1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Common boot and setup code. 5 * 6 * Copyright (C) 2001 PPC64 Team, IBM Corp 7 */ 8 9 #include <linux/export.h> 10 #include <linux/string.h> 11 #include <linux/sched.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/reboot.h> 15 #include <linux/delay.h> 16 #include <linux/initrd.h> 17 #include <linux/seq_file.h> 18 #include <linux/ioport.h> 19 #include <linux/console.h> 20 #include <linux/utsname.h> 21 #include <linux/tty.h> 22 #include <linux/root_dev.h> 23 #include <linux/notifier.h> 24 #include <linux/cpu.h> 25 #include <linux/unistd.h> 26 #include <linux/serial.h> 27 #include <linux/serial_8250.h> 28 #include <linux/memblock.h> 29 #include <linux/pci.h> 30 #include <linux/lockdep.h> 31 #include <linux/memory.h> 32 #include <linux/nmi.h> 33 #include <linux/pgtable.h> 34 35 #include <asm/kvm_guest.h> 36 #include <asm/io.h> 37 #include <asm/kdump.h> 38 #include <asm/prom.h> 39 #include <asm/processor.h> 40 #include <asm/smp.h> 41 #include <asm/elf.h> 42 #include <asm/machdep.h> 43 #include <asm/paca.h> 44 #include <asm/time.h> 45 #include <asm/cputable.h> 46 #include <asm/dt_cpu_ftrs.h> 47 #include <asm/sections.h> 48 #include <asm/btext.h> 49 #include <asm/nvram.h> 50 #include <asm/setup.h> 51 #include <asm/rtas.h> 52 #include <asm/iommu.h> 53 #include <asm/serial.h> 54 #include <asm/cache.h> 55 #include <asm/page.h> 56 #include <asm/mmu.h> 57 #include <asm/firmware.h> 58 #include <asm/xmon.h> 59 #include <asm/udbg.h> 60 #include <asm/kexec.h> 61 #include <asm/code-patching.h> 62 #include <asm/livepatch.h> 63 #include <asm/opal.h> 64 #include <asm/cputhreads.h> 65 #include <asm/hw_irq.h> 66 #include <asm/feature-fixups.h> 67 #include <asm/kup.h> 68 #include <asm/early_ioremap.h> 69 #include <asm/pgalloc.h> 70 #include <asm/asm-prototypes.h> 71 72 #include "setup.h" 73 74 int spinning_secondaries; 75 u64 ppc64_pft_size; 76 77 struct ppc64_caches ppc64_caches = { 78 .l1d = { 79 .block_size = 0x40, 80 .log_block_size = 6, 81 }, 82 .l1i = { 83 .block_size = 0x40, 84 .log_block_size = 6 85 }, 86 }; 87 EXPORT_SYMBOL_GPL(ppc64_caches); 88 89 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 90 void __init setup_tlb_core_data(void) 91 { 92 int cpu; 93 94 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 95 96 for_each_possible_cpu(cpu) { 97 int first = cpu_first_thread_sibling(cpu); 98 99 /* 100 * If we boot via kdump on a non-primary thread, 101 * make sure we point at the thread that actually 102 * set up this TLB. 103 */ 104 if (cpu_first_thread_sibling(boot_cpuid) == first) 105 first = boot_cpuid; 106 107 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd; 108 109 /* 110 * If we have threads, we need either tlbsrx. 111 * or e6500 tablewalk mode, or else TLB handlers 112 * will be racy and could produce duplicate entries. 113 * Should we panic instead? 114 */ 115 WARN_ONCE(smt_enabled_at_boot >= 2 && 116 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 117 book3e_htw_mode != PPC_HTW_E6500, 118 "%s: unsupported MMU configuration\n", __func__); 119 } 120 } 121 #endif 122 123 #ifdef CONFIG_SMP 124 125 static char *smt_enabled_cmdline; 126 127 /* Look for ibm,smt-enabled OF option */ 128 void __init check_smt_enabled(void) 129 { 130 struct device_node *dn; 131 const char *smt_option; 132 133 /* Default to enabling all threads */ 134 smt_enabled_at_boot = threads_per_core; 135 136 /* Allow the command line to overrule the OF option */ 137 if (smt_enabled_cmdline) { 138 if (!strcmp(smt_enabled_cmdline, "on")) 139 smt_enabled_at_boot = threads_per_core; 140 else if (!strcmp(smt_enabled_cmdline, "off")) 141 smt_enabled_at_boot = 0; 142 else { 143 int smt; 144 int rc; 145 146 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 147 if (!rc) 148 smt_enabled_at_boot = 149 min(threads_per_core, smt); 150 } 151 } else { 152 dn = of_find_node_by_path("/options"); 153 if (dn) { 154 smt_option = of_get_property(dn, "ibm,smt-enabled", 155 NULL); 156 157 if (smt_option) { 158 if (!strcmp(smt_option, "on")) 159 smt_enabled_at_boot = threads_per_core; 160 else if (!strcmp(smt_option, "off")) 161 smt_enabled_at_boot = 0; 162 } 163 164 of_node_put(dn); 165 } 166 } 167 } 168 169 /* Look for smt-enabled= cmdline option */ 170 static int __init early_smt_enabled(char *p) 171 { 172 smt_enabled_cmdline = p; 173 return 0; 174 } 175 early_param("smt-enabled", early_smt_enabled); 176 177 #endif /* CONFIG_SMP */ 178 179 /** Fix up paca fields required for the boot cpu */ 180 static void __init fixup_boot_paca(void) 181 { 182 /* The boot cpu is started */ 183 get_paca()->cpu_start = 1; 184 /* Allow percpu accesses to work until we setup percpu data */ 185 get_paca()->data_offset = 0; 186 /* Mark interrupts disabled in PACA */ 187 irq_soft_mask_set(IRQS_DISABLED); 188 } 189 190 static void __init configure_exceptions(void) 191 { 192 /* 193 * Setup the trampolines from the lowmem exception vectors 194 * to the kdump kernel when not using a relocatable kernel. 195 */ 196 setup_kdump_trampoline(); 197 198 /* Under a PAPR hypervisor, we need hypercalls */ 199 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 200 /* Enable AIL if possible */ 201 if (!pseries_enable_reloc_on_exc()) { 202 init_task.thread.fscr &= ~FSCR_SCV; 203 cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV; 204 } 205 206 /* 207 * Tell the hypervisor that we want our exceptions to 208 * be taken in little endian mode. 209 * 210 * We don't call this for big endian as our calling convention 211 * makes us always enter in BE, and the call may fail under 212 * some circumstances with kdump. 213 */ 214 #ifdef __LITTLE_ENDIAN__ 215 pseries_little_endian_exceptions(); 216 #endif 217 } else { 218 /* Set endian mode using OPAL */ 219 if (firmware_has_feature(FW_FEATURE_OPAL)) 220 opal_configure_cores(); 221 222 /* AIL on native is done in cpu_ready_for_interrupts() */ 223 } 224 } 225 226 static void cpu_ready_for_interrupts(void) 227 { 228 /* 229 * Enable AIL if supported, and we are in hypervisor mode. This 230 * is called once for every processor. 231 * 232 * If we are not in hypervisor mode the job is done once for 233 * the whole partition in configure_exceptions(). 234 */ 235 if (cpu_has_feature(CPU_FTR_HVMODE)) { 236 unsigned long lpcr = mfspr(SPRN_LPCR); 237 unsigned long new_lpcr = lpcr; 238 239 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 240 /* P10 DD1 does not have HAIL */ 241 if (pvr_version_is(PVR_POWER10) && 242 (mfspr(SPRN_PVR) & 0xf00) == 0x100) 243 new_lpcr |= LPCR_AIL_3; 244 else 245 new_lpcr |= LPCR_HAIL; 246 } else if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 247 new_lpcr |= LPCR_AIL_3; 248 } 249 250 if (new_lpcr != lpcr) 251 mtspr(SPRN_LPCR, new_lpcr); 252 } 253 254 /* 255 * Set HFSCR:TM based on CPU features: 256 * In the special case of TM no suspend (P9N DD2.1), Linux is 257 * told TM is off via the dt-ftrs but told to (partially) use 258 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM] 259 * will be off from dt-ftrs but we need to turn it on for the 260 * no suspend case. 261 */ 262 if (cpu_has_feature(CPU_FTR_HVMODE)) { 263 if (cpu_has_feature(CPU_FTR_TM_COMP)) 264 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM); 265 else 266 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); 267 } 268 269 /* Set IR and DR in PACA MSR */ 270 get_paca()->kernel_msr = MSR_KERNEL; 271 } 272 273 unsigned long spr_default_dscr = 0; 274 275 static void __init record_spr_defaults(void) 276 { 277 if (early_cpu_has_feature(CPU_FTR_DSCR)) 278 spr_default_dscr = mfspr(SPRN_DSCR); 279 } 280 281 /* 282 * Early initialization entry point. This is called by head.S 283 * with MMU translation disabled. We rely on the "feature" of 284 * the CPU that ignores the top 2 bits of the address in real 285 * mode so we can access kernel globals normally provided we 286 * only toy with things in the RMO region. From here, we do 287 * some early parsing of the device-tree to setup out MEMBLOCK 288 * data structures, and allocate & initialize the hash table 289 * and segment tables so we can start running with translation 290 * enabled. 