246 	setup_paca(&boot_paca);
247 	fixup_boot_paca();
248 
249 	/* Initialize lockdep early or else spinlocks will blow */
250 	lockdep_init();
251 
252 	/* -------- printk is now safe to use ------- */
253 
254 	/* Enable early debugging if any specified (see udbg.h) */
255 	udbg_early_init();
256 
257  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
258 
259 	/*
260 	 * Do early initialization using the flattened device
261 	 * tree, such as retrieving the physical memory map or
262 	 * calculating/retrieving the hash table size.
263 	 */
264 	early_init_devtree(__va(dt_ptr));
265 
266 	epapr_paravirt_early_init();
267 
268 	/* Now we know the logical id of our boot cpu, setup the paca. */
269 	setup_paca(&paca[boot_cpuid]);
270 	fixup_boot_paca();
271 
272 	/* Probe the machine type */
273 	probe_machine();
274 
275 	setup_kdump_trampoline();
276 
277 	DBG("Found, Initializing memory management...\n");
278 
279 	/* Initialize the hash table or TLB handling */
280 	early_init_mmu();
281 
282 	/*
283 	 * At this point, we can let interrupts switch to virtual mode
284 	 * (the MMU has been setup), so adjust the MSR in the PACA to
285 	 * have IR and DR set and enable AIL if it exists
286 	 */
287 	cpu_ready_for_interrupts();
288 
289 	/* Reserve large chunks of memory for use by CMA for KVM */
290 	kvm_cma_reserve();
291 
292 	/*
293 	 * Reserve any gigantic pages requested on the command line.
294 	 * memblock needs to have been initialized by the time this is
295 	 * called since this will reserve memory.
296 	 */
297 	reserve_hugetlb_gpages();
298 
299 	DBG(" <- early_setup()\n");
300 
301 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
302 	/*
303 	 * This needs to be done *last* (after the above DBG() even)
304 	 *
305 	 * Right after we return from this function, we turn on the MMU
306 	 * which means the real-mode access trick that btext does will
307 	 * no longer work, it needs to switch to using a real MMU
308 	 * mapping. This call will ensure that it does
309 	 */
310 	btext_map();
311 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
312 }
313 
314 #ifdef CONFIG_SMP
315 void early_setup_secondary(void)
316 {
317 	/* Mark interrupts enabled in PACA */
318 	get_paca()->soft_enabled = 0;
319 
320 	/* Initialize the hash table or TLB handling */
321 	early_init_mmu_secondary();
322 
323 	/*
324 	 * At this point, we can let interrupts switch to virtual mode
325 	 * (the MMU has been setup), so adjust the MSR in the PACA to
326 	 * have IR and DR set.
327 	 */
328 	cpu_ready_for_interrupts();
329 }
330 
331 #endif /* CONFIG_SMP */
332 
333 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
334 void smp_release_cpus(void)
335 {
336 	unsigned long *ptr;
337 	int i;
338 
339 	DBG(" -> smp_release_cpus()\n");
340 
341 	/* All secondary cpus are spinning on a common spinloop, release them
342 	 * all now so they can start to spin on their individual paca
343 	 * spinloops. For non SMP kernels, the secondary cpus never get out
344 	 * of the common spinloop.
