1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Common boot and setup code. 5 * 6 * Copyright (C) 2001 PPC64 Team, IBM Corp 7 */ 8 9 #include <linux/export.h> 10 #include <linux/string.h> 11 #include <linux/sched.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/reboot.h> 15 #include <linux/delay.h> 16 #include <linux/initrd.h> 17 #include <linux/seq_file.h> 18 #include <linux/ioport.h> 19 #include <linux/console.h> 20 #include <linux/utsname.h> 21 #include <linux/tty.h> 22 #include <linux/root_dev.h> 23 #include <linux/notifier.h> 24 #include <linux/cpu.h> 25 #include <linux/unistd.h> 26 #include <linux/serial.h> 27 #include <linux/serial_8250.h> 28 #include <linux/memblock.h> 29 #include <linux/pci.h> 30 #include <linux/lockdep.h> 31 #include <linux/memory.h> 32 #include <linux/nmi.h> 33 #include <linux/pgtable.h> 34 35 #include <asm/debugfs.h> 36 #include <asm/io.h> 37 #include <asm/kdump.h> 38 #include <asm/prom.h> 39 #include <asm/processor.h> 40 #include <asm/smp.h> 41 #include <asm/elf.h> 42 #include <asm/machdep.h> 43 #include <asm/paca.h> 44 #include <asm/time.h> 45 #include <asm/cputable.h> 46 #include <asm/dt_cpu_ftrs.h> 47 #include <asm/sections.h> 48 #include <asm/btext.h> 49 #include <asm/nvram.h> 50 #include <asm/setup.h> 51 #include <asm/rtas.h> 52 #include <asm/iommu.h> 53 #include <asm/serial.h> 54 #include <asm/cache.h> 55 #include <asm/page.h> 56 #include <asm/mmu.h> 57 #include <asm/firmware.h> 58 #include <asm/xmon.h> 59 #include <asm/udbg.h> 60 #include <asm/kexec.h> 61 #include <asm/code-patching.h> 62 #include <asm/livepatch.h> 63 #include <asm/opal.h> 64 #include <asm/cputhreads.h> 65 #include <asm/hw_irq.h> 66 #include <asm/feature-fixups.h> 67 #include <asm/kup.h> 68 #include <asm/early_ioremap.h> 69 #include <asm/pgalloc.h> 70 71 #include "setup.h" 72 73 int spinning_secondaries; 74 u64 ppc64_pft_size; 75 76 struct ppc64_caches ppc64_caches = { 77 .l1d = { 78 .block_size = 0x40, 79 .log_block_size = 6, 80 }, 81 .l1i = { 82 .block_size = 0x40, 83 .log_block_size = 6 84 }, 85 }; 86 EXPORT_SYMBOL_GPL(ppc64_caches); 87 88 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 89 void __init setup_tlb_core_data(void) 90 { 91 int cpu; 92 93 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 94 95 for_each_possible_cpu(cpu) { 96 int first = cpu_first_thread_sibling(cpu); 97 98 /* 99 * If we boot via kdump on a non-primary thread, 100 * make sure we point at the thread that actually 101 * set up this TLB. 102 */ 103 if (cpu_first_thread_sibling(boot_cpuid) == first) 104 first = boot_cpuid; 105 106 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd; 107 108 /* 109 * If we have threads, we need either tlbsrx. 110 * or e6500 tablewalk mode, or else TLB handlers 111 * will be racy and could produce duplicate entries. 112 * Should we panic instead? 113 */ 114 WARN_ONCE(smt_enabled_at_boot >= 2 && 115 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 116 book3e_htw_mode != PPC_HTW_E6500, 117 "%s: unsupported MMU configuration\n", __func__); 118 } 119 } 120 #endif 121 122 #ifdef CONFIG_SMP 123 124 static char *smt_enabled_cmdline; 125 126 /* Look for ibm,smt-enabled OF option */ 127 void __init check_smt_enabled(void) 128 { 129 struct device_node *dn; 130 const char *smt_option; 131 132 /* Default to enabling all threads */ 133 smt_enabled_at_boot = threads_per_core; 134 135 /* Allow the command line to overrule the OF option */ 136 if (smt_enabled_cmdline) { 137 if (!strcmp(smt_enabled_cmdline, "on")) 138 smt_enabled_at_boot = threads_per_core; 139 else if (!strcmp(smt_enabled_cmdline, "off")) 140 smt_enabled_at_boot = 0; 141 else { 142 int smt; 143 int rc; 144 145 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 146 if (!rc) 147 smt_enabled_at_boot = 148 min(threads_per_core, smt); 149 } 150 } else { 151 dn = of_find_node_by_path("/options"); 152 if (dn) { 153 smt_option = of_get_property(dn, "ibm,smt-enabled", 154 NULL); 155 156 if (smt_option) { 157 if (!strcmp(smt_option, "on")) 158 smt_enabled_at_boot = threads_per_core; 159 else if (!strcmp(smt_option, "off")) 160 smt_enabled_at_boot = 0; 161 } 162 163 of_node_put(dn); 164 } 165 } 166 } 167 168 /* Look for smt-enabled= cmdline option */ 169 static int __init early_smt_enabled(char *p) 170 { 171 smt_enabled_cmdline = p; 172 return 0; 173 } 174 early_param("smt-enabled", early_smt_enabled); 175 176 #endif /* CONFIG_SMP */ 177 178 /** Fix up paca fields required for the boot cpu */ 179 static void __init fixup_boot_paca(void) 180 { 181 /* The boot cpu is started */ 182 get_paca()->cpu_start = 1; 183 /* Allow percpu accesses to work until we setup percpu data */ 184 get_paca()->data_offset = 0; 185 /* Mark interrupts disabled in PACA */ 186 irq_soft_mask_set(IRQS_DISABLED); 187 } 188 189 static void __init configure_exceptions(void) 190 { 191 /* 192 * Setup the trampolines from the lowmem exception vectors 193 * to the kdump kernel when not using a relocatable kernel. 194 */ 195 setup_kdump_trampoline(); 196 197 /* Under a PAPR hypervisor, we need hypercalls */ 198 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 199 /* Enable AIL if possible */ 200 if (!pseries_enable_reloc_on_exc()) { 201 init_task.thread.fscr &= ~FSCR_SCV; 202 cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV; 203 } 204 205 /* 206 * Tell the hypervisor that we want our exceptions to 207 * be taken in little endian mode. 208 * 209 * We don't call this for big endian as our calling convention 210 * makes us always enter in BE, and the call may fail under 211 * some circumstances with kdump. 212 */ 213 #ifdef __LITTLE_ENDIAN__ 214 pseries_little_endian_exceptions(); 215 #endif 216 } else { 217 /* Set endian mode using OPAL */ 218 if (firmware_has_feature(FW_FEATURE_OPAL)) 219 opal_configure_cores(); 220 221 /* AIL on native is done in cpu_ready_for_interrupts() */ 222 } 223 } 224 225 static void cpu_ready_for_interrupts(void) 226 { 227 /* 228 * Enable AIL if supported, and we are in hypervisor mode. This 229 * is called once for every processor. 230 * 231 * If we are not in hypervisor mode the job is done once for 232 * the whole partition in configure_exceptions(). 233 */ 234 if (cpu_has_feature(CPU_FTR_HVMODE) && 235 cpu_has_feature(CPU_FTR_ARCH_207S)) { 236 unsigned long lpcr = mfspr(SPRN_LPCR); 237 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 238 } 239 240 /* 241 * Set HFSCR:TM based on CPU features: 242 * In the special case of TM no suspend (P9N DD2.1), Linux is 243 * told TM is off via the dt-ftrs but told to (partially) use 244 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM] 245 * will be off from dt-ftrs but we need to turn it on for the 246 * no suspend case. 247 */ 248 if (cpu_has_feature(CPU_FTR_HVMODE)) { 249 if (cpu_has_feature(CPU_FTR_TM_COMP)) 250 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM); 251 else 252 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); 253 } 254 255 /* Set IR and DR in PACA MSR */ 256 get_paca()->kernel_msr = MSR_KERNEL; 257 } 258 259 unsigned long spr_default_dscr = 0; 260 261 void __init record_spr_defaults(void) 262 { 263 if (early_cpu_has_feature(CPU_FTR_DSCR)) 264 spr_default_dscr = mfspr(SPRN_DSCR); 265 } 266 267 /* 268 * Early initialization entry point. This is called by head.S 269 * with MMU translation disabled. We rely on the "feature" of 270 * the CPU that ignores the top 2 bits of the address in real 271 * mode so we can access kernel globals normally provided we 272 * only toy with things in the RMO region. From here, we do 273 * some early parsing of the device-tree to setup out MEMBLOCK 274 * data structures, and allocate & initialize the hash table 275 * and segment tables so we can start running with translation 276 * enabled. 277 * 278 * It is this function which will call the probe() callback of 279 * the various platform types and copy the matching one to the 280 * global ppc_md structure. Your platform can eventually do 281 * some very early initializations from the probe() routine, but 282 * this is not recommended, be very careful as, for example, the 283 * device-tree is not accessible via normal means at this point. 284 */ 285 286 void __init early_setup(unsigned long dt_ptr) 287 { 288 static __initdata struct paca_struct boot_paca; 289 290 /* -------- printk is _NOT_ safe to use here ! ------- */ 291 292 /* 293 * Assume we're on cpu 0 for now. 294 * 295 * We need to load a PACA very early for a few reasons. 296 * 297 * The stack protector canary is stored in the paca, so as soon as we 298 * call any stack protected code we need r13 pointing somewhere valid. 