291 * 292 * It is this function which will call the probe() callback of 293 * the various platform types and copy the matching one to the 294 * global ppc_md structure. Your platform can eventually do 295 * some very early initializations from the probe() routine, but 296 * this is not recommended, be very careful as, for example, the 297 * device-tree is not accessible via normal means at this point. 298 */ 299 300 void __init early_setup(unsigned long dt_ptr) 301 { 302 static __initdata struct paca_struct boot_paca; 303 304 /* -------- printk is _NOT_ safe to use here ! ------- */ 305 306 /* 307 * Assume we're on cpu 0 for now. 308 * 309 * We need to load a PACA very early for a few reasons. 310 * 311 * The stack protector canary is stored in the paca, so as soon as we 312 * call any stack protected code we need r13 pointing somewhere valid. 313 * 314 * If we are using kcov it will call in_task() in its instrumentation, 315 * which relies on the current task from the PACA. 316 * 317 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as 318 * printk(), which can trigger both stack protector and kcov. 319 * 320 * percpu variables and spin locks also use the paca. 321 * 322 * So set up a temporary paca. It will be replaced below once we know 323 * what CPU we are on. 324 */ 325 initialise_paca(&boot_paca, 0); 326 setup_paca(&boot_paca); 327 fixup_boot_paca(); 328 329 /* -------- printk is now safe to use ------- */ 330 331 /* Try new device tree based feature discovery ... */ 332 if (!dt_cpu_ftrs_init(__va(dt_ptr))) 333 /* Otherwise use the old style CPU table */ 334 identify_cpu(0, mfspr(SPRN_PVR)); 335 336 /* Enable early debugging if any specified (see udbg.h) */ 337 udbg_early_init(); 338 339 udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr); 340 341 /* 342 * Do early initialization using the flattened device 343 * tree, such as retrieving the physical memory map or 344 * calculating/retrieving the hash table size. 345 */ 346 early_init_devtree(__va(dt_ptr)); 347 348 /* Now we know the logical id of our boot cpu, setup the paca. */ 349 if (boot_cpuid != 0) { 350 /* Poison paca_ptrs[0] again if it's not the boot cpu */ 351 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0])); 352 } 353 setup_paca(paca_ptrs[boot_cpuid]); 354 fixup_boot_paca(); 355 356 /* 357 * Configure exception handlers. This include setting up trampolines 358 * if needed, setting exception endian mode, etc... 359 */ 360 configure_exceptions(); 361 362 /* 363 * Configure Kernel Userspace Protection. This needs to happen before 364 * feature fixups for platforms that implement this using features. 365 */ 366 setup_kup(); 367 368 /* Apply all the dynamic patching */ 369 apply_feature_fixups(); 370 setup_feature_keys(); 371 372 /* Initialize the hash table or TLB handling */ 373 early_init_mmu(); 374 375 early_ioremap_setup(); 376 377 /* 378 * After firmware and early platform setup code has set things up, 379 * we note the SPR values for configurable control/performance 380 * registers, and use those as initial defaults. 