xref: /openbmc/linux/arch/powerpc/kernel/setup_64.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/export.h>
14 #include <linux/string.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/reboot.h>
19 #include <linux/delay.h>
20 #include <linux/initrd.h>
21 #include <linux/seq_file.h>
22 #include <linux/ioport.h>
23 #include <linux/console.h>
24 #include <linux/utsname.h>
25 #include <linux/tty.h>
26 #include <linux/root_dev.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/unistd.h>
30 #include <linux/serial.h>
31 #include <linux/serial_8250.h>
32 #include <linux/bootmem.h>
33 #include <linux/pci.h>
34 #include <linux/lockdep.h>
35 #include <linux/memblock.h>
36 #include <linux/memory.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/debugfs.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/dt_cpu_ftrs.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/code-patching.h>
67 #include <asm/livepatch.h>
68 #include <asm/opal.h>
69 #include <asm/cputhreads.h>
70 #include <asm/hw_irq.h>
71 
72 #include "setup.h"
73 
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
79 
80 int spinning_secondaries;
81 u64 ppc64_pft_size;
82 
83 struct ppc64_caches ppc64_caches = {
84 	.l1d = {
85 		.block_size = 0x40,
86 		.log_block_size = 6,
87 	},
88 	.l1i = {
89 		.block_size = 0x40,
90 		.log_block_size = 6
91 	},
92 };
93 EXPORT_SYMBOL_GPL(ppc64_caches);
94 
95 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96 void __init setup_tlb_core_data(void)
97 {
98 	int cpu;
99 
100 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
101 
102 	for_each_possible_cpu(cpu) {
103 		int first = cpu_first_thread_sibling(cpu);
104 
105 		/*
106 		 * If we boot via kdump on a non-primary thread,
107 		 * make sure we point at the thread that actually
108 		 * set up this TLB.
109 		 */
110 		if (cpu_first_thread_sibling(boot_cpuid) == first)
111 			first = boot_cpuid;
112 
113 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
114 
115 		/*
116 		 * If we have threads, we need either tlbsrx.
117 		 * or e6500 tablewalk mode, or else TLB handlers
118 		 * will be racy and could produce duplicate entries.
119 		 * Should we panic instead?
120 		 */
121 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
122 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
123 			  book3e_htw_mode != PPC_HTW_E6500,
124 			  "%s: unsupported MMU configuration\n", __func__);
125 	}
126 }
127 #endif
128 
129 #ifdef CONFIG_SMP
130 
131 static char *smt_enabled_cmdline;
132 
133 /* Look for ibm,smt-enabled OF option */
134 void __init check_smt_enabled(void)
135 {
136 	struct device_node *dn;
137 	const char *smt_option;
138 
139 	/* Default to enabling all threads */
140 	smt_enabled_at_boot = threads_per_core;
141 
142 	/* Allow the command line to overrule the OF option */
143 	if (smt_enabled_cmdline) {
144 		if (!strcmp(smt_enabled_cmdline, "on"))
145 			smt_enabled_at_boot = threads_per_core;
146 		else if (!strcmp(smt_enabled_cmdline, "off"))
147 			smt_enabled_at_boot = 0;
148 		else {
149 			int smt;
150 			int rc;
151 
152 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 			if (!rc)
154 				smt_enabled_at_boot =
155 					min(threads_per_core, smt);
156 		}
157 	} else {
158 		dn = of_find_node_by_path("/options");
159 		if (dn) {
160 			smt_option = of_get_property(dn, "ibm,smt-enabled",
161 						     NULL);
162 
163 			if (smt_option) {
164 				if (!strcmp(smt_option, "on"))
165 					smt_enabled_at_boot = threads_per_core;
166 				else if (!strcmp(smt_option, "off"))
167 					smt_enabled_at_boot = 0;
168 			}
169 
170 			of_node_put(dn);
171 		}
172 	}
173 }
174 
175 /* Look for smt-enabled= cmdline option */
176 static int __init early_smt_enabled(char *p)
177 {
178 	smt_enabled_cmdline = p;
179 	return 0;
180 }
181 early_param("smt-enabled", early_smt_enabled);
182 
183 #endif /* CONFIG_SMP */
184 
185 /** Fix up paca fields required for the boot cpu */
186 static void __init fixup_boot_paca(void)
187 {
188 	/* The boot cpu is started */
189 	get_paca()->cpu_start = 1;
190 	/* Allow percpu accesses to work until we setup percpu data */
191 	get_paca()->data_offset = 0;
192 	/* Mark interrupts disabled in PACA */
193 	irq_soft_mask_set(IRQS_DISABLED);
194 }
195 
196 static void __init configure_exceptions(void)
197 {
198 	/*
199 	 * Setup the trampolines from the lowmem exception vectors
200 	 * to the kdump kernel when not using a relocatable kernel.
