1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #define DEBUG 14 15 #include <linux/export.h> 16 #include <linux/string.h> 17 #include <linux/sched.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/seq_file.h> 24 #include <linux/ioport.h> 25 #include <linux/console.h> 26 #include <linux/utsname.h> 27 #include <linux/tty.h> 28 #include <linux/root_dev.h> 29 #include <linux/notifier.h> 30 #include <linux/cpu.h> 31 #include <linux/unistd.h> 32 #include <linux/serial.h> 33 #include <linux/serial_8250.h> 34 #include <linux/bootmem.h> 35 #include <linux/pci.h> 36 #include <linux/lockdep.h> 37 #include <linux/memblock.h> 38 #include <linux/hugetlb.h> 39 #include <linux/memory.h> 40 41 #include <asm/io.h> 42 #include <asm/kdump.h> 43 #include <asm/prom.h> 44 #include <asm/processor.h> 45 #include <asm/pgtable.h> 46 #include <asm/smp.h> 47 #include <asm/elf.h> 48 #include <asm/machdep.h> 49 #include <asm/paca.h> 50 #include <asm/time.h> 51 #include <asm/cputable.h> 52 #include <asm/sections.h> 53 #include <asm/btext.h> 54 #include <asm/nvram.h> 55 #include <asm/setup.h> 56 #include <asm/rtas.h> 57 #include <asm/iommu.h> 58 #include <asm/serial.h> 59 #include <asm/cache.h> 60 #include <asm/page.h> 61 #include <asm/mmu.h> 62 #include <asm/firmware.h> 63 #include <asm/xmon.h> 64 #include <asm/udbg.h> 65 #include <asm/kexec.h> 66 #include <asm/mmu_context.h> 67 #include <asm/code-patching.h> 68 #include <asm/kvm_ppc.h> 69 #include <asm/hugetlb.h> 70 #include <asm/epapr_hcalls.h> 71 72 #ifdef DEBUG 73 #define DBG(fmt...) udbg_printf(fmt) 74 #else 75 #define DBG(fmt...) 76 #endif 77 78 int spinning_secondaries; 79 u64 ppc64_pft_size; 80 81 /* Pick defaults since we might want to patch instructions 82 * before we've read this from the device tree. 83 */ 84 struct ppc64_caches ppc64_caches = { 85 .dline_size = 0x40, 86 .log_dline_size = 6, 87 .iline_size = 0x40, 88 .log_iline_size = 6 89 }; 90 EXPORT_SYMBOL_GPL(ppc64_caches); 91 92 /* 93 * These are used in binfmt_elf.c to put aux entries on the stack 94 * for each elf executable being started. 95 */ 96 int dcache_bsize; 97 int icache_bsize; 98 int ucache_bsize; 99 100 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 101 static void setup_tlb_core_data(void) 102 { 103 int cpu; 104 105 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 106 107 for_each_possible_cpu(cpu) { 108 int first = cpu_first_thread_sibling(cpu); 109 110 paca[cpu].tcd_ptr = &paca[first].tcd; 111 112 /* 113 * If we have threads, we need either tlbsrx. 114 * or e6500 tablewalk mode, or else TLB handlers 115 * will be racy and could produce duplicate entries. 116 */ 117 if (smt_enabled_at_boot >= 2 && 118 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 119 book3e_htw_mode != PPC_HTW_E6500) { 120 /* Should we panic instead? */ 121 WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n", 122 __func__); 123 } 124 } 125 } 126 #else 127 static void setup_tlb_core_data(void) 128 { 129 } 130 #endif 131 132 #ifdef CONFIG_SMP 133 134 static char *smt_enabled_cmdline; 135 136 /* Look for ibm,smt-enabled OF option */ 137 static void check_smt_enabled(void) 138 { 139 struct device_node *dn; 140 const char *smt_option; 141 142 /* Default to enabling all threads */ 143 smt_enabled_at_boot = threads_per_core; 144 145 /* Allow the command line to overrule the OF option */ 146 if (smt_enabled_cmdline) { 147 if (!strcmp(smt_enabled_cmdline, "on")) 148 smt_enabled_at_boot = threads_per_core; 149 else if (!strcmp(smt_enabled_cmdline, "off")) 150 smt_enabled_at_boot = 0; 151 else { 152 long smt; 153 int rc; 154 155 rc = strict_strtol(smt_enabled_cmdline, 10, &smt); 156 if (!rc) 157 smt_enabled_at_boot = 158 min(threads_per_core, (int)smt); 159 } 160 } else { 161 dn = of_find_node_by_path("/options"); 162 if (dn) { 163 smt_option = of_get_property(dn, "ibm,smt-enabled", 164 NULL); 165 166 if (smt_option) { 167 if (!strcmp(smt_option, "on")) 168 smt_enabled_at_boot = threads_per_core; 169 else if (!strcmp(smt_option, "off")) 170 smt_enabled_at_boot = 0; 171 } 172 173 of_node_put(dn); 174 } 175 } 176 } 177 178 /* Look for smt-enabled= cmdline option */ 179 static int __init early_smt_enabled(char *p) 180 { 181 smt_enabled_cmdline = p; 182 return 0; 183 } 184 early_param("smt-enabled", early_smt_enabled); 185 186 #else 187 #define check_smt_enabled() 188 #endif /* CONFIG_SMP */ 189 190 /** Fix up paca fields required for the boot cpu */ 191 static void fixup_boot_paca(void) 192 { 193 /* The boot cpu is started */ 194 get_paca()->cpu_start = 1; 195 /* Allow percpu accesses to work until we setup percpu data */ 196 get_paca()->data_offset = 0; 197 } 198 199 static void cpu_ready_for_interrupts(void) 200 { 201 /* Set IR and DR in PACA MSR */ 202 get_paca()->kernel_msr = MSR_KERNEL; 203 204 /* Enable AIL if supported */ 205 if (cpu_has_feature(CPU_FTR_HVMODE) && 206 cpu_has_feature(CPU_FTR_ARCH_207S)) { 207 unsigned long lpcr = mfspr(SPRN_LPCR); 208 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 209 } 210 } 211 212 /* 213 * Early initialization entry point. This is called by head.S 214 * with MMU translation disabled. We rely on the "feature" of 215 * the CPU that ignores the top 2 bits of the address in real 216 * mode so we can access kernel globals normally provided we 217 * only toy with things in the RMO region. From here, we do 218 * some early parsing of the device-tree to setup out MEMBLOCK 219 * data structures, and allocate & initialize the hash table 220 * and segment tables so we can start running with translation 221 * enabled. 222 * 223 * It is this function which will call the probe() callback of 224 * the various platform types and copy the matching one to the 225 * global ppc_md structure. Your platform can eventually do 226 * some very early initializations from the probe() routine, but 227 * this is not recommended, be very careful as, for example, the 228 * device-tree is not accessible via normal means at this point. 229 */ 230 231 void __init early_setup(unsigned long dt_ptr) 232 { 233 static __initdata struct paca_struct boot_paca; 234 235 /* -------- printk is _NOT_ safe to use here ! ------- */ 236 237 /* Identify CPU type */ 238 identify_cpu(0, mfspr(SPRN_PVR)); 239 240 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 241 initialise_paca(&boot_paca, 0); 242 setup_paca(&boot_paca); 243 fixup_boot_paca(); 244 245 /* Initialize lockdep early or else spinlocks will blow */ 246 lockdep_init(); 247 248 /* -------- printk is now safe to use ------- */ 249 250 /* Enable early debugging if any specified (see udbg.h) */ 251 udbg_early_init(); 252 253 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 254 255 /* 256 * Do early initialization using the flattened device 257 * tree, such as retrieving the physical memory map or 258 * calculating/retrieving the hash table size. 259 */ 260 early_init_devtree(__va(dt_ptr)); 261 262 epapr_paravirt_early_init(); 263 264 /* Now we know the logical id of our boot cpu, setup the paca. */ 265 setup_paca(&paca[boot_cpuid]); 266 fixup_boot_paca(); 267 268 /* Probe the machine type */ 269 probe_machine(); 270 271 setup_kdump_trampoline(); 272 273 DBG("Found, Initializing memory management...\n"); 274 275 /* Initialize the hash table or TLB handling */ 276 early_init_mmu(); 277 278 /* 279 * At this point, we can let interrupts switch to virtual mode 280 * (the MMU has been setup), so adjust the MSR in the PACA to 281 * have IR and DR set and enable AIL if it exists 282 */ 283 cpu_ready_for_interrupts(); 284 285 /* Reserve large chunks of memory for use by CMA for KVM */ 286 kvm_cma_reserve(); 287 288 /* 289 * Reserve any gigantic pages requested on the command line. 290 * memblock needs to have been initialized by the time this is 291 * called since this will reserve memory. 