381 */ 382 record_spr_defaults(); 383 384 /* 385 * At this point, we can let interrupts switch to virtual mode 386 * (the MMU has been setup), so adjust the MSR in the PACA to 387 * have IR and DR set and enable AIL if it exists 388 */ 389 cpu_ready_for_interrupts(); 390 391 /* 392 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it 393 * will only actually get enabled on the boot cpu much later once 394 * ftrace itself has been initialized. 395 */ 396 this_cpu_enable_ftrace(); 397 398 udbg_printf(" <- %s()\n", __func__); 399 400 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 401 /* 402 * This needs to be done *last* (after the above udbg_printf() even) 403 * 404 * Right after we return from this function, we turn on the MMU 405 * which means the real-mode access trick that btext does will 406 * no longer work, it needs to switch to using a real MMU 407 * mapping. This call will ensure that it does 408 */ 409 btext_map(); 410 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 411 } 412 413 #ifdef CONFIG_SMP 414 void early_setup_secondary(void) 415 { 416 /* Mark interrupts disabled in PACA */ 417 irq_soft_mask_set(IRQS_DISABLED); 418 419 /* Initialize the hash table or TLB handling */ 420 early_init_mmu_secondary(); 421 422 /* Perform any KUP setup that is per-cpu */ 423 setup_kup(); 424 425 /* 426 * At this point, we can let interrupts switch to virtual mode 427 * (the MMU has been setup), so adjust the MSR in the PACA to 428 * have IR and DR set. 429 */ 430 cpu_ready_for_interrupts(); 431 } 432 433 #endif /* CONFIG_SMP */ 434 435 void panic_smp_self_stop(void) 436 { 437 hard_irq_disable(); 438 spin_begin(); 439 while (1) 440 spin_cpu_relax(); 441 } 442 443 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 444 static bool use_spinloop(void) 445 { 446 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { 447 /* 448 * See comments in head_64.S -- not all platforms insert 449 * secondaries at __secondary_hold and wait at the spin 450 * loop. 451 */ 452 if (firmware_has_feature(FW_FEATURE_OPAL)) 453 return false; 454 return true; 455 } 456 457 /* 458 * When book3e boots from kexec, the ePAPR spin table does 459 * not get used. 460 */ 461 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 462 } 463 464 void smp_release_cpus(void) 465 { 466 unsigned long *ptr; 467 int i; 468 469 if (!use_spinloop()) 470 return; 471 472 /* All secondary cpus are spinning on a common spinloop, release them 473 * all now so they can start to spin on their individual paca 474 * spinloops. For non SMP kernels, the secondary cpus never get out 475 * of the common spinloop. 476 */ 477 478 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 479 - PHYSICAL_START); 480 *ptr = ppc_function_entry(generic_secondary_smp_init); 481 482 /* And wait a bit for them to catch up */ 483 for (i = 0; i < 100000; i++) { 484 mb(); 485 HMT_low(); 486 if (spinning_secondaries == 0) 487 break; 488 udelay(1); 489 } 490 pr_debug("spinning_secondaries = %d\n", spinning_secondaries); 491 } 492 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 493 494 /* 495 * Initialize some remaining members of the ppc64_caches and systemcfg 496 * structures 497 * (at least until we get rid of them completely). This is mostly some 498 * cache informations about the CPU that will be used by cache flush 499 * routines and/or provided to userland 500 */ 501 502 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 503 u32 bsize, u32 sets) 504 { 505 info->size = size; 506 info->sets = sets; 507 info->line_size = lsize; 508 info->block_size = bsize; 509 info->log_block_size = __ilog2(bsize); 510 if (bsize) 511 info->blocks_per_page = PAGE_SIZE / bsize; 512 else 513 info->blocks_per_page = 0; 514 515 if (sets == 0) 516 info->assoc = 0xffff; 517 else 518 info->assoc = size / (sets * lsize); 519 } 520 521 static bool __init parse_cache_info(struct device_node *np, 522 bool icache, 523 struct ppc_cache_info *info) 524 { 525 static const char *ipropnames[] __initdata = { 526 "i-cache-size", 527 "i-cache-sets", 528 "i-cache-block-size", 529 "i-cache-line-size", 530 }; 531 static const char *dpropnames[] __initdata = { 532 "d-cache-size", 533 "d-cache-sets", 534 "d-cache-block-size", 535 "d-cache-line-size", 536 }; 537 const char **propnames = icache ? ipropnames : dpropnames; 538 const __be32 *sizep, *lsizep, *bsizep, *setsp; 539 u32 size, lsize, bsize, sets; 540 bool success = true; 541 542 size = 0; 543 sets = -1u; 544 lsize = bsize = cur_cpu_spec->dcache_bsize; 545 sizep = of_get_property(np, propnames[0], NULL); 546 if (sizep != NULL) 547 size = be32_to_cpu(*sizep); 548 setsp = of_get_property(np, propnames[1], NULL); 549 if (setsp != NULL) 550 sets = be32_to_cpu(*setsp); 551 bsizep = of_get_property(np, propnames[2], NULL); 552 lsizep = of_get_property(np, propnames[3], NULL); 553 if (bsizep == NULL) 554 bsizep = lsizep; 555 if (lsizep == NULL) 556 lsizep = bsizep; 557 if (lsizep != NULL) 558 lsize = be32_to_cpu(*lsizep); 559 if (bsizep != NULL) 560 bsize = be32_to_cpu(*bsizep); 561 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 562 success = false; 563 564 /* 565 * OF is weird .. it represents fully associative caches 566 * as "1 way" which doesn't make much sense and doesn't 567 * leave room for direct mapped. We'll assume that 0 568 * in OF means direct mapped for that reason. 569 */ 570 if (sets == 1) 571 sets = 0; 572 else if (sets == 0) 573 sets = 1; 574 575 init_cache_info(info, size, lsize, bsize, sets); 576 577 return success; 578 } 579 580 void __init initialize_cache_info(void) 581 { 582 struct device_node *cpu = NULL, *l2, *l3 = NULL; 583 u32 pvr; 584 585 /* 586 * All shipping POWER8 machines have a firmware bug that 587 * puts incorrect information in the device-tree. This will 588 * be (hopefully) fixed for future chips but for now hard 589 * code the values if we are running on one of these 590 */ 591 pvr = PVR_VER(mfspr(SPRN_PVR)); 592 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 593 pvr == PVR_POWER8NVL) { 594 /* size lsize blk sets */ 595 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 596 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 597 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 598 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 599 } else 600 cpu = of_find_node_by_type(NULL, "cpu"); 601 602 /* 603 * We're assuming *all* of the CPUs have the same 604 * d-cache and i-cache sizes... -Peter 605 */ 606 if (cpu) { 607 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 608 pr_warn("Argh, can't find dcache properties !\n"); 609 610 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 611 pr_warn("Argh, can't find icache properties !\n"); 612 613 /* 614 * Try to find the L2 and L3 if any. Assume they are 615 * unified and use the D-side properties. 616 */ 617 l2 = of_find_next_cache_node(cpu); 618 of_node_put(cpu); 619 if (l2) { 620 parse_cache_info(l2, false, &ppc64_caches.l2); 621 l3 = of_find_next_cache_node(l2); 622 of_node_put(l2); 623 } 624 if (l3) { 625 parse_cache_info(l3, false, &ppc64_caches.l3); 626 of_node_put(l3); 627 } 628 } 629 630 /* For use by binfmt_elf */ 631 dcache_bsize = ppc64_caches.l1d.block_size; 632 icache_bsize = ppc64_caches.l1i.block_size; 633 634 cur_cpu_spec->dcache_bsize = dcache_bsize; 635 cur_cpu_spec->icache_bsize = icache_bsize; 636 } 637 638 /* 639 * This returns the limit below which memory accesses to the linear 640 * mapping are guarnateed not to cause an architectural exception (e.g., 641 * TLB or SLB miss fault). 642 * 643 * This is used to allocate PACAs and various interrupt stacks that 644 * that are accessed early in interrupt handlers that must not cause 645 * re-entrant interrupts. 