345 	 */
346 
347 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
348 			- PHYSICAL_START);
349 	*ptr = ppc_function_entry(generic_secondary_smp_init);
350 
351 	/* And wait a bit for them to catch up */
352 	for (i = 0; i < 100000; i++) {
353 		mb();
354 		HMT_low();
355 		if (spinning_secondaries == 0)
356 			break;
357 		udelay(1);
358 	}
359 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
360 
361 	DBG(" <- smp_release_cpus()\n");
362 }
363 #endif /* CONFIG_SMP || CONFIG_KEXEC */
364 
365 /*
366  * Initialize some remaining members of the ppc64_caches and systemcfg
367  * structures
368  * (at least until we get rid of them completely). This is mostly some
369  * cache informations about the CPU that will be used by cache flush
370  * routines and/or provided to userland
371  */
372 static void __init initialize_cache_info(void)
373 {
374 	struct device_node *np;
375 	unsigned long num_cpus = 0;
376 
377 	DBG(" -> initialize_cache_info()\n");
378 
379 	for_each_node_by_type(np, "cpu") {
380 		num_cpus += 1;
381 
382 		/*
383 		 * We're assuming *all* of the CPUs have the same
384 		 * d-cache and i-cache sizes... -Peter
385 		 */
386 		if (num_cpus == 1) {
387 			const __be32 *sizep, *lsizep;
388 			u32 size, lsize;
389 
390 			size = 0;
391 			lsize = cur_cpu_spec->dcache_bsize;
392 			sizep = of_get_property(np, "d-cache-size", NULL);
393 			if (sizep != NULL)
394 				size = be32_to_cpu(*sizep);
395 			lsizep = of_get_property(np, "d-cache-block-size",
396 						 NULL);
397 			/* fallback if block size missing */
398 			if (lsizep == NULL)
399 				lsizep = of_get_property(np,
400 							 "d-cache-line-size",
401 							 NULL);
402 			if (lsizep != NULL)
403 				lsize = be32_to_cpu(*lsizep);
404 			if (sizep == NULL || lsizep == NULL)
405 				DBG("Argh, can't find dcache properties ! "
406 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
407 
408 			ppc64_caches.dsize = size;
409 			ppc64_caches.dline_size = lsize;
410 			ppc64_caches.log_dline_size = __ilog2(lsize);
411 			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
412 
413 			size = 0;
414 			lsize = cur_cpu_spec->icache_bsize;
415 			sizep = of_get_property(np, "i-cache-size", NULL);
416 			if (sizep != NULL)
417 				size = be32_to_cpu(*sizep);
418 			lsizep = of_get_property(np, "i-cache-block-size",
419 						 NULL);
420 			if (lsizep == NULL)
421 				lsizep = of_get_property(np,
422 							 "i-cache-line-size",
423 							 NULL);
424 			if (lsizep != NULL)
425 				lsize = be32_to_cpu(*lsizep);
426 			if (sizep == NULL || lsizep == NULL)
427 				DBG("Argh, can't find icache properties ! "
428 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
429 
430 			ppc64_caches.isize = size;
431 			ppc64_caches.iline_size = lsize;
432 			ppc64_caches.log_iline_size = __ilog2(lsize);
433 			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
434 		}
435 	}
436 
437 	DBG(" <- initialize_cache_info()\n");
438 }
439 
440 
441 /*
442  * Do some initial setup of the system.  The parameters are those which
443  * were passed in from the bootloader.
444  */
445 void __init setup_system(void)
446 {
447 	DBG(" -> setup_system()\n");
448 
449 	/* Apply the CPUs-specific and firmware specific fixups to kernel
450 	 * text (nop out sections not relevant to this CPU or this firmware)
451 	 */
452 	do_feature_fixups(cur_cpu_spec->cpu_features,
453 			  &__start___ftr_fixup, &__stop___ftr_fixup);
454 	do_feature_fixups(cur_cpu_spec->mmu_features,
455 			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
456 	do_feature_fixups(powerpc_firmware_features,
457 			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
458 	do_lwsync_fixups(cur_cpu_spec->cpu_features,
459 			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
460 	do_final_fixups();
461 
462 	/*
463 	 * Unflatten the device-tree passed by prom_init or kexec
464 	 */
465 	unflatten_device_tree();
466 
467 	/*
468 	 * Fill the ppc64_caches & systemcfg structures with informations
469  	 * retrieved from the device-tree.
470 	 */
471 	initialize_cache_info();
472 
473 #ifdef CONFIG_PPC_RTAS
474 	/*
475 	 * Initialize RTAS if available
476 	 */
477 	rtas_initialize();
478 #endif /* CONFIG_PPC_RTAS */
479 
480 	/*
481 	 * Check if we have an initrd provided via the device-tree
482 	 */
483 	check_for_initrd();
484 
485 	/*
486 	 * Do some platform specific early initializations, that includes
487 	 * setting up the hash table pointers. It also sets up some interrupt-mapping
488 	 * related options that will be used by finish_device_tree()
489 	 */
490 	if (ppc_md.init_early)
491 		ppc_md.init_early();
492 
493  	/*
494 	 * We can discover serial ports now since the above did setup the
495 	 * hash table management for us, thus ioremap works. We do that early