299 * 300 * If we are using kcov it will call in_task() in its instrumentation, 301 * which relies on the current task from the PACA. 302 * 303 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as 304 * printk(), which can trigger both stack protector and kcov. 305 * 306 * percpu variables and spin locks also use the paca. 307 * 308 * So set up a temporary paca. It will be replaced below once we know 309 * what CPU we are on. 310 */ 311 initialise_paca(&boot_paca, 0); 312 setup_paca(&boot_paca); 313 fixup_boot_paca(); 314 315 /* -------- printk is now safe to use ------- */ 316 317 /* Try new device tree based feature discovery ... */ 318 if (!dt_cpu_ftrs_init(__va(dt_ptr))) 319 /* Otherwise use the old style CPU table */ 320 identify_cpu(0, mfspr(SPRN_PVR)); 321 322 /* Enable early debugging if any specified (see udbg.h) */ 323 udbg_early_init(); 324 325 udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr); 326 327 /* 328 * Do early initialization using the flattened device 329 * tree, such as retrieving the physical memory map or 330 * calculating/retrieving the hash table size. 331 */ 332 early_init_devtree(__va(dt_ptr)); 333 334 /* Now we know the logical id of our boot cpu, setup the paca. */ 335 if (boot_cpuid != 0) { 336 /* Poison paca_ptrs[0] again if it's not the boot cpu */ 337 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0])); 338 } 339 setup_paca(paca_ptrs[boot_cpuid]); 340 fixup_boot_paca(); 341 342 /* 343 * Configure exception handlers. This include setting up trampolines 344 * if needed, setting exception endian mode, etc... 345 */ 346 configure_exceptions(); 347 348 /* 349 * Configure Kernel Userspace Protection. This needs to happen before 350 * feature fixups for platforms that implement this using features. 351 */ 352 setup_kup(); 353 354 /* Apply all the dynamic patching */ 355 apply_feature_fixups(); 356 setup_feature_keys(); 357 358 early_ioremap_setup(); 359 360 /* Initialize the hash table or TLB handling */ 361 early_init_mmu(); 362 363 /* 364 * After firmware and early platform setup code has set things up, 365 * we note the SPR values for configurable control/performance 366 * registers, and use those as initial defaults. 367 */ 368 record_spr_defaults(); 369 370 /* 371 * At this point, we can let interrupts switch to virtual mode 372 * (the MMU has been setup), so adjust the MSR in the PACA to 373 * have IR and DR set and enable AIL if it exists 374 */ 375 cpu_ready_for_interrupts(); 376 377 /* 378 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it 379 * will only actually get enabled on the boot cpu much later once 380 * ftrace itself has been initialized. 381 */ 382 this_cpu_enable_ftrace(); 383 384 udbg_printf(" <- %s()\n", __func__); 385 386 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 387 /* 388 * This needs to be done *last* (after the above udbg_printf() even) 389 * 390 * Right after we return from this function, we turn on the MMU 391 * which means the real-mode access trick that btext does will 392 * no longer work, it needs to switch to using a real MMU 393 * mapping. This call will ensure that it does 394 */ 395 btext_map(); 396 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 397 } 398 399 #ifdef CONFIG_SMP 400 void early_setup_secondary(void) 401 { 402 /* Mark interrupts disabled in PACA */ 403 irq_soft_mask_set(IRQS_DISABLED); 404 405 /* Initialize the hash table or TLB handling */ 406 early_init_mmu_secondary(); 407 408 /* Perform any KUP setup that is per-cpu */ 409 setup_kup(); 410 411 /* 412 * At this point, we can let interrupts switch to virtual mode 413 * (the MMU has been setup), so adjust the MSR in the PACA to 414 * have IR and DR set. 415 */ 416 cpu_ready_for_interrupts(); 417 } 418 419 #endif /* CONFIG_SMP */ 420 421 void panic_smp_self_stop(void) 422 { 423 hard_irq_disable(); 424 spin_begin(); 425 while (1) 426 spin_cpu_relax(); 427 } 428 429 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 430 static bool use_spinloop(void) 431 { 432 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 433 /* 434 * See comments in head_64.S -- not all platforms insert 435 * secondaries at __secondary_hold and wait at the spin 436 * loop. 437 */ 438 if (firmware_has_feature(FW_FEATURE_OPAL)) 439 return false; 440 return true; 441 } 442 443 /* 444 * When book3e boots from kexec, the ePAPR spin table does 445 * not get used. 446 */ 447 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 448 } 449 450 void smp_release_cpus(void) 451 { 452 unsigned long *ptr; 453 int i; 454 455 if (!use_spinloop()) 456 return; 457 458 /* All secondary cpus are spinning on a common spinloop, release them 459 * all now so they can start to spin on their individual paca 460 * spinloops. For non SMP kernels, the secondary cpus never get out 461 * of the common spinloop. 