646 */ 647 __init u64 ppc64_bolted_size(void) 648 { 649 #ifdef CONFIG_PPC_BOOK3E 650 /* Freescale BookE bolts the entire linear mapping */ 651 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ 652 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 653 return linear_map_top; 654 /* Other BookE, we assume the first GB is bolted */ 655 return 1ul << 30; 656 #else 657 /* BookS radix, does not take faults on linear mapping */ 658 if (early_radix_enabled()) 659 return ULONG_MAX; 660 661 /* BookS hash, the first segment is bolted */ 662 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) 663 return 1UL << SID_SHIFT_1T; 664 return 1UL << SID_SHIFT; 665 #endif 666 } 667 668 static void *__init alloc_stack(unsigned long limit, int cpu) 669 { 670 void *ptr; 671 672 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16); 673 674 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN, 675 MEMBLOCK_LOW_LIMIT, limit, 676 early_cpu_to_node(cpu)); 677 if (!ptr) 678 panic("cannot allocate stacks"); 679 680 return ptr; 681 } 682 683 void __init irqstack_early_init(void) 684 { 685 u64 limit = ppc64_bolted_size(); 686 unsigned int i; 687 688 /* 689 * Interrupt stacks must be in the first segment since we 690 * cannot afford to take SLB misses on them. They are not 691 * accessed in realmode. 692 */ 693 for_each_possible_cpu(i) { 694 softirq_ctx[i] = alloc_stack(limit, i); 695 hardirq_ctx[i] = alloc_stack(limit, i); 696 } 697 } 698 699 #ifdef CONFIG_PPC_BOOK3E 700 void __init exc_lvl_early_init(void) 701 { 702 unsigned int i; 703 704 for_each_possible_cpu(i) { 705 void *sp; 706 707 sp = alloc_stack(ULONG_MAX, i); 708 critirq_ctx[i] = sp; 709 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE; 710 711 sp = alloc_stack(ULONG_MAX, i); 712 dbgirq_ctx[i] = sp; 713 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE; 714 715 sp = alloc_stack(ULONG_MAX, i); 716 mcheckirq_ctx[i] = sp; 717 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE; 718 } 719 720 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 721 patch_exception(0x040, exc_debug_debug_book3e); 722 } 723 #endif 724 725 /* 726 * Stack space used when we detect a bad kernel stack pointer, and 727 * early in SMP boots before relocation is enabled. Exclusive emergency 728 * stack for machine checks. 729 */ 730 void __init emergency_stack_init(void) 731 { 732 u64 limit, mce_limit; 733 unsigned int i; 734 735 /* 736 * Emergency stacks must be under 256MB, we cannot afford to take 737 * SLB misses on them. The ABI also requires them to be 128-byte 738 * aligned. 739 * 740 * Since we use these as temporary stacks during secondary CPU 741 * bringup, machine check, system reset, and HMI, we need to get 742 * at them in real mode. This means they must also be within the RMO 743 * region. 744 * 745 * The IRQ stacks allocated elsewhere in this file are zeroed and 746 * initialized in kernel/irq.c. These are initialized here in order 747 * to have emergency stacks available as early as possible. 748 */ 749 limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size); 750 751 /* 752 * Machine check on pseries calls rtas, but can't use the static 753 * rtas_args due to a machine check hitting while the lock is held. 754 * rtas args have to be under 4GB, so the machine check stack is 755 * limited to 4GB so args can be put on stack. 756 */ 757 if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G) 758 mce_limit = SZ_4G; 759 760 for_each_possible_cpu(i) { 761 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; 762 763 #ifdef CONFIG_PPC_BOOK3S_64 764 /* emergency stack for NMI exception handling. */ 765 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; 766 767 /* emergency stack for machine check exception handling. */ 768 paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE; 769 #endif 770 } 771 } 772 773 #ifdef CONFIG_SMP 774 /** 775 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu 776 * @cpu: cpu to allocate for 777 * @size: size allocation in bytes 778 * @align: alignment 779 * 780 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper 781 * does the right thing for NUMA regardless of the current 782 * configuration. 