292 */ 293 reserve_hugetlb_gpages(); 294 295 DBG(" <- early_setup()\n"); 296 297 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 298 /* 299 * This needs to be done *last* (after the above DBG() even) 300 * 301 * Right after we return from this function, we turn on the MMU 302 * which means the real-mode access trick that btext does will 303 * no longer work, it needs to switch to using a real MMU 304 * mapping. This call will ensure that it does 305 */ 306 btext_map(); 307 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 308 } 309 310 #ifdef CONFIG_SMP 311 void early_setup_secondary(void) 312 { 313 /* Mark interrupts enabled in PACA */ 314 get_paca()->soft_enabled = 0; 315 316 /* Initialize the hash table or TLB handling */ 317 early_init_mmu_secondary(); 318 319 /* 320 * At this point, we can let interrupts switch to virtual mode 321 * (the MMU has been setup), so adjust the MSR in the PACA to 322 * have IR and DR set. 323 */ 324 cpu_ready_for_interrupts(); 325 } 326 327 #endif /* CONFIG_SMP */ 328 329 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC) 330 void smp_release_cpus(void) 331 { 332 unsigned long *ptr; 333 int i; 334 335 DBG(" -> smp_release_cpus()\n"); 336 337 /* All secondary cpus are spinning on a common spinloop, release them 338 * all now so they can start to spin on their individual paca 339 * spinloops. For non SMP kernels, the secondary cpus never get out 340 * of the common spinloop. 341 */ 342 343 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 344 - PHYSICAL_START); 345 *ptr = ppc_function_entry(generic_secondary_smp_init); 346 347 /* And wait a bit for them to catch up */ 348 for (i = 0; i < 100000; i++) { 349 mb(); 350 HMT_low(); 351 if (spinning_secondaries == 0) 352 break; 353 udelay(1); 354 } 355 DBG("spinning_secondaries = %d\n", spinning_secondaries); 356 357 DBG(" <- smp_release_cpus()\n"); 358 } 359 #endif /* CONFIG_SMP || CONFIG_KEXEC */ 360 361 /* 362 * Initialize some remaining members of the ppc64_caches and systemcfg 363 * structures 364 * (at least until we get rid of them completely). This is mostly some 365 * cache informations about the CPU that will be used by cache flush 366 * routines and/or provided to userland 367 */ 368 static void __init initialize_cache_info(void) 369 { 370 struct device_node *np; 371 unsigned long num_cpus = 0; 372 373 DBG(" -> initialize_cache_info()\n"); 374 375 for_each_node_by_type(np, "cpu") { 376 num_cpus += 1; 377 378 /* 379 * We're assuming *all* of the CPUs have the same 380 * d-cache and i-cache sizes... -Peter 381 */ 382 if (num_cpus == 1) { 383 const __be32 *sizep, *lsizep; 384 u32 size, lsize; 385 386 size = 0; 387 lsize = cur_cpu_spec->dcache_bsize; 388 sizep = of_get_property(np, "d-cache-size", NULL); 389 if (sizep != NULL) 390 size = be32_to_cpu(*sizep); 391 lsizep = of_get_property(np, "d-cache-block-size", 392 NULL); 393 /* fallback if block size missing */ 394 if (lsizep == NULL) 395 lsizep = of_get_property(np, 396 "d-cache-line-size", 397 NULL); 398 if (lsizep != NULL) 399 lsize = be32_to_cpu(*lsizep); 400 if (sizep == NULL || lsizep == NULL) 401 DBG("Argh, can't find dcache properties ! " 402 "sizep: %p, lsizep: %p\n", sizep, lsizep); 403 404 ppc64_caches.dsize = size; 405 ppc64_caches.dline_size = lsize; 406 ppc64_caches.log_dline_size = __ilog2(lsize); 407 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize; 408 409 size = 0; 410 lsize = cur_cpu_spec->icache_bsize; 411 sizep = of_get_property(np, "i-cache-size", NULL); 412 if (sizep != NULL) 413 size = be32_to_cpu(*sizep); 414 lsizep = of_get_property(np, "i-cache-block-size", 415 NULL); 416 if (lsizep == NULL) 417 lsizep = of_get_property(np, 418 "i-cache-line-size", 419 NULL); 420 if (lsizep != NULL) 421 lsize = be32_to_cpu(*lsizep); 422 if (sizep == NULL || lsizep == NULL) 423 DBG("Argh, can't find icache properties ! " 424 "sizep: %p, lsizep: %p\n", sizep, lsizep); 425 426 ppc64_caches.isize = size; 427 ppc64_caches.iline_size = lsize; 428 ppc64_caches.log_iline_size = __ilog2(lsize); 429 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize; 430 } 431 } 432 433 DBG(" <- initialize_cache_info()\n"); 434 } 435 436 437 /* 438 * Do some initial setup of the system. The parameters are those which 439 * were passed in from the bootloader. 440 */ 441 void __init setup_system(void) 442 { 443 DBG(" -> setup_system()\n"); 444 445 /* Apply the CPUs-specific and firmware specific fixups to kernel 446 * text (nop out sections not relevant to this CPU or this firmware) 447 */ 448 do_feature_fixups(cur_cpu_spec->cpu_features, 449 &__start___ftr_fixup, &__stop___ftr_fixup); 450 do_feature_fixups(cur_cpu_spec->mmu_features, 451 &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup); 452 do_feature_fixups(powerpc_firmware_features, 453 &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup); 454 do_lwsync_fixups(cur_cpu_spec->cpu_features, 455 &__start___lwsync_fixup, &__stop___lwsync_fixup); 456 do_final_fixups(); 457 458 /* 459 * Unflatten the device-tree passed by prom_init or kexec 460 */ 461 unflatten_device_tree(); 462 463 /* 464 * Fill the ppc64_caches & systemcfg structures with informations 465 * retrieved from the device-tree. 466 */ 467 initialize_cache_info(); 468 469 #ifdef CONFIG_PPC_RTAS 470 /* 471 * Initialize RTAS if available 472 */ 473 rtas_initialize(); 474 #endif /* CONFIG_PPC_RTAS */ 475 476 /* 477 * Check if we have an initrd provided via the device-tree 478 */ 479 check_for_initrd(); 480 481 /* 482 * Do some platform specific early initializations, that includes 483 * setting up the hash table pointers. It also sets up some interrupt-mapping 484 * related options that will be used by finish_device_tree() 485 */ 486 if (ppc_md.init_early) 487 ppc_md.init_early(); 488 489 /* 490 * We can discover serial ports now since the above did setup the 491 * hash table management for us, thus ioremap works. We do that early 492 * so that further code can be debugged 493 */ 494 find_legacy_serial_ports(); 495 496 /* 497 * Register early console 498 */ 499 register_early_udbg_console(); 500 501 /* 502 * Initialize xmon 503 */ 504 xmon_setup(); 505 506 smp_setup_cpu_maps(); 507 check_smt_enabled(); 508 setup_tlb_core_data(); 509 510 #ifdef CONFIG_SMP 511 /* Release secondary cpus out of their spinloops at 0x60 now that 512 * we can map physical -> logical CPU ids 513 */ 514 smp_release_cpus(); 515 #endif 516 517 printk("Starting Linux PPC64 %s\n", init_utsname()->version); 518 519 printk("-----------------------------------------------------\n"); 520 printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size); 521 printk("physicalMemorySize = 0x%llx\n", memblock_phys_mem_size()); 522 if (ppc64_caches.dline_size != 0x80) 523 printk("ppc64_caches.dcache_line_size = 0x%x\n", 524 ppc64_caches.dline_size); 525 if (ppc64_caches.iline_size != 0x80) 526 printk("ppc64_caches.icache_line_size = 0x%x\n", 527 ppc64_caches.iline_size); 528 #ifdef CONFIG_PPC_STD_MMU_64 529 if (htab_address) 530 printk("htab_address = 0x%p\n", htab_address); 531 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask); 532 #endif /* CONFIG_PPC_STD_MMU_64 */ 533 if (PHYSICAL_START > 0) 534 printk("physical_start = 0x%llx\n", 535 (unsigned long long)PHYSICAL_START); 536 printk("-----------------------------------------------------\n"); 537 538 DBG(" <- setup_system()\n"); 539 } 540 541 /* This returns the limit below which memory accesses to the linear 542 * mapping are guarnateed not to cause a TLB or SLB miss. This is 543 * used to allocate interrupt or emergency stacks for which our 544 * exception entry path doesn't deal with being interrupted. 