201 	 */
202 	setup_kdump_trampoline();
203 
204 	/* Under a PAPR hypervisor, we need hypercalls */
205 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
206 		/* Enable AIL if possible */
207 		pseries_enable_reloc_on_exc();
208 
209 		/*
210 		 * Tell the hypervisor that we want our exceptions to
211 		 * be taken in little endian mode.
212 		 *
213 		 * We don't call this for big endian as our calling convention
214 		 * makes us always enter in BE, and the call may fail under
215 		 * some circumstances with kdump.
216 		 */
217 #ifdef __LITTLE_ENDIAN__
218 		pseries_little_endian_exceptions();
219 #endif
220 	} else {
221 		/* Set endian mode using OPAL */
222 		if (firmware_has_feature(FW_FEATURE_OPAL))
223 			opal_configure_cores();
224 
225 		/* AIL on native is done in cpu_ready_for_interrupts() */
226 	}
227 }
228 
229 static void cpu_ready_for_interrupts(void)
230 {
231 	/*
232 	 * Enable AIL if supported, and we are in hypervisor mode. This
233 	 * is called once for every processor.
234 	 *
235 	 * If we are not in hypervisor mode the job is done once for
236 	 * the whole partition in configure_exceptions().
237 	 */
238 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
239 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
240 		unsigned long lpcr = mfspr(SPRN_LPCR);
241 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
242 	}
243 
244 	/*
245 	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
246 	 * early asm init because at that point we haven't updated our
247 	 * CPU features from firmware and device-tree. Here we have,
248 	 * so let's do it.
249 	 */
250 	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
251 		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
252 
253 	/* Set IR and DR in PACA MSR */
254 	get_paca()->kernel_msr = MSR_KERNEL;
255 }
256 
257 unsigned long spr_default_dscr = 0;
258 
259 void __init record_spr_defaults(void)
260 {
261 	if (early_cpu_has_feature(CPU_FTR_DSCR))
262 		spr_default_dscr = mfspr(SPRN_DSCR);
263 }
264 
265 /*
266  * Early initialization entry point. This is called by head.S
267  * with MMU translation disabled. We rely on the "feature" of
268  * the CPU that ignores the top 2 bits of the address in real
269  * mode so we can access kernel globals normally provided we
270  * only toy with things in the RMO region. From here, we do
271  * some early parsing of the device-tree to setup out MEMBLOCK
272  * data structures, and allocate & initialize the hash table
273  * and segment tables so we can start running with translation
274  * enabled.
275  *
276  * It is this function which will call the probe() callback of
277  * the various platform types and copy the matching one to the
278  * global ppc_md structure. Your platform can eventually do
279  * some very early initializations from the probe() routine, but
280  * this is not recommended, be very careful as, for example, the
281  * device-tree is not accessible via normal means at this point.
282  */
283 
284 void __init early_setup(unsigned long dt_ptr)
285 {
286 	static __initdata struct paca_struct boot_paca;
287 
288 	/* -------- printk is _NOT_ safe to use here ! ------- */
289 
290 	/* Try new device tree based feature discovery ... */
291 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
292 		/* Otherwise use the old style CPU table */
293 		identify_cpu(0, mfspr(SPRN_PVR));
294 
295 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
296 	initialise_paca(&boot_paca, 0);
297 	setup_paca(&boot_paca);
298 	fixup_boot_paca();
299 
300 	/* -------- printk is now safe to use ------- */
301 
302 	/* Enable early debugging if any specified (see udbg.h) */
303 	udbg_early_init();
304 
305  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
306 
307 	/*
308 	 * Do early initialization using the flattened device
309 	 * tree, such as retrieving the physical memory map or
310 	 * calculating/retrieving the hash table size.