462 */ 463 464 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 465 - PHYSICAL_START); 466 *ptr = ppc_function_entry(generic_secondary_smp_init); 467 468 /* And wait a bit for them to catch up */ 469 for (i = 0; i < 100000; i++) { 470 mb(); 471 HMT_low(); 472 if (spinning_secondaries == 0) 473 break; 474 udelay(1); 475 } 476 pr_debug("spinning_secondaries = %d\n", spinning_secondaries); 477 } 478 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 479 480 /* 481 * Initialize some remaining members of the ppc64_caches and systemcfg 482 * structures 483 * (at least until we get rid of them completely). This is mostly some 484 * cache informations about the CPU that will be used by cache flush 485 * routines and/or provided to userland 486 */ 487 488 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 489 u32 bsize, u32 sets) 490 { 491 info->size = size; 492 info->sets = sets; 493 info->line_size = lsize; 494 info->block_size = bsize; 495 info->log_block_size = __ilog2(bsize); 496 if (bsize) 497 info->blocks_per_page = PAGE_SIZE / bsize; 498 else 499 info->blocks_per_page = 0; 500 501 if (sets == 0) 502 info->assoc = 0xffff; 503 else 504 info->assoc = size / (sets * lsize); 505 } 506 507 static bool __init parse_cache_info(struct device_node *np, 508 bool icache, 509 struct ppc_cache_info *info) 510 { 511 static const char *ipropnames[] __initdata = { 512 "i-cache-size", 513 "i-cache-sets", 514 "i-cache-block-size", 515 "i-cache-line-size", 516 }; 517 static const char *dpropnames[] __initdata = { 518 "d-cache-size", 519 "d-cache-sets", 520 "d-cache-block-size", 521 "d-cache-line-size", 522 }; 523 const char **propnames = icache ? ipropnames : dpropnames; 524 const __be32 *sizep, *lsizep, *bsizep, *setsp; 525 u32 size, lsize, bsize, sets; 526 bool success = true; 527 528 size = 0; 529 sets = -1u; 530 lsize = bsize = cur_cpu_spec->dcache_bsize; 531 sizep = of_get_property(np, propnames[0], NULL); 532 if (sizep != NULL) 533 size = be32_to_cpu(*sizep); 534 setsp = of_get_property(np, propnames[1], NULL); 535 if (setsp != NULL) 536 sets = be32_to_cpu(*setsp); 537 bsizep = of_get_property(np, propnames[2], NULL); 538 lsizep = of_get_property(np, propnames[3], NULL); 539 if (bsizep == NULL) 540 bsizep = lsizep; 541 if (lsizep == NULL) 542 lsizep = bsizep; 543 if (lsizep != NULL) 544 lsize = be32_to_cpu(*lsizep); 545 if (bsizep != NULL) 546 bsize = be32_to_cpu(*bsizep); 547 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 548 success = false; 549 550 /* 551 * OF is weird .. it represents fully associative caches 552 * as "1 way" which doesn't make much sense and doesn't 553 * leave room for direct mapped. We'll assume that 0 554 * in OF means direct mapped for that reason. 555 */ 556 if (sets == 1) 557 sets = 0; 558 else if (sets == 0) 559 sets = 1; 560 561 init_cache_info(info, size, lsize, bsize, sets); 562 563 return success; 564 } 565 566 void __init initialize_cache_info(void) 567 { 568 struct device_node *cpu = NULL, *l2, *l3 = NULL; 569 u32 pvr; 570 571 /* 572 * All shipping POWER8 machines have a firmware bug that 573 * puts incorrect information in the device-tree. This will 574 * be (hopefully) fixed for future chips but for now hard 575 * code the values if we are running on one of these 576 */ 577 pvr = PVR_VER(mfspr(SPRN_PVR)); 578 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 579 pvr == PVR_POWER8NVL) { 580 /* size lsize blk sets */ 581 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 582 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 583 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 584 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 585 } else 586 cpu = of_find_node_by_type(NULL, "cpu"); 587 588 /* 589 * We're assuming *all* of the CPUs have the same 590 * d-cache and i-cache sizes... -Peter 591 */ 592 if (cpu) { 593 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 594 pr_warn("Argh, can't find dcache properties !