1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #define DEBUG 14 15 #include <linux/export.h> 16 #include <linux/string.h> 17 #include <linux/sched.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/seq_file.h> 24 #include <linux/ioport.h> 25 #include <linux/console.h> 26 #include <linux/utsname.h> 27 #include <linux/tty.h> 28 #include <linux/root_dev.h> 29 #include <linux/notifier.h> 30 #include <linux/cpu.h> 31 #include <linux/unistd.h> 32 #include <linux/serial.h> 33 #include <linux/serial_8250.h> 34 #include <linux/bootmem.h> 35 #include <linux/pci.h> 36 #include <linux/lockdep.h> 37 #include <linux/memblock.h> 38 #include <linux/memory.h> 39 #include <linux/nmi.h> 40 41 #include <asm/io.h> 42 #include <asm/kdump.h> 43 #include <asm/prom.h> 44 #include <asm/processor.h> 45 #include <asm/pgtable.h> 46 #include <asm/smp.h> 47 #include <asm/elf.h> 48 #include <asm/machdep.h> 49 #include <asm/paca.h> 50 #include <asm/time.h> 51 #include <asm/cputable.h> 52 #include <asm/dt_cpu_ftrs.h> 53 #include <asm/sections.h> 54 #include <asm/btext.h> 55 #include <asm/nvram.h> 56 #include <asm/setup.h> 57 #include <asm/rtas.h> 58 #include <asm/iommu.h> 59 #include <asm/serial.h> 60 #include <asm/cache.h> 61 #include <asm/page.h> 62 #include <asm/mmu.h> 63 #include <asm/firmware.h> 64 #include <asm/xmon.h> 65 #include <asm/udbg.h> 66 #include <asm/kexec.h> 67 #include <asm/code-patching.h> 68 #include <asm/livepatch.h> 69 #include <asm/opal.h> 70 #include <asm/cputhreads.h> 71 72 #include "setup.h" 73 74 #ifdef DEBUG 75 #define DBG(fmt...) udbg_printf(fmt) 76 #else 77 #define DBG(fmt...) 78 #endif 79 80 int spinning_secondaries; 81 u64 ppc64_pft_size; 82 83 struct ppc64_caches ppc64_caches = { 84 .l1d = { 85 .block_size = 0x40, 86 .log_block_size = 6, 87 }, 88 .l1i = { 89 .block_size = 0x40, 90 .log_block_size = 6 91 }, 92 }; 93 EXPORT_SYMBOL_GPL(ppc64_caches); 94 95 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 96 void __init setup_tlb_core_data(void) 97 { 98 int cpu; 99 100 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 101 102 for_each_possible_cpu(cpu) { 103 int first = cpu_first_thread_sibling(cpu); 104 105 /* 106 * If we boot via kdump on a non-primary thread, 107 * make sure we point at the thread that actually 108 * set up this TLB. 109 */ 110 if (cpu_first_thread_sibling(boot_cpuid) == first) 111 first = boot_cpuid; 112 113 paca[cpu].tcd_ptr = &paca[first].tcd; 114 115 /* 116 * If we have threads, we need either tlbsrx. 117 * or e6500 tablewalk mode, or else TLB handlers 118 * will be racy and could produce duplicate entries. 119 * Should we panic instead? 120 */ 121 WARN_ONCE(smt_enabled_at_boot >= 2 && 122 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 123 book3e_htw_mode != PPC_HTW_E6500, 124 "%s: unsupported MMU configuration\n", __func__); 125 } 126 } 127 #endif 128 129 #ifdef CONFIG_SMP 130 131 static char *smt_enabled_cmdline; 132 133 /* Look for ibm,smt-enabled OF option */ 134 void __init check_smt_enabled(void) 135 { 136 struct device_node *dn; 137 const char *smt_option; 138 139 /* Default to enabling all threads */ 140 smt_enabled_at_boot = threads_per_core; 141 142 /* Allow the command line to overrule the OF option */ 143 if (smt_enabled_cmdline) { 144 if (!strcmp(smt_enabled_cmdline, "on")) 145 smt_enabled_at_boot = threads_per_core; 146 else if (!strcmp(smt_enabled_cmdline, "off")) 147 smt_enabled_at_boot = 0; 148 else { 149 int smt; 150 int rc; 151 152 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 153 if (!rc) 154 smt_enabled_at_boot = 155 min(threads_per_core, smt); 156 } 157 } else { 158 dn = of_find_node_by_path("/options"); 159 if (dn) { 160 smt_option = of_get_property(dn, "ibm,smt-enabled", 161 NULL); 162 163 if (smt_option) { 164 if (!strcmp(smt_option, "on")) 165 smt_enabled_at_boot = threads_per_core; 166 else if (!strcmp(smt_option, "off")) 167 