311 	 */
312 	early_init_devtree(__va(dt_ptr));
313 
314 	/* Now we know the logical id of our boot cpu, setup the paca. */
315 	if (boot_cpuid != 0) {
316 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
317 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
318 	}
319 	setup_paca(paca_ptrs[boot_cpuid]);
320 	fixup_boot_paca();
321 
322 	/*
323 	 * Configure exception handlers. This include setting up trampolines
324 	 * if needed, setting exception endian mode, etc...
325 	 */
326 	configure_exceptions();
327 
328 	/* Apply all the dynamic patching */
329 	apply_feature_fixups();
330 	setup_feature_keys();
331 
332 	/* Initialize the hash table or TLB handling */
333 	early_init_mmu();
334 
335 	/*
336 	 * After firmware and early platform setup code has set things up,
337 	 * we note the SPR values for configurable control/performance
338 	 * registers, and use those as initial defaults.
339 	 */
340 	record_spr_defaults();
341 
342 	/*
343 	 * At this point, we can let interrupts switch to virtual mode
344 	 * (the MMU has been setup), so adjust the MSR in the PACA to
345 	 * have IR and DR set and enable AIL if it exists
346 	 */
347 	cpu_ready_for_interrupts();
348 
349 	/*
350 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
351 	 * will only actually get enabled on the boot cpu much later once
352 	 * ftrace itself has been initialized.
353 	 */
354 	this_cpu_enable_ftrace();
355 
356 	DBG(" <- early_setup()\n");
357 
358 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
359 	/*
360 	 * This needs to be done *last* (after the above DBG() even)
361 	 *
362 	 * Right after we return from this function, we turn on the MMU
363 	 * which means the real-mode access trick that btext does will
364 	 * no longer work, it needs to switch to using a real MMU
365 	 * mapping. This call will ensure that it does
366 	 */
367 	btext_map();
368 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
369 }
370 
371 #ifdef CONFIG_SMP
372 void early_setup_secondary(void)
373 {
374 	/* Mark interrupts disabled in PACA */
375 	irq_soft_mask_set(IRQS_DISABLED);
376 
377 	/* Initialize the hash table or TLB handling */
378 	early_init_mmu_secondary();
379 
380 	/*
381 	 * At this point, we can let interrupts switch to virtual mode
382 	 * (the MMU has been setup), so adjust the MSR in the PACA to
383 	 * have IR and DR set.
384 	 */
385 	cpu_ready_for_interrupts();
386 }
387 
388 #endif /* CONFIG_SMP */
389 
390 void panic_smp_self_stop(void)
391 {
392 	hard_irq_disable();
393 	spin_begin();
394 	while (1)
395 		spin_cpu_relax();
396 }
397 
398 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
399 static bool use_spinloop(void)
400 {
401 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
402 		/*
403 		 * See comments in head_64.S -- not all platforms insert
404 		 * secondaries at __secondary_hold and wait at the spin
405 		 * loop.
406 		 */
407 		if (firmware_has_feature(FW_FEATURE_OPAL))
408 			return false;
409 		return true;
410 	}
411 
412 	/*
413 	 * When book3e boots from kexec, the ePAPR spin table does
414 	 * not get used.
415 	 */
416 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
417 }
418 
419 void smp_release_cpus(void)
420 {
421 	unsigned long *ptr;
422 	int i;
423 
424 	if (!use_spinloop())
425 		return;
426 
427 	DBG(" -> smp_release_cpus()\n");
428 
429 	/* All secondary cpus are spinning on a common spinloop, release them
430 	 * all now so they can start to spin on their individual paca
431 	 * spinloops. For non SMP kernels, the secondary cpus never get out
432 	 * of the common spinloop.