496 	 * so that further code can be debugged
497 	 */
498 	find_legacy_serial_ports();
499 
500 	/*
501 	 * Register early console
502 	 */
503 	register_early_udbg_console();
504 
505 	/*
506 	 * Initialize xmon
507 	 */
508 	xmon_setup();
509 
510 	smp_setup_cpu_maps();
511 	check_smt_enabled();
512 	setup_tlb_core_data();
513 
514 	/*
515 	 * Freescale Book3e parts spin in a loop provided by firmware,
516 	 * so smp_release_cpus() does nothing for them
517 	 */
518 #if defined(CONFIG_SMP) && !defined(CONFIG_PPC_FSL_BOOK3E)
519 	/* Release secondary cpus out of their spinloops at 0x60 now that
520 	 * we can map physical -> logical CPU ids
521 	 */
522 	smp_release_cpus();
523 #endif
524 
525 	pr_info("Starting Linux PPC64 %s\n", init_utsname()->version);
526 
527 	pr_info("-----------------------------------------------------\n");
528 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
529 	pr_info("phys_mem_size     = 0x%llx\n", memblock_phys_mem_size());
530 
531 	if (ppc64_caches.dline_size != 0x80)
532 		pr_info("dcache_line_size  = 0x%x\n", ppc64_caches.dline_size);
533 	if (ppc64_caches.iline_size != 0x80)
534 		pr_info("icache_line_size  = 0x%x\n", ppc64_caches.iline_size);
535 
536 	pr_info("cpu_features      = 0x%016lx\n", cur_cpu_spec->cpu_features);
537 	pr_info("  possible        = 0x%016lx\n", CPU_FTRS_POSSIBLE);
538 	pr_info("  always          = 0x%016lx\n", CPU_FTRS_ALWAYS);
539 	pr_info("cpu_user_features = 0x%08x 0x%08x\n", cur_cpu_spec->cpu_user_features,
540 		cur_cpu_spec->cpu_user_features2);
541 	pr_info("mmu_features      = 0x%08x\n", cur_cpu_spec->mmu_features);
542 	pr_info("firmware_features = 0x%016lx\n", powerpc_firmware_features);
543 
544 #ifdef CONFIG_PPC_STD_MMU_64
545 	if (htab_address)
546 		pr_info("htab_address      = 0x%p\n", htab_address);
547 
548 	pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
549 #endif
550 
551 	if (PHYSICAL_START > 0)
552 		pr_info("physical_start    = 0x%llx\n",
553 		       (unsigned long long)PHYSICAL_START);
554 	pr_info("-----------------------------------------------------\n");
555 
556 	DBG(" <- setup_system()\n");
557 }
558 
559 /* This returns the limit below which memory accesses to the linear
560  * mapping are guarnateed not to cause a TLB or SLB miss. This is
561  * used to allocate interrupt or emergency stacks for which our
562  * exception entry path doesn't deal with being interrupted.
563  */
564 static u64 safe_stack_limit(void)
565 {
566 #ifdef CONFIG_PPC_BOOK3E
567 	/* Freescale BookE bolts the entire linear mapping */
568 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
569 		return linear_map_top;
570 	/* Other BookE, we assume the first GB is bolted */
571 	return 1ul << 30;
572 #else
573 	/* BookS, the first segment is bolted */
574 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
575 		return 1UL << SID_SHIFT_1T;
576 	return 1UL << SID_SHIFT;
577 #endif
578 }
579 
580 static void __init irqstack_early_init(void)
581 {
582 	u64 limit = safe_stack_limit();
583 	unsigned int i;
584 
585 	/*
586 	 * Interrupt stacks must be in the first segment since we
587 	 * cannot afford to take SLB misses on them.
588 	 */
589 	for_each_possible_cpu(i) {
590 		softirq_ctx[i] = (struct thread_info *)
591 			__va(memblock_alloc_base(THREAD_SIZE,
592 					    THREAD_SIZE, limit));
593 		hardirq_ctx[i] = (struct thread_info *)
594 			__va(memblock_alloc_base(THREAD_SIZE,
595 					    THREAD_SIZE, limit));
596 	}
597 }
598 
599 #ifdef CONFIG_PPC_BOOK3E
600 static void __init exc_lvl_early_init(void)
601 {
602 	unsigned int i;
603 	unsigned long sp;
604 
605 	for_each_possible_cpu(i) {
606 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
607 		critirq_ctx[i] = (struct thread_info *)__va(sp);
608 		paca[i].crit_kstack = __va(sp + THREAD_SIZE);
609 
610 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
611 		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
612 		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
613 
614 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
615 		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
616 		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
617 	}
618 
619 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
620 		patch_exception(0x040, exc_debug_debug_book3e);
621 }
622 #else
623 #define exc_lvl_early_init()
624 #endif
625 
626 /*
627  * Stack space used when we detect a bad kernel stack pointer, and
628  * early in SMP boots before relocation is enabled. Exclusive emergency
629  * stack for machine checks.
630  */
631 static void __init emergency_stack_init(void)
632 {
633 	u64 limit;
634 	unsigned int i;
635 
636 	/*
637 	 * Emergency stacks must be under 256MB, we cannot afford to take
638 	 * SLB misses on them. The ABI also requires them to be 128-byte
639 	 * aligned.