smt_enabled_at_boot = 0; 168 } 169 170 of_node_put(dn); 171 } 172 } 173 } 174 175 /* Look for smt-enabled= cmdline option */ 176 static int __init early_smt_enabled(char *p) 177 { 178 smt_enabled_cmdline = p; 179 return 0; 180 } 181 early_param("smt-enabled", early_smt_enabled); 182 183 #endif /* CONFIG_SMP */ 184 185 /** Fix up paca fields required for the boot cpu */ 186 static void __init fixup_boot_paca(void) 187 { 188 /* The boot cpu is started */ 189 get_paca()->cpu_start = 1; 190 /* Allow percpu accesses to work until we setup percpu data */ 191 get_paca()->data_offset = 0; 192 } 193 194 static void __init configure_exceptions(void) 195 { 196 /* 197 * Setup the trampolines from the lowmem exception vectors 198 * to the kdump kernel when not using a relocatable kernel. 199 */ 200 setup_kdump_trampoline(); 201 202 /* Under a PAPR hypervisor, we need hypercalls */ 203 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 204 /* Enable AIL if possible */ 205 pseries_enable_reloc_on_exc(); 206 207 /* 208 * Tell the hypervisor that we want our exceptions to 209 * be taken in little endian mode. 210 * 211 * We don't call this for big endian as our calling convention 212 * makes us always enter in BE, and the call may fail under 213 * some circumstances with kdump. 214 */ 215 #ifdef __LITTLE_ENDIAN__ 216 pseries_little_endian_exceptions(); 217 #endif 218 } else { 219 /* Set endian mode using OPAL */ 220 if (firmware_has_feature(FW_FEATURE_OPAL)) 221 opal_configure_cores(); 222 223 /* AIL on native is done in cpu_ready_for_interrupts() */ 224 } 225 } 226 227 static void cpu_ready_for_interrupts(void) 228 { 229 /* 230 * Enable AIL if supported, and we are in hypervisor mode. This 231 * is called once for every processor. 232 * 233 * If we are not in hypervisor mode the job is done once for 234 * the whole partition in configure_exceptions(). 235 */ 236 if (cpu_has_feature(CPU_FTR_HVMODE) && 237 cpu_has_feature(CPU_FTR_ARCH_207S)) { 238 unsigned long lpcr = mfspr(SPRN_LPCR); 239 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 240 } 241 242 /* 243 * Fixup HFSCR:TM based on CPU features. The bit is set by our 244 * early asm init because at that point we haven't updated our 245 * CPU features from firmware and device-tree. Here we have, 246 * so let's do it. 247 */ 248 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP)) 249 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); 250 251 /* Set IR and DR in PACA MSR */ 252 get_paca()->kernel_msr = MSR_KERNEL; 253 } 254 255 /* 256 * Early initialization entry point. This is called by head.S 257 * with MMU translation disabled. We rely on the "feature" of 258 * the CPU that ignores the top 2 bits of the address in real 259 * mode so we can access kernel globals normally provided we 260 * only toy with things in the RMO region. From here, we do 261 * some early parsing of the device-tree to setup out MEMBLOCK 262 * data structures, and allocate & initialize the hash table 263 * and segment tables so we can start running with translation 264 * enabled. 265 * 266 * It is this function which will call the probe() callback of 267 * the various platform types and copy the matching one to the 268 * global ppc_md structure. Your platform can eventually do 269 * some very early initializations from the probe() routine, but 270 * this is not recommended, be very careful as, for example, the 271 * device-tree is not accessible via normal means at this point. 