433 	 */
434 
435 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
436 			- PHYSICAL_START);
437 	*ptr = ppc_function_entry(generic_secondary_smp_init);
438 
439 	/* And wait a bit for them to catch up */
440 	for (i = 0; i < 100000; i++) {
441 		mb();
442 		HMT_low();
443 		if (spinning_secondaries == 0)
444 			break;
445 		udelay(1);
446 	}
447 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
448 
449 	DBG(" <- smp_release_cpus()\n");
450 }
451 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
452 
453 /*
454  * Initialize some remaining members of the ppc64_caches and systemcfg
455  * structures
456  * (at least until we get rid of them completely). This is mostly some
457  * cache informations about the CPU that will be used by cache flush
458  * routines and/or provided to userland
459  */
460 
461 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
462 			    u32 bsize, u32 sets)
463 {
464 	info->size = size;
465 	info->sets = sets;
466 	info->line_size = lsize;
467 	info->block_size = bsize;
468 	info->log_block_size = __ilog2(bsize);
469 	if (bsize)
470 		info->blocks_per_page = PAGE_SIZE / bsize;
471 	else
472 		info->blocks_per_page = 0;
473 
474 	if (sets == 0)
475 		info->assoc = 0xffff;
476 	else
477 		info->assoc = size / (sets * lsize);
478 }
479 
480 static bool __init parse_cache_info(struct device_node *np,
481 				    bool icache,
482 				    struct ppc_cache_info *info)
483 {
484 	static const char *ipropnames[] __initdata = {
485 		"i-cache-size",
486 		"i-cache-sets",
487 		"i-cache-block-size",
488 		"i-cache-line-size",
489 	};
490 	static const char *dpropnames[] __initdata = {
491 		"d-cache-size",
492 		"d-cache-sets",
493 		"d-cache-block-size",
494 		"d-cache-line-size",
495 	};
496 	const char **propnames = icache ? ipropnames : dpropnames;
497 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
498 	u32 size, lsize, bsize, sets;
499 	bool success = true;
500 
501 	size = 0;
502 	sets = -1u;
503 	lsize = bsize = cur_cpu_spec->dcache_bsize;
504 	sizep = of_get_property(np, propnames[0], NULL);
505 	if (sizep != NULL)
506 		size = be32_to_cpu(*sizep);
507 	setsp = of_get_property(np, propnames[1], NULL);
508 	if (setsp != NULL)
509 		sets = be32_to_cpu(*setsp);
510 	bsizep = of_get_property(np, propnames[2], NULL);
511 	lsizep = of_get_property(np, propnames[3], NULL);
512 	if (bsizep == NULL)
513 		bsizep = lsizep;
514 	if (lsizep != NULL)
515 		lsize = be32_to_cpu(*lsizep);
516 	if (bsizep != NULL)
517 		bsize = be32_to_cpu(*bsizep);
518 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
519 		success = false;
520 
521 	/*
522 	 * OF is weird .. it represents fully associative caches
523 	 * as "1 way" which doesn't make much sense and doesn't
524 	 * leave room for direct mapped. We'll assume that 0
525 	 * in OF means direct mapped for that reason.
526 	 */
527 	if (sets == 1)
528 		sets = 0;
529 	else if (sets == 0)
530 		sets = 1;
531 
532 	init_cache_info(info, size, lsize, bsize, sets);
533 
534 	return success;
535 }
536 
537 void __init initialize_cache_info(void)
538 {
539 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
540 	u32 pvr;
541 
542 	DBG(" -> initialize_cache_info()\n");
543 
544 	/*
545 	 * All shipping POWER8 machines have a firmware bug that
546 	 * puts incorrect information in the device-tree. This will
547 	 * be (hopefully) fixed for future chips but for now hard
548 	 * code the values if we are running on one of these
549 	 */
550 	pvr = PVR_VER(mfspr(SPRN_PVR));
551 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
552 	    pvr == PVR_POWER8NVL) {
553 						/* size    lsize   blk  sets */
554 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
555 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
556 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
557 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
558 	} else
559 		cpu = of_find_node_by_type(NULL, "cpu");
560 
561 	/*
562 	 * We're assuming *all* of the CPUs have the same
563 	 * d-cache and i-cache sizes... -Peter
564 	 */
565 	if (cpu) {
566 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
567 			DBG("Argh, can't find dcache properties !\n");
568 
569 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
570 			DBG("Argh, can't find icache properties !\n");
571 
572 		/*
573 		 * Try to find the L2 and L3 if any. Assume they are
574 		 * unified and use the D-side properties.