545 */ 546 static u64 safe_stack_limit(void) 547 { 548 #ifdef CONFIG_PPC_BOOK3E 549 /* Freescale BookE bolts the entire linear mapping */ 550 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 551 return linear_map_top; 552 /* Other BookE, we assume the first GB is bolted */ 553 return 1ul << 30; 554 #else 555 /* BookS, the first segment is bolted */ 556 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 557 return 1UL << SID_SHIFT_1T; 558 return 1UL << SID_SHIFT; 559 #endif 560 } 561 562 static void __init irqstack_early_init(void) 563 { 564 u64 limit = safe_stack_limit(); 565 unsigned int i; 566 567 /* 568 * Interrupt stacks must be in the first segment since we 569 * cannot afford to take SLB misses on them. 570 */ 571 for_each_possible_cpu(i) { 572 softirq_ctx[i] = (struct thread_info *) 573 __va(memblock_alloc_base(THREAD_SIZE, 574 THREAD_SIZE, limit)); 575 hardirq_ctx[i] = (struct thread_info *) 576 __va(memblock_alloc_base(THREAD_SIZE, 577 THREAD_SIZE, limit)); 578 } 579 } 580 581 #ifdef CONFIG_PPC_BOOK3E 582 static void __init exc_lvl_early_init(void) 583 { 584 unsigned int i; 585 unsigned long sp; 586 587 for_each_possible_cpu(i) { 588 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 589 critirq_ctx[i] = (struct thread_info *)__va(sp); 590 paca[i].crit_kstack = __va(sp + THREAD_SIZE); 591 592 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 593 dbgirq_ctx[i] = (struct thread_info *)__va(sp); 594 paca[i].dbg_kstack = __va(sp + THREAD_SIZE); 595 596 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 597 mcheckirq_ctx[i] = (struct thread_info *)__va(sp); 598 paca[i].mc_kstack = __va(sp + THREAD_SIZE); 599 } 600 601 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 602 patch_exception(0x040, exc_debug_debug_book3e); 603 } 604 #else 605 #define exc_lvl_early_init() 606 #endif 607 608 /* 609 * Stack space used when we detect a bad kernel stack pointer, and 610 * early in SMP boots before relocation is enabled. Exclusive emergency 611 * stack for machine checks. 612 */ 613 static void __init emergency_stack_init(void) 614 { 615 u64 limit; 616 unsigned int i; 617 618 /* 619 * Emergency stacks must be under 256MB, we cannot afford to take 620 * SLB misses on them. The ABI also requires them to be 128-byte 621 * aligned. 622 * 623 * Since we use these as temporary stacks during secondary CPU 624 * bringup, we need to get at them in real mode. This means they 625 * must also be within the RMO region. 626 */ 627 limit = min(safe_stack_limit(), ppc64_rma_size); 628 629 for_each_possible_cpu(i) { 630 unsigned long sp; 631 sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); 632 sp += THREAD_SIZE; 633 paca[i].emergency_sp = __va(sp); 634 635 #ifdef CONFIG_PPC_BOOK3S_64 636 /* emergency stack for machine check exception handling. */ 637 sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); 638 sp += THREAD_SIZE; 639 paca[i].mc_emergency_sp = __va(sp); 640 #endif 641 } 642 } 643 644 /* 645 * Called into from start_kernel this initializes bootmem, which is used 646 * to manage page allocation until mem_init is called. 647 */ 648 void __init setup_arch(char **cmdline_p) 649 { 650 ppc64_boot_msg(0x12, "Setup Arch"); 651 652 *cmdline_p = cmd_line; 653 654 /* 655 * Set cache line size based on type of cpu as a default. 