272 */ 273 274 void __init early_setup(unsigned long dt_ptr) 275 { 276 static __initdata struct paca_struct boot_paca; 277 278 /* -------- printk is _NOT_ safe to use here ! ------- */ 279 280 /* Try new device tree based feature discovery ... */ 281 if (!dt_cpu_ftrs_init(__va(dt_ptr))) 282 /* Otherwise use the old style CPU table */ 283 identify_cpu(0, mfspr(SPRN_PVR)); 284 285 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 286 initialise_paca(&boot_paca, 0); 287 setup_paca(&boot_paca); 288 fixup_boot_paca(); 289 290 /* -------- printk is now safe to use ------- */ 291 292 /* Enable early debugging if any specified (see udbg.h) */ 293 udbg_early_init(); 294 295 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 296 297 /* 298 * Do early initialization using the flattened device 299 * tree, such as retrieving the physical memory map or 300 * calculating/retrieving the hash table size. 301 */ 302 early_init_devtree(__va(dt_ptr)); 303 304 /* Now we know the logical id of our boot cpu, setup the paca. */ 305 setup_paca(&paca[boot_cpuid]); 306 fixup_boot_paca(); 307 308 /* 309 * Configure exception handlers. This include setting up trampolines 310 * if needed, setting exception endian mode, etc... 311 */ 312 configure_exceptions(); 313 314 /* Apply all the dynamic patching */ 315 apply_feature_fixups(); 316 setup_feature_keys(); 317 318 /* Initialize the hash table or TLB handling */ 319 early_init_mmu(); 320 321 /* 322 * After firmware and early platform setup code has set things up, 323 * we note the SPR values for configurable control/performance 324 * registers, and use those as initial defaults. 325 */ 326 record_spr_defaults(); 327 328 /* 329 * At this point, we can let interrupts switch to virtual mode 330 * (the MMU has been setup), so adjust the MSR in the PACA to 331 * have IR and DR set and enable AIL if it exists 332 */ 333 cpu_ready_for_interrupts(); 334 335 DBG(" <- early_setup()\n"); 336 337 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 338 /* 339 * This needs to be done *last* (after the above DBG() even) 340 * 341 * Right after we return from this function, we turn on the MMU 342 * which means the real-mode access trick that btext does will 343 * no longer work, it needs to switch to using a real MMU 344 * mapping. This call will ensure that it does 345 */ 346 btext_map(); 347 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 348 } 349 350 #ifdef CONFIG_SMP 351 void early_setup_secondary(void) 352 { 353 /* Mark interrupts disabled in PACA */ 354 get_paca()->soft_enabled = 0; 355 356 /* Initialize the hash table or TLB handling */ 357 early_init_mmu_secondary(); 358 359 /* 360 * At this point, we can let interrupts switch to virtual mode 361 * (the MMU has been setup), so adjust the MSR in the PACA to 362 * have IR and DR set. 363 */ 364 cpu_ready_for_interrupts(); 365 } 366 367 #endif /* CONFIG_SMP */ 368 369 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 370 static bool use_spinloop(void) 371 { 372 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 373 /* 374 * See comments in head_64.S -- not all platforms insert 375 * secondaries at __secondary_hold and wait at the spin 376 * loop. 377 */ 378 if (firmware_has_feature(FW_FEATURE_OPAL)) 379 return false; 380 return true; 381 } 382 383 /* 384 * When book3e boots from kexec, the ePAPR spin table does 385 * not get used. 386 */ 387 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 388 } 389 390 void smp_release_cpus(void) 391 { 392 unsigned long *ptr; 393 int i; 394 395 if (!use_spinloop()) 396 return; 397 398 DBG(" -> smp_release_cpus()\n"); 399 400 /* All secondary cpus are spinning on a common spinloop, release them 401 * all now so they can start to spin on their individual paca 402 * spinloops. For non SMP kernels, the secondary cpus never get out 403 * of the common spinloop. 