\n"); 595 596 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 597 pr_warn("Argh, can't find icache properties !\n"); 598 599 /* 600 * Try to find the L2 and L3 if any. Assume they are 601 * unified and use the D-side properties. 602 */ 603 l2 = of_find_next_cache_node(cpu); 604 of_node_put(cpu); 605 if (l2) { 606 parse_cache_info(l2, false, &ppc64_caches.l2); 607 l3 = of_find_next_cache_node(l2); 608 of_node_put(l2); 609 } 610 if (l3) { 611 parse_cache_info(l3, false, &ppc64_caches.l3); 612 of_node_put(l3); 613 } 614 } 615 616 /* For use by binfmt_elf */ 617 dcache_bsize = ppc64_caches.l1d.block_size; 618 icache_bsize = ppc64_caches.l1i.block_size; 619 620 cur_cpu_spec->dcache_bsize = dcache_bsize; 621 cur_cpu_spec->icache_bsize = icache_bsize; 622 } 623 624 /* 625 * This returns the limit below which memory accesses to the linear 626 * mapping are guarnateed not to cause an architectural exception (e.g., 627 * TLB or SLB miss fault). 628 * 629 * This is used to allocate PACAs and various interrupt stacks that 630 * that are accessed early in interrupt handlers that must not cause 631 * re-entrant interrupts. 632 */ 633 __init u64 ppc64_bolted_size(void) 634 { 635 #ifdef CONFIG_PPC_BOOK3E 636 /* Freescale BookE bolts the entire linear mapping */ 637 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ 638 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 639 return linear_map_top; 640 /* Other BookE, we assume the first GB is bolted */ 641 return 1ul << 30; 642 #else 643 /* BookS radix, does not take faults on linear mapping */ 644 if (early_radix_enabled()) 645 return ULONG_MAX; 646 647 /* BookS hash, the first segment is bolted */ 648 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) 649 return 1UL << SID_SHIFT_1T; 650 return 1UL << SID_SHIFT; 651 #endif 652 } 653 654 static void *__init alloc_stack(unsigned long limit, int cpu) 655 { 656 void *ptr; 657 658 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16); 659 660 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN, 661 MEMBLOCK_LOW_LIMIT, limit, 662 early_cpu_to_node(cpu)); 663 if (!ptr) 664 panic("cannot allocate stacks"); 665 666 return ptr; 667 } 668 669 void __init irqstack_early_init(void) 670 { 671 u64 limit = ppc64_bolted_size(); 672 unsigned int i; 673 674 /* 675 * Interrupt stacks must be in the first segment since we 676 * cannot afford to take SLB misses on them. They are not 677 * accessed in realmode. 678 */ 679 for_each_possible_cpu(i) { 680 softirq_ctx[i] = alloc_stack(limit, i); 681 hardirq_ctx[i] = alloc_stack(limit, i); 682 } 683 } 684 685 #ifdef CONFIG_PPC_BOOK3E 686 void __init exc_lvl_early_init(void) 687 { 688 unsigned int i; 689 690 for_each_possible_cpu(i) { 691 void *sp; 692 693 sp = alloc_stack(ULONG_MAX, i); 694 critirq_ctx[i] = sp; 695 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE; 696 697 sp = alloc_stack(ULONG_MAX, i); 698 dbgirq_ctx[i] = sp; 699 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE; 700 701 sp = alloc_stack(ULONG_MAX, i); 702 mcheckirq_ctx[i] = sp; 703 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE; 704 } 705 706 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 707 patch_exception(0x040, exc_debug_debug_book3e); 708 } 709 #endif 710 711 /* 712 * Stack space used when we detect a bad kernel stack pointer, and 713 * early in SMP boots before relocation is enabled. Exclusive emergency 714 * stack for machine checks. 715 */ 716 void __init emergency_stack_init(void) 717 { 718 u64 limit, mce_limit; 719 unsigned int i; 720 721 /* 722 * Emergency stacks must be under 256MB, we cannot afford to take 723 * SLB misses on them. The ABI also requires them to be 128-byte 724 * aligned. 725 * 726 * Since we use these as temporary stacks during secondary CPU 727 * bringup, machine check, system reset, and HMI, we need to get 728 * at them in real mode. This means they must also be within the RMO 729 * region. 730 * 731 * The IRQ stacks allocated elsewhere in this file are zeroed and 732 * initialized in kernel/irq.c. These are initialized here in order 733 * to have emergency stacks available as early as possible. 