575 		 */
576 		l2 = of_find_next_cache_node(cpu);
577 		of_node_put(cpu);
578 		if (l2) {
579 			parse_cache_info(l2, false, &ppc64_caches.l2);
580 			l3 = of_find_next_cache_node(l2);
581 			of_node_put(l2);
582 		}
583 		if (l3) {
584 			parse_cache_info(l3, false, &ppc64_caches.l3);
585 			of_node_put(l3);
586 		}
587 	}
588 
589 	/* For use by binfmt_elf */
590 	dcache_bsize = ppc64_caches.l1d.block_size;
591 	icache_bsize = ppc64_caches.l1i.block_size;
592 
593 	cur_cpu_spec->dcache_bsize = dcache_bsize;
594 	cur_cpu_spec->icache_bsize = icache_bsize;
595 
596 	DBG(" <- initialize_cache_info()\n");
597 }
598 
599 /*
600  * This returns the limit below which memory accesses to the linear
601  * mapping are guarnateed not to cause an architectural exception (e.g.,
602  * TLB or SLB miss fault).
603  *
604  * This is used to allocate PACAs and various interrupt stacks that
605  * that are accessed early in interrupt handlers that must not cause
606  * re-entrant interrupts.
607  */
608 __init u64 ppc64_bolted_size(void)
609 {
610 #ifdef CONFIG_PPC_BOOK3E
611 	/* Freescale BookE bolts the entire linear mapping */
612 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
613 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
614 		return linear_map_top;
615 	/* Other BookE, we assume the first GB is bolted */
616 	return 1ul << 30;
617 #else
618 	/* BookS radix, does not take faults on linear mapping */
619 	if (early_radix_enabled())
620 		return ULONG_MAX;
621 
622 	/* BookS hash, the first segment is bolted */
623 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
624 		return 1UL << SID_SHIFT_1T;
625 	return 1UL << SID_SHIFT;
626 #endif
627 }
628 
629 static void *__init alloc_stack(unsigned long limit, int cpu)
630 {
631 	unsigned long pa;
632 
633 	pa = memblock_alloc_base_nid(THREAD_SIZE, THREAD_SIZE, limit,
634 					early_cpu_to_node(cpu), MEMBLOCK_NONE);
635 	if (!pa) {
636 		pa = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
637 		if (!pa)
638 			panic("cannot allocate stacks");
639 	}
640 
641 	return __va(pa);
642 }
643 
644 void __init irqstack_early_init(void)
645 {
646 	u64 limit = ppc64_bolted_size();
647 	unsigned int i;
648 
649 	/*
650 	 * Interrupt stacks must be in the first segment since we
651 	 * cannot afford to take SLB misses on them. They are not
652 	 * accessed in realmode.
653 	 */
654 	for_each_possible_cpu(i) {
655 		softirq_ctx[i] = alloc_stack(limit, i);
656 		hardirq_ctx[i] = alloc_stack(limit, i);
657 	}
658 }
659 
660 #ifdef CONFIG_PPC_BOOK3E
661 void __init exc_lvl_early_init(void)
662 {
663 	unsigned int i;
664 
665 	for_each_possible_cpu(i) {
666 		void *sp;
667 
668 		sp = alloc_stack(ULONG_MAX, i);
669 		critirq_ctx[i] = sp;
670 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
671 
672 		sp = alloc_stack(ULONG_MAX, i);
673 		dbgirq_ctx[i] = sp;
674 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
675 
676 		sp = alloc_stack(ULONG_MAX, i);
677 		mcheckirq_ctx[i] = sp;
678 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
679 	}
680 
681 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
682 		patch_exception(0x040, exc_debug_debug_book3e);
683 }
684 #endif
685 
686 /*
687  * Emergency stacks are used for a range of things, from asynchronous
688  * NMIs (system reset, machine check) to synchronous, process context.
689  * We set preempt_count to zero, even though that isn't necessarily correct. To
690  * get the right value we'd need to copy it from the previous thread_info, but
691  * doing that might fault causing more problems.
692  * TODO: what to do with accounting?
693  */
694 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
695 {
696 	ti->task = NULL;
697 	ti->cpu = cpu;
698 	ti->preempt_count = 0;
699 	ti->local_flags = 0;
700 	ti->flags = 0;
701 	klp_init_thread_info(ti);
702 }
703 
704 /*
705  * Stack space used when we detect a bad kernel stack pointer, and
706  * early in SMP boots before relocation is enabled. Exclusive emergency
707  * stack for machine checks.