404 */ 405 406 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 407 - PHYSICAL_START); 408 *ptr = ppc_function_entry(generic_secondary_smp_init); 409 410 /* And wait a bit for them to catch up */ 411 for (i = 0; i < 100000; i++) { 412 mb(); 413 HMT_low(); 414 if (spinning_secondaries == 0) 415 break; 416 udelay(1); 417 } 418 DBG("spinning_secondaries = %d\n", spinning_secondaries); 419 420 DBG(" <- smp_release_cpus()\n"); 421 } 422 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 423 424 /* 425 * Initialize some remaining members of the ppc64_caches and systemcfg 426 * structures 427 * (at least until we get rid of them completely). This is mostly some 428 * cache informations about the CPU that will be used by cache flush 429 * routines and/or provided to userland 430 */ 431 432 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 433 u32 bsize, u32 sets) 434 { 435 info->size = size; 436 info->sets = sets; 437 info->line_size = lsize; 438 info->block_size = bsize; 439 info->log_block_size = __ilog2(bsize); 440 if (bsize) 441 info->blocks_per_page = PAGE_SIZE / bsize; 442 else 443 info->blocks_per_page = 0; 444 445 if (sets == 0) 446 info->assoc = 0xffff; 447 else 448 info->assoc = size / (sets * lsize); 449 } 450 451 static bool __init parse_cache_info(struct device_node *np, 452 bool icache, 453 struct ppc_cache_info *info) 454 { 455 static const char *ipropnames[] __initdata = { 456 "i-cache-size", 457 "i-cache-sets", 458 "i-cache-block-size", 459 "i-cache-line-size", 460 }; 461 static const char *dpropnames[] __initdata = { 462 "d-cache-size", 463 "d-cache-sets", 464 "d-cache-block-size", 465 "d-cache-line-size", 466 }; 467 const char **propnames = icache ? ipropnames : dpropnames; 468 const __be32 *sizep, *lsizep, *bsizep, *setsp; 469 u32 size, lsize, bsize, sets; 470 bool success = true; 471 472 size = 0; 473 sets = -1u; 474 lsize = bsize = cur_cpu_spec->dcache_bsize; 475 sizep = of_get_property(np, propnames[0], NULL); 476 if (sizep != NULL) 477 size = be32_to_cpu(*sizep); 478 setsp = of_get_property(np, propnames[1], NULL); 479 if (setsp != NULL) 480 sets = be32_to_cpu(*setsp); 481 bsizep = of_get_property(np, propnames[2], NULL); 482 lsizep = of_get_property(np, propnames[3], NULL); 483 if (bsizep == NULL) 484 bsizep = lsizep; 485 if (lsizep != NULL) 486 lsize = be32_to_cpu(*lsizep); 487 if (bsizep != NULL) 488 bsize = be32_to_cpu(*bsizep); 489 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 490 success = false; 491 492 /* 493 * OF is weird .. it represents fully associative caches 494 * as "1 way" which doesn't make much sense and doesn't 495 * leave room for direct mapped. We'll assume that 0 496 * in OF means direct mapped for that reason. 497 */ 498 if (sets == 1) 499 sets = 0; 500 else if (sets == 0) 501 sets = 1; 502 503 init_cache_info(info, size, lsize, bsize, sets); 504 505 return success; 506 } 507 508 void __init initialize_cache_info(void) 509 { 510 struct device_node *cpu = NULL, *l2, *l3 = NULL; 511 u32 pvr; 512 513 DBG(" -> initialize_cache_info()\n"); 514 515 /* 516 * All shipping POWER8 machines have a firmware bug that 517 * puts incorrect information in the device-tree. This will 518 * be (hopefully) fixed for future chips but for now hard 519 * code the values if we are running on one of these 520 */ 521 pvr = PVR_VER(mfspr(SPRN_PVR)); 522 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 523 pvr == PVR_POWER8NVL) { 524 /* size lsize blk sets */ 525 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 526 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 527 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 528 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 529 } else 530 cpu = of_find_node_by_type(NULL, "cpu"); 531 532 /* 533 * We're assuming *all* of the CPUs have the same 534 * d-cache and i-cache sizes... -Peter 535 */ 536 if (cpu) { 537 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 538 DBG("Argh, can't find dcache properties !\n"); 539 540 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 541 DBG("Argh, can't find icache properties !\n"); 542 543 /* 544 * Try to find the L2 and L3 if any. Assume they are 545 * unified and use the D-side properties. 