656 * Systems with OF can look in the properties on the cpu node(s) 657 * for a possibly more accurate value. 658 */ 659 dcache_bsize = ppc64_caches.dline_size; 660 icache_bsize = ppc64_caches.iline_size; 661 662 if (ppc_md.panic) 663 setup_panic(); 664 665 init_mm.start_code = (unsigned long)_stext; 666 init_mm.end_code = (unsigned long) _etext; 667 init_mm.end_data = (unsigned long) _edata; 668 init_mm.brk = klimit; 669 #ifdef CONFIG_PPC_64K_PAGES 670 init_mm.context.pte_frag = NULL; 671 #endif 672 irqstack_early_init(); 673 exc_lvl_early_init(); 674 emergency_stack_init(); 675 676 #ifdef CONFIG_PPC_STD_MMU_64 677 stabs_alloc(); 678 #endif 679 /* set up the bootmem stuff with available memory */ 680 do_init_bootmem(); 681 sparse_init(); 682 683 #ifdef CONFIG_DUMMY_CONSOLE 684 conswitchp = &dummy_con; 685 #endif 686 687 if (ppc_md.setup_arch) 688 ppc_md.setup_arch(); 689 690 paging_init(); 691 692 /* Initialize the MMU context management stuff */ 693 mmu_context_init(); 694 695 /* Interrupt code needs to be 64K-aligned */ 696 if ((unsigned long)_stext & 0xffff) 697 panic("Kernelbase not 64K-aligned (0x%lx)!\n", 698 (unsigned long)_stext); 699 700 ppc64_boot_msg(0x15, "Setup Done"); 701 } 702 703 704 /* ToDo: do something useful if ppc_md is not yet setup. */ 705 #define PPC64_LINUX_FUNCTION 0x0f000000 706 #define PPC64_IPL_MESSAGE 0xc0000000 707 #define PPC64_TERM_MESSAGE 0xb0000000 708 709 static void ppc64_do_msg(unsigned int src, const char *msg) 710 { 711 if (ppc_md.progress) { 712 char buf[128]; 713 714 sprintf(buf, "%08X\n", src); 715 ppc_md.progress(buf, 0); 716 snprintf(buf, 128, "%s", msg); 717 ppc_md.progress(buf, 0); 718 } 719 } 720 721 /* Print a boot progress message. */ 722 void ppc64_boot_msg(unsigned int src, const char *msg) 723 { 724 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg); 725 printk("[boot]%04x %s\n", src, msg); 726 } 727 728 #ifdef CONFIG_SMP 729 #define PCPU_DYN_SIZE () 730 731 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 732 { 733 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align, 734 __pa(MAX_DMA_ADDRESS)); 735 } 736 737 static void __init pcpu_fc_free(void *ptr, size_t size) 738 { 739 free_bootmem(__pa(ptr), size); 740 } 741 742 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 743 { 744 if (cpu_to_node(from) == cpu_to_node(to)) 745 return LOCAL_DISTANCE; 746 else 747 return REMOTE_DISTANCE; 748 } 749 750 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 751 EXPORT_SYMBOL(__per_cpu_offset); 752 753 void __init setup_per_cpu_areas(void) 754 { 755 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 756 size_t atom_size; 757 unsigned long delta; 758 unsigned int cpu; 759 int rc; 760 761 /* 762 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 763 * to group units. For larger mappings, use 1M atom which 764 * should be large enough to contain a number of units. 765 */ 766 if (mmu_linear_psize == MMU_PAGE_4K) 767 atom_size = PAGE_SIZE; 768 else 769 atom_size = 1 << 20; 770 771 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 772 pcpu_fc_alloc, pcpu_fc_free); 773 if (rc < 0) 774 panic("cannot initialize percpu area (err=%d)", rc); 775 776 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 777 for_each_possible_cpu(cpu) { 778 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 779 paca[cpu].data_offset = __per_cpu_offset[cpu]; 780 } 781 } 782 #endif 783 784 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 785 unsigned long memory_block_size_bytes(void) 786 { 787 if (ppc_md.memory_block_size) 788 return ppc_md.memory_block_size(); 789 790 return MIN_MEMORY_BLOCK_SIZE; 791 } 792 #endif 793 794 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 795 struct ppc_pci_io ppc_pci_io; 796 EXPORT_SYMBOL(ppc_pci_io); 797 #endif 798