734 */ 735 limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size); 736 737 /* 738 * Machine check on pseries calls rtas, but can't use the static 739 * rtas_args due to a machine check hitting while the lock is held. 740 * rtas args have to be under 4GB, so the machine check stack is 741 * limited to 4GB so args can be put on stack. 742 */ 743 if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G) 744 mce_limit = SZ_4G; 745 746 for_each_possible_cpu(i) { 747 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; 748 749 #ifdef CONFIG_PPC_BOOK3S_64 750 /* emergency stack for NMI exception handling. */ 751 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; 752 753 /* emergency stack for machine check exception handling. */ 754 paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE; 755 #endif 756 } 757 } 758 759 #ifdef CONFIG_SMP 760 /** 761 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu 762 * @cpu: cpu to allocate for 763 * @size: size allocation in bytes 764 * @align: alignment 765 * 766 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper 767 * does the right thing for NUMA regardless of the current 768 * configuration. 769 * 770 * RETURNS: 771 * Pointer to the allocated area on success, NULL on failure. 772 */ 773 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, 774 size_t align) 775 { 776 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 777 #ifdef CONFIG_NEED_MULTIPLE_NODES 778 int node = early_cpu_to_node(cpu); 779 void *ptr; 780 781 if (!node_online(node) || !NODE_DATA(node)) { 782 ptr = memblock_alloc_from(size, align, goal); 783 pr_info("cpu %d has no node %d or node-local memory\n", 784 cpu, node); 785 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", 786 cpu, size, __pa(ptr)); 787 } else { 788 ptr = memblock_alloc_try_nid(size, align, goal, 789 MEMBLOCK_ALLOC_ACCESSIBLE, node); 790 pr_debug("per cpu data for cpu%d %lu bytes on node%d at " 791 "%016lx\n", cpu, size, node, __pa(ptr)); 792 } 793 return ptr; 794 #else 795 return memblock_alloc_from(size, align, goal); 796 #endif 797 } 798 799 static void __init pcpu_free_bootmem(void *ptr, size_t size) 800 { 801 memblock_free(__pa(ptr), size); 802 } 803 804 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 805 { 806 if (early_cpu_to_node(from) == early_cpu_to_node(to)) 807 return LOCAL_DISTANCE; 808 else 809 return REMOTE_DISTANCE; 810 } 811 812 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 813 EXPORT_SYMBOL(__per_cpu_offset); 814 815 static void __init pcpu_populate_pte(unsigned long addr) 816 { 817 pgd_t *pgd = pgd_offset_k(addr); 818 p4d_t *p4d; 819 pud_t *pud; 820 pmd_t *pmd; 821 822 p4d = p4d_offset(pgd, addr); 823 if (p4d_none(*p4d)) { 824 pud_t *new; 825 826 new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE); 827 if (!new) 828 goto err_alloc; 829 p4d_populate(&init_mm, p4d, new); 830 } 831 832 pud = pud_offset(p4d, addr); 833 if (pud_none(*pud)) { 834 pmd_t *new; 835 836 new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE); 837 if (!new) 838 goto err_alloc; 839 pud_populate(&init_mm, pud, new); 840 } 841 842 pmd = pmd_offset(pud, addr); 843 if (!pmd_present(*pmd)) { 844 pte_t *new; 845 846 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE); 847 if (!new) 848 goto err_alloc; 849 pmd_populate_kernel(&init_mm, pmd, new); 850 } 851 852 return; 853 854 err_alloc: 855 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n", 856 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 857 } 858 859 860 void __init setup_per_cpu_areas(void) 861 { 862 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 863 size_t atom_size; 864 unsigned long delta; 865 unsigned int cpu; 866 int rc = -EINVAL; 867 868 /* 869 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 870 * to group units. For larger mappings, use 1M atom which 871 * should be large enough to contain a number of units. 