546 */ 547 l2 = of_find_next_cache_node(cpu); 548 of_node_put(cpu); 549 if (l2) { 550 parse_cache_info(l2, false, &ppc64_caches.l2); 551 l3 = of_find_next_cache_node(l2); 552 of_node_put(l2); 553 } 554 if (l3) { 555 parse_cache_info(l3, false, &ppc64_caches.l3); 556 of_node_put(l3); 557 } 558 } 559 560 /* For use by binfmt_elf */ 561 dcache_bsize = ppc64_caches.l1d.block_size; 562 icache_bsize = ppc64_caches.l1i.block_size; 563 564 cur_cpu_spec->dcache_bsize = dcache_bsize; 565 cur_cpu_spec->icache_bsize = icache_bsize; 566 567 DBG(" <- initialize_cache_info()\n"); 568 } 569 570 /* This returns the limit below which memory accesses to the linear 571 * mapping are guarnateed not to cause a TLB or SLB miss. This is 572 * used to allocate interrupt or emergency stacks for which our 573 * exception entry path doesn't deal with being interrupted. 574 */ 575 static __init u64 safe_stack_limit(void) 576 { 577 #ifdef CONFIG_PPC_BOOK3E 578 /* Freescale BookE bolts the entire linear mapping */ 579 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 580 return linear_map_top; 581 /* Other BookE, we assume the first GB is bolted */ 582 return 1ul << 30; 583 #else 584 if (early_radix_enabled()) 585 return ULONG_MAX; 586 587 /* BookS, the first segment is bolted */ 588 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 589 return 1UL << SID_SHIFT_1T; 590 return 1UL << SID_SHIFT; 591 #endif 592 } 593 594 void __init irqstack_early_init(void) 595 { 596 u64 limit = safe_stack_limit(); 597 unsigned int i; 598 599 /* 600 * Interrupt stacks must be in the first segment since we 601 * cannot afford to take SLB misses on them. They are not 602 * accessed in realmode. 603 */ 604 for_each_possible_cpu(i) { 605 softirq_ctx[i] = (struct thread_info *) 606 __va(memblock_alloc_base(THREAD_SIZE, 607 THREAD_SIZE, limit)); 608 hardirq_ctx[i] = (struct thread_info *) 609 __va(memblock_alloc_base(THREAD_SIZE, 610 THREAD_SIZE, limit)); 611 } 612 } 613 614 #ifdef CONFIG_PPC_BOOK3E 615 void __init exc_lvl_early_init(void) 616 { 617 unsigned int i; 618 unsigned long sp; 619 620 for_each_possible_cpu(i) { 621 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 622 critirq_ctx[i] = (struct thread_info *)__va(sp); 623 paca[i].crit_kstack = __va(sp + THREAD_SIZE); 624 625 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 626 dbgirq_ctx[i] = (struct thread_info *)__va(sp); 627 paca[i].dbg_kstack = __va(sp + THREAD_SIZE); 628 629 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 630 mcheckirq_ctx[i] = (struct thread_info *)__va(sp); 631 paca[i].mc_kstack = __va(sp + THREAD_SIZE); 632 } 633 634 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 635 patch_exception(0x040, exc_debug_debug_book3e); 636 } 637 #endif 638 639 /* 640 * Emergency stacks are used for a range of things, from asynchronous 641 * NMIs (system reset, machine check) to synchronous, process context. 642 * We set preempt_count to zero, even though that isn't necessarily correct. To 643 * get the right value we'd need to copy it from the previous thread_info, but 644 * doing that might fault causing more problems. 645 * TODO: what to do with accounting? 646 */ 647 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu) 648 { 649 ti->task = NULL; 650 ti->cpu = cpu; 651 ti->preempt_count = 0; 652 ti->local_flags = 0; 653 ti->flags = 0; 654 klp_init_thread_info(ti); 655 } 656 657 /* 658 * Stack space used when we detect a bad kernel stack pointer, and 659 * early in SMP boots before relocation is enabled. Exclusive emergency 660 * stack for machine checks. 661 */ 662 void __init emergency_stack_init(void) 663 { 664 u64 limit; 665 unsigned int i; 666 667 /* 668 * Emergency stacks must be under 256MB, we cannot afford to take 669 * SLB misses on them. The ABI also requires them to be 128-byte 670 * aligned. 671 * 672 * Since we use these as temporary stacks during secondary CPU 673 * bringup, machine check, system reset, and HMI, we need to get 674 * at them in real mode. This means they must also be within the RMO 675 * region. 