640 	 *
641 	 * Since we use these as temporary stacks during secondary CPU
642 	 * bringup, we need to get at them in real mode. This means they
643 	 * must also be within the RMO region.
644 	 */
645 	limit = min(safe_stack_limit(), ppc64_rma_size);
646 
647 	for_each_possible_cpu(i) {
648 		unsigned long sp;
649 		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
650 		sp += THREAD_SIZE;
651 		paca[i].emergency_sp = __va(sp);
652 
653 #ifdef CONFIG_PPC_BOOK3S_64
654 		/* emergency stack for machine check exception handling. */
655 		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
656 		sp += THREAD_SIZE;
657 		paca[i].mc_emergency_sp = __va(sp);
658 #endif
659 	}
660 }
661 
662 /*
663  * Called into from start_kernel this initializes memblock, which is used
664  * to manage page allocation until mem_init is called.
665  */
666 void __init setup_arch(char **cmdline_p)
667 {
668 	*cmdline_p = boot_command_line;
669 
670 	/*
671 	 * Set cache line size based on type of cpu as a default.
672 	 * Systems with OF can look in the properties on the cpu node(s)
673 	 * for a possibly more accurate value.
674 	 */
675 	dcache_bsize = ppc64_caches.dline_size;
676 	icache_bsize = ppc64_caches.iline_size;
677 
678 	if (ppc_md.panic)
679 		setup_panic();
680 
681 	init_mm.start_code = (unsigned long)_stext;
682 	init_mm.end_code = (unsigned long) _etext;
683 	init_mm.end_data = (unsigned long) _edata;
684 	init_mm.brk = klimit;
685 #ifdef CONFIG_PPC_64K_PAGES
686 	init_mm.context.pte_frag = NULL;
687 #endif
688 	irqstack_early_init();
689 	exc_lvl_early_init();
690 	emergency_stack_init();
691 
692 	initmem_init();
693 
694 #ifdef CONFIG_DUMMY_CONSOLE
695 	conswitchp = &dummy_con;
696 #endif
697 
698 	if (ppc_md.setup_arch)
699 		ppc_md.setup_arch();
700 
701 	paging_init();
702 
703 	/* Initialize the MMU context management stuff */
704 	mmu_context_init();
705 
706 	/* Interrupt code needs to be 64K-aligned */
707 	if ((unsigned long)_stext & 0xffff)
708 		panic("Kernelbase not 64K-aligned (0x%lx)!\n",
709 		      (unsigned long)_stext);
710 }
711 
712 #ifdef CONFIG_SMP
713 #define PCPU_DYN_SIZE		()
714 
715 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
716 {
717 	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
718 				    __pa(MAX_DMA_ADDRESS));
719 }
720 
721 static void __init pcpu_fc_free(void *ptr, size_t size)
722 {
723 	free_bootmem(__pa(ptr), size);
724 }
725 
726 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
727 {
728 	if (cpu_to_node(from) == cpu_to_node(to))
729 		return LOCAL_DISTANCE;
730 	else
731 		return REMOTE_DISTANCE;
732 }
733 
734 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
735 EXPORT_SYMBOL(__per_cpu_offset);
736 
737 void __init setup_per_cpu_areas(void)
738 {
739 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
740 	size_t atom_size;
741 	unsigned long delta;
742 	unsigned int cpu;
743 	int rc;
744 
745 	/*
746 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
747 	 * to group units.  For larger mappings, use 1M atom which
748 	 * should be large enough to contain a number of units.
749 	 */
750 	if (mmu_linear_psize == MMU_PAGE_4K)
751 		atom_size = PAGE_SIZE;
752 	else
753 		atom_size = 1 << 20;
754 
755 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
756 				    pcpu_fc_alloc, pcpu_fc_free);
757 	if (rc < 0)
758 		panic("cannot initialize percpu area (err=%d)", rc);
759 
760 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
761 	for_each_possible_cpu(cpu) {
762                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
763 		paca[cpu].data_offset = __per_cpu_offset[cpu];
764 	}
765 }
766 #endif
767 
768 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
769 unsigned long memory_block_size_bytes(void)
770 {
771 	if (ppc_md.memory_block_size)
772 		return ppc_md.memory_block_size();
773 
774 	return MIN_MEMORY_BLOCK_SIZE;
775 }
776 #endif
777 
778 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
779 struct ppc_pci_io ppc_pci_io;
780 EXPORT_SYMBOL(ppc_pci_io);
781 #endif
782