708  */
709 void __init emergency_stack_init(void)
710 {
711 	u64 limit;
712 	unsigned int i;
713 
714 	/*
715 	 * Emergency stacks must be under 256MB, we cannot afford to take
716 	 * SLB misses on them. The ABI also requires them to be 128-byte
717 	 * aligned.
718 	 *
719 	 * Since we use these as temporary stacks during secondary CPU
720 	 * bringup, machine check, system reset, and HMI, we need to get
721 	 * at them in real mode. This means they must also be within the RMO
722 	 * region.
723 	 *
724 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
725 	 * initialized in kernel/irq.c. These are initialized here in order
726 	 * to have emergency stacks available as early as possible.
727 	 */
728 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
729 
730 	for_each_possible_cpu(i) {
731 		struct thread_info *ti;
732 
733 		ti = alloc_stack(limit, i);
734 		memset(ti, 0, THREAD_SIZE);
735 		emerg_stack_init_thread_info(ti, i);
736 		paca_ptrs[i]->emergency_sp = (void *)ti + THREAD_SIZE;
737 
738 #ifdef CONFIG_PPC_BOOK3S_64
739 		/* emergency stack for NMI exception handling. */
740 		ti = alloc_stack(limit, i);
741 		memset(ti, 0, THREAD_SIZE);
742 		emerg_stack_init_thread_info(ti, i);
743 		paca_ptrs[i]->nmi_emergency_sp = (void *)ti + THREAD_SIZE;
744 
745 		/* emergency stack for machine check exception handling. */
746 		ti = alloc_stack(limit, i);
747 		memset(ti, 0, THREAD_SIZE);
748 		emerg_stack_init_thread_info(ti, i);
749 		paca_ptrs[i]->mc_emergency_sp = (void *)ti + THREAD_SIZE;
750 #endif
751 	}
752 }
753 
754 #ifdef CONFIG_SMP
755 #define PCPU_DYN_SIZE		()
756 
757 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
758 {
759 	return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
760 				    __pa(MAX_DMA_ADDRESS));
761 }
762 
763 static void __init pcpu_fc_free(void *ptr, size_t size)
764 {
765 	free_bootmem(__pa(ptr), size);
766 }
767 
768 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
769 {
770 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
771 		return LOCAL_DISTANCE;
772 	else
773 		return REMOTE_DISTANCE;
774 }
775 
776 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
777 EXPORT_SYMBOL(__per_cpu_offset);
778 
779 void __init setup_per_cpu_areas(void)
780 {
781 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
782 	size_t atom_size;
783 	unsigned long delta;
784 	unsigned int cpu;
785 	int rc;
786 
787 	/*
788 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
789 	 * to group units.  For larger mappings, use 1M atom which
790 	 * should be large enough to contain a number of units.
791 	 */
792 	if (mmu_linear_psize == MMU_PAGE_4K)
793 		atom_size = PAGE_SIZE;
794 	else
795 		atom_size = 1 << 20;
796 
797 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
798 				    pcpu_fc_alloc, pcpu_fc_free);
799 	if (rc < 0)
800 		panic("cannot initialize percpu area (err=%d)", rc);
801 
802 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
803 	for_each_possible_cpu(cpu) {
804                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
805 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
806 	}
807 }
808 #endif
809 
810 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
811 unsigned long memory_block_size_bytes(void)
812 {
813 	if (ppc_md.memory_block_size)
814 		return ppc_md.memory_block_size();
815 
816 	return MIN_MEMORY_BLOCK_SIZE;
817 }
818 #endif
819 
820 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
821 struct ppc_pci_io ppc_pci_io;
822 EXPORT_SYMBOL(ppc_pci_io);
823 #endif
824 
825 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
826 u64 hw_nmi_get_sample_period(int watchdog_thresh)
827 {
828 	return ppc_proc_freq * watchdog_thresh;
829 }
830 #endif
831 
832 /*
833  * The perf based hardlockup detector breaks PMU event based branches, so
834  * disable it by default. Book3S has a soft-nmi hardlockup detector based
835  * on the decrementer interrupt, so it does not suffer from this problem.
836  *
837  * It is likely to get false positives in VM guests, so disable it there
838  * by default too.