676 * 677 * The IRQ stacks allocated elsewhere in this file are zeroed and 678 * initialized in kernel/irq.c. These are initialized here in order 679 * to have emergency stacks available as early as possible. 680 */ 681 limit = min(safe_stack_limit(), ppc64_rma_size); 682 683 for_each_possible_cpu(i) { 684 struct thread_info *ti; 685 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 686 memset(ti, 0, THREAD_SIZE); 687 emerg_stack_init_thread_info(ti, i); 688 paca[i].emergency_sp = (void *)ti + THREAD_SIZE; 689 690 #ifdef CONFIG_PPC_BOOK3S_64 691 /* emergency stack for NMI exception handling. */ 692 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 693 memset(ti, 0, THREAD_SIZE); 694 emerg_stack_init_thread_info(ti, i); 695 paca[i].nmi_emergency_sp = (void *)ti + THREAD_SIZE; 696 697 /* emergency stack for machine check exception handling. */ 698 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 699 memset(ti, 0, THREAD_SIZE); 700 emerg_stack_init_thread_info(ti, i); 701 paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE; 702 #endif 703 } 704 } 705 706 #ifdef CONFIG_SMP 707 #define PCPU_DYN_SIZE () 708 709 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 710 { 711 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align, 712 __pa(MAX_DMA_ADDRESS)); 713 } 714 715 static void __init pcpu_fc_free(void *ptr, size_t size) 716 { 717 free_bootmem(__pa(ptr), size); 718 } 719 720 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 721 { 722 if (early_cpu_to_node(from) == early_cpu_to_node(to)) 723 return LOCAL_DISTANCE; 724 else 725 return REMOTE_DISTANCE; 726 } 727 728 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 729 EXPORT_SYMBOL(__per_cpu_offset); 730 731 void __init setup_per_cpu_areas(void) 732 { 733 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 734 size_t atom_size; 735 unsigned long delta; 736 unsigned int cpu; 737 int rc; 738 739 /* 740 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 741 * to group units. For larger mappings, use 1M atom which 742 * should be large enough to contain a number of units. 743 */ 744 if (mmu_linear_psize == MMU_PAGE_4K) 745 atom_size = PAGE_SIZE; 746 else 747 atom_size = 1 << 20; 748 749 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 750 pcpu_fc_alloc, pcpu_fc_free); 751 if (rc < 0) 752 panic("cannot initialize percpu area (err=%d)", rc); 753 754 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 755 for_each_possible_cpu(cpu) { 756 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 757 paca[cpu].data_offset = __per_cpu_offset[cpu]; 758 } 759 } 760 #endif 761 762 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 763 unsigned long memory_block_size_bytes(void) 764 { 765 if (ppc_md.memory_block_size) 766 return ppc_md.memory_block_size(); 767 768 return MIN_MEMORY_BLOCK_SIZE; 769 } 770 #endif 771 772 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 773 struct ppc_pci_io ppc_pci_io; 774 EXPORT_SYMBOL(ppc_pci_io); 775 #endif 776 777 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 778 u64 hw_nmi_get_sample_period(int watchdog_thresh) 779 { 780 return ppc_proc_freq * watchdog_thresh; 781 } 782 #endif 783 784 /* 785 * The perf based hardlockup detector breaks PMU event based branches, so 786 * disable it by default. Book3S has a soft-nmi hardlockup detector based 787 * on the decrementer interrupt, so it does not suffer from this problem. 788 * 789 * It is likely to get false positives in VM guests, so disable it there 790 * by default too. 791 */ 792 static int __init disable_hardlockup_detector(void) 793 { 794 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 795 hardlockup_detector_disable(); 796 #else 797 if (firmware_has_feature(FW_FEATURE_LPAR)) 798 hardlockup_detector_disable(); 799 #endif 800 801 return 0; 802 } 803 early_initcall(disable_hardlockup_detector); 804