872 */ 873 if (mmu_linear_psize == MMU_PAGE_4K) 874 atom_size = PAGE_SIZE; 875 else 876 atom_size = 1 << 20; 877 878 if (pcpu_chosen_fc != PCPU_FC_PAGE) { 879 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 880 pcpu_alloc_bootmem, pcpu_free_bootmem); 881 if (rc) 882 pr_warn("PERCPU: %s allocator failed (%d), " 883 "falling back to page size\n", 884 pcpu_fc_names[pcpu_chosen_fc], rc); 885 } 886 887 if (rc < 0) 888 rc = pcpu_page_first_chunk(0, pcpu_alloc_bootmem, pcpu_free_bootmem, 889 pcpu_populate_pte); 890 if (rc < 0) 891 panic("cannot initialize percpu area (err=%d)", rc); 892 893 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 894 for_each_possible_cpu(cpu) { 895 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 896 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu]; 897 } 898 } 899 #endif 900 901 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 902 unsigned long memory_block_size_bytes(void) 903 { 904 if (ppc_md.memory_block_size) 905 return ppc_md.memory_block_size(); 906 907 return MIN_MEMORY_BLOCK_SIZE; 908 } 909 #endif 910 911 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 912 struct ppc_pci_io ppc_pci_io; 913 EXPORT_SYMBOL(ppc_pci_io); 914 #endif 915 916 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 917 u64 hw_nmi_get_sample_period(int watchdog_thresh) 918 { 919 return ppc_proc_freq * watchdog_thresh; 920 } 921 #endif 922 923 /* 924 * The perf based hardlockup detector breaks PMU event based branches, so 925 * disable it by default. Book3S has a soft-nmi hardlockup detector based 926 * on the decrementer interrupt, so it does not suffer from this problem. 927 * 928 * It is likely to get false positives in VM guests, so disable it there 929 * by default too. 930 */ 931 static int __init disable_hardlockup_detector(void) 932 { 933 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 934 hardlockup_detector_disable(); 935 #else 936 if (firmware_has_feature(FW_FEATURE_LPAR)) 937 hardlockup_detector_disable(); 938 #endif 939 940 return 0; 941 } 942 early_initcall(disable_hardlockup_detector); 943 944 #ifdef CONFIG_PPC_BOOK3S_64 945 static enum l1d_flush_type enabled_flush_types; 946 static void *l1d_flush_fallback_area; 947 static bool no_rfi_flush; 948 static bool no_entry_flush; 949 static bool no_uaccess_flush; 950 bool rfi_flush; 951 bool entry_flush; 952 bool uaccess_flush; 953 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key); 954 EXPORT_SYMBOL(uaccess_flush_key); 955 956 static int __init handle_no_rfi_flush(char *p) 957 { 958 pr_info("rfi-flush: disabled on command line."); 959 no_rfi_flush = true; 960 return 0; 961 } 962 early_param("no_rfi_flush", handle_no_rfi_flush); 963 964 static int __init handle_no_entry_flush(char *p) 965 { 966 pr_info("entry-flush: disabled on command line."); 967 no_entry_flush = true; 968 return 0; 969 } 970 early_param("no_entry_flush", handle_no_entry_flush); 971 972 static int __init handle_no_uaccess_flush(char *p) 973 { 974 pr_info("uaccess-flush: disabled on command line."); 975 no_uaccess_flush = true; 976 return 0; 977 } 978 early_param("no_uaccess_flush", handle_no_uaccess_flush); 979 980 /* 981 * The RFI flush is not KPTI, but because users will see doco that says to use 982 * nopti we hijack that option here to also disable the RFI flush. 983 */ 984 static int __init handle_no_pti(char *p) 985 { 986 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); 987 handle_no_rfi_flush(NULL); 988 return 0; 989 } 990 early_param("nopti", handle_no_pti); 991 992 static void do_nothing(void *unused) 993 { 994 /* 995 * We don't need to do the flush explicitly, just enter+exit kernel is 996 * sufficient, the RFI exit handlers will do the right thing. 997 */ 998 } 999 1000 void rfi_flush_enable(bool enable) 1001 { 1002 if (enable) { 1003 do_rfi_flush_fixups(enabled_flush_types); 1004 on_each_cpu(do_nothing, NULL, 1); 1005 } else 1006 do_rfi_flush_fixups(L1D_FLUSH_NONE); 1007 1008 rfi_flush = enable; 1009 } 1010 1011 void entry_flush_enable(bool enable) 1012 { 1013 if (enable) { 1014 do_entry_flush_fixups(enabled_flush_types); 1015 on_each_cpu(do_nothing, NULL, 1); 1016 } else { 1017 do_entry_flush_fixups(L1D_FLUSH_NONE); 1018 } 1019 1020 entry_flush = enable; 1021 } 1022 1023 void uaccess_flush_enable(bool enable) 1024 { 1025 if (enable) { 1026 do_uaccess_flush_fixups(enabled_flush_types); 1027 static_branch_enable(&uaccess_flush_key); 1028 on_each_cpu(do_nothing, NULL, 1); 1029 } else { 1030 static_branch_disable(&uaccess_flush_key); 1031 do_uaccess_flush_fixups(L1D_FLUSH_NONE); 1032 } 1033 1034 uaccess_flush = enable; 1035 } 1036 1037 static void __ref init_fallback_flush(void) 1038 { 1039 u64 l1d_size, limit; 1040 