839  */
840 static int __init disable_hardlockup_detector(void)
841 {
842 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
843 	hardlockup_detector_disable();
844 #else
845 	if (firmware_has_feature(FW_FEATURE_LPAR))
846 		hardlockup_detector_disable();
847 #endif
848 
849 	return 0;
850 }
851 early_initcall(disable_hardlockup_detector);
852 
853 #ifdef CONFIG_PPC_BOOK3S_64
854 static enum l1d_flush_type enabled_flush_types;
855 static void *l1d_flush_fallback_area;
856 static bool no_rfi_flush;
857 bool rfi_flush;
858 
859 static int __init handle_no_rfi_flush(char *p)
860 {
861 	pr_info("rfi-flush: disabled on command line.");
862 	no_rfi_flush = true;
863 	return 0;
864 }
865 early_param("no_rfi_flush", handle_no_rfi_flush);
866 
867 /*
868  * The RFI flush is not KPTI, but because users will see doco that says to use
869  * nopti we hijack that option here to also disable the RFI flush.
870  */
871 static int __init handle_no_pti(char *p)
872 {
873 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
874 	handle_no_rfi_flush(NULL);
875 	return 0;
876 }
877 early_param("nopti", handle_no_pti);
878 
879 static void do_nothing(void *unused)
880 {
881 	/*
882 	 * We don't need to do the flush explicitly, just enter+exit kernel is
883 	 * sufficient, the RFI exit handlers will do the right thing.
884 	 */
885 }
886 
887 void rfi_flush_enable(bool enable)
888 {
889 	if (enable) {
890 		do_rfi_flush_fixups(enabled_flush_types);
891 		on_each_cpu(do_nothing, NULL, 1);
892 	} else
893 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
894 
895 	rfi_flush = enable;
896 }
897 
898 static void __ref init_fallback_flush(void)
899 {
900 	u64 l1d_size, limit;
901 	int cpu;
902 
903 	/* Only allocate the fallback flush area once (at boot time). */
904 	if (l1d_flush_fallback_area)
905 		return;
906 
907 	l1d_size = ppc64_caches.l1d.size;
908 
909 	/*
910 	 * If there is no d-cache-size property in the device tree, l1d_size
911 	 * could be zero. That leads to the loop in the asm wrapping around to
912 	 * 2^64-1, and then walking off the end of the fallback area and
913 	 * eventually causing a page fault which is fatal. Just default to
914 	 * something vaguely sane.
915 	 */
916 	if (!l1d_size)
917 		l1d_size = (64 * 1024);
918 
919 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
920 
921 	/*
922 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
923 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
924 	 * reliably avoid the prefetcher.
925 	 */
926 	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
927 	memset(l1d_flush_fallback_area, 0, l1d_size * 2);
928 
929 	for_each_possible_cpu(cpu) {
930 		struct paca_struct *paca = paca_ptrs[cpu];
931 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
932 		paca->l1d_flush_size = l1d_size;
933 	}
934 }
935 
936 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
937 {
938 	if (types & L1D_FLUSH_FALLBACK) {
939 		pr_info("rfi-flush: fallback displacement flush available\n");
940 		init_fallback_flush();
941 	}
942 
943 	if (types & L1D_FLUSH_ORI)
944 		pr_info("rfi-flush: ori type flush available\n");
945 
946 	if (types & L1D_FLUSH_MTTRIG)
947 		pr_info("rfi-flush: mttrig type flush available\n");
948 
949 	enabled_flush_types = types;
950 
951 	if (!no_rfi_flush)
952 		rfi_flush_enable(enable);
953 }
954 
955 #ifdef CONFIG_DEBUG_FS
956 static int rfi_flush_set(void *data, u64 val)
957 {
958 	bool enable;
959 
960 	if (val == 1)
961 		enable = true;
962 	else if (val == 0)
963 		enable = false;
964 	else
965 		return -EINVAL;
966 
967 	/* Only do anything if we're changing state */
968 	if (enable != rfi_flush)
969 		rfi_flush_enable(enable);
970 
971 	return 0;
972 }
973 
974 static int rfi_flush_get(void *data, u64 *val)
975 {
976 	*val = rfi_flush ? 1 : 0;
977 	return 0;
978 }
979 
980 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
981 
982 static __init int rfi_flush_debugfs_init(void)
983 {
984 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
985 	return 0;
986 }
987 device_initcall(rfi_flush_debugfs_init);
988 #endif
989 #endif /* CONFIG_PPC_BOOK3S_64 */
990