int cpu; 1041 1042 /* Only allocate the fallback flush area once (at boot time). */ 1043 if (l1d_flush_fallback_area) 1044 return; 1045 1046 l1d_size = ppc64_caches.l1d.size; 1047 1048 /* 1049 * If there is no d-cache-size property in the device tree, l1d_size 1050 * could be zero. That leads to the loop in the asm wrapping around to 1051 * 2^64-1, and then walking off the end of the fallback area and 1052 * eventually causing a page fault which is fatal. Just default to 1053 * something vaguely sane. 1054 */ 1055 if (!l1d_size) 1056 l1d_size = (64 * 1024); 1057 1058 limit = min(ppc64_bolted_size(), ppc64_rma_size); 1059 1060 /* 1061 * Align to L1d size, and size it at 2x L1d size, to catch possible 1062 * hardware prefetch runoff. We don't have a recipe for load patterns to 1063 * reliably avoid the prefetcher. 1064 */ 1065 l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2, 1066 l1d_size, MEMBLOCK_LOW_LIMIT, 1067 limit, NUMA_NO_NODE); 1068 if (!l1d_flush_fallback_area) 1069 panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n", 1070 __func__, l1d_size * 2, l1d_size, &limit); 1071 1072 1073 for_each_possible_cpu(cpu) { 1074 struct paca_struct *paca = paca_ptrs[cpu]; 1075 paca->rfi_flush_fallback_area = l1d_flush_fallback_area; 1076 paca->l1d_flush_size = l1d_size; 1077 } 1078 } 1079 1080 void setup_rfi_flush(enum l1d_flush_type types, bool enable) 1081 { 1082 if (types & L1D_FLUSH_FALLBACK) { 1083 pr_info("rfi-flush: fallback displacement flush available\n"); 1084 init_fallback_flush(); 1085 } 1086 1087 if (types & L1D_FLUSH_ORI) 1088 pr_info("rfi-flush: ori type flush available\n"); 1089 1090 if (types & L1D_FLUSH_MTTRIG) 1091 pr_info("rfi-flush: mttrig type flush available\n"); 1092 1093 enabled_flush_types = types; 1094 1095 if (!cpu_mitigations_off() && !no_rfi_flush) 1096 rfi_flush_enable(enable); 1097 } 1098 1099 void setup_entry_flush(bool enable) 1100 { 1101 if (cpu_mitigations_off()) 1102 return; 1103 1104 if (!no_entry_flush) 1105 entry_flush_enable(enable); 1106 } 1107 1108 void setup_uaccess_flush(bool enable) 1109 { 1110 if (cpu_mitigations_off()) 1111 return; 1112 1113 if (!no_uaccess_flush) 1114 uaccess_flush_enable(enable); 1115 } 1116 1117 #ifdef CONFIG_DEBUG_FS 1118 static int rfi_flush_set(void *data, u64 val) 1119 { 1120 bool enable; 1121 1122 if (val == 1) 1123 enable = true; 1124 else if (val == 0) 1125 enable = false; 1126 else 1127 return -EINVAL; 1128 1129 /* Only do anything if we're changing state */ 1130 if (enable != rfi_flush) 1131 rfi_flush_enable(enable); 1132 1133 return 0; 1134 } 1135 1136 static int rfi_flush_get(void *data, u64 *val) 1137 { 1138 *val = rfi_flush ? 1 : 0; 1139 return 0; 1140 } 1141 1142 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); 1143 1144 static int entry_flush_set(void *data, u64 val) 1145 { 1146 bool enable; 1147 1148 if (val == 1) 1149 enable = true; 1150 else if (val == 0) 1151 enable = false; 1152 else 1153 return -EINVAL; 1154 1155 /* Only do anything if we're changing state */ 1156 if (enable != entry_flush) 1157 entry_flush_enable(enable); 1158 1159 return 0; 1160 } 1161 1162 static int entry_flush_get(void *data, u64 *val) 1163 { 1164 *val = entry_flush ? 1 : 0; 1165 return 0; 1166 } 1167 1168 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n"); 1169 1170 static int uaccess_flush_set(void *data, u64 val) 1171 { 1172 bool enable; 1173 1174 if (val == 1) 1175 enable = true; 1176 else if (val == 0) 1177 enable = false; 1178 else 1179 return -EINVAL; 1180 1181 /* Only do anything if we're changing state */ 1182 if (enable != uaccess_flush) 1183 uaccess_flush_enable(enable); 1184 1185 return 0; 1186 } 1187 1188 static int uaccess_flush_get(void *data, u64 *val) 1189 { 1190 *val = uaccess_flush ? 1 : 0; 1191 return 0; 1192 } 1193 1194 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n"); 1195 1196 static __init int rfi_flush_debugfs_init(void) 1197 { 1198 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush); 1199 debugfs_create_file("entry_flush", 0600, powerpc_debugfs_root, NULL, &fops_entry_flush); 1200 debugfs_create_file("uaccess_flush", 0600, powerpc_debugfs_root, NULL, &fops_uaccess_flush); 1201 return 0; 1202 } 1203 device_initcall(rfi_flush_debugfs_init); 1204 #endif 1205 #endif /* CONFIG_PPC_BOOK3S_64 */ 1206