783 * 784 * RETURNS: 785 * Pointer to the allocated area on success, NULL on failure. 786 */ 787 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, 788 size_t align) 789 { 790 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 791 #ifdef CONFIG_NUMA 792 int node = early_cpu_to_node(cpu); 793 void *ptr; 794 795 if (!node_online(node) || !NODE_DATA(node)) { 796 ptr = memblock_alloc_from(size, align, goal); 797 pr_info("cpu %d has no node %d or node-local memory\n", 798 cpu, node); 799 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", 800 cpu, size, __pa(ptr)); 801 } else { 802 ptr = memblock_alloc_try_nid(size, align, goal, 803 MEMBLOCK_ALLOC_ACCESSIBLE, node); 804 pr_debug("per cpu data for cpu%d %lu bytes on node%d at " 805 "%016lx\n", cpu, size, node, __pa(ptr)); 806 } 807 return ptr; 808 #else 809 return memblock_alloc_from(size, align, goal); 810 #endif 811 } 812 813 static void __init pcpu_free_bootmem(void *ptr, size_t size) 814 { 815 memblock_free(ptr, size); 816 } 817 818 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 819 { 820 if (early_cpu_to_node(from) == early_cpu_to_node(to)) 821 return LOCAL_DISTANCE; 822 else 823 return REMOTE_DISTANCE; 824 } 825 826 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 827 EXPORT_SYMBOL(__per_cpu_offset); 828 829 static void __init pcpu_populate_pte(unsigned long addr) 830 { 831 pgd_t *pgd = pgd_offset_k(addr); 832 p4d_t *p4d; 833 pud_t *pud; 834 pmd_t *pmd; 835 836 p4d = p4d_offset(pgd, addr); 837 if (p4d_none(*p4d)) { 838 pud_t *new; 839 840 new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE); 841 if (!new) 842 goto err_alloc; 843 p4d_populate(&init_mm, p4d, new); 844 } 845 846 pud = pud_offset(p4d, addr); 847 if (pud_none(*pud)) { 848 pmd_t *new; 849 850 new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE); 851 if (!new) 852 goto err_alloc; 853 pud_populate(&init_mm, pud, new); 854 } 855 856 pmd = pmd_offset(pud, addr); 857 if (!pmd_present(*pmd)) { 858 pte_t *new; 859 860 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE); 861 if (!new) 862 goto err_alloc; 863 pmd_populate_kernel(&init_mm, pmd, new); 864 } 865 866 return; 867 868 err_alloc: 869 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n", 870 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 871 } 872 873 874 void __init setup_per_cpu_areas(void) 875 { 876 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 877 size_t atom_size; 878 unsigned long delta; 879 unsigned int cpu; 880 int rc = -EINVAL; 881 882 /* 883 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 884 * to group units. For larger mappings, use 1M atom which 885 * should be large enough to contain a number of units. 886 */ 887 if (mmu_linear_psize == MMU_PAGE_4K) 888 atom_size = PAGE_SIZE; 889 else 890 atom_size = 1 << 20; 891 892 if (pcpu_chosen_fc != PCPU_FC_PAGE) { 893 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 894 pcpu_alloc_bootmem, pcpu_free_bootmem); 895 if (rc) 896 pr_warn("PERCPU: %s allocator failed (%d), " 897 "falling back to page size\n", 898 pcpu_fc_names[pcpu_chosen_fc], rc); 899 } 900 901 if (rc < 0) 902 rc = pcpu_page_first_chunk(0, pcpu_alloc_bootmem, pcpu_free_bootmem, 903 pcpu_populate_pte); 904 if (rc < 0) 905 panic("cannot initialize percpu area (err=%d)", rc); 906 907 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 908 for_each_possible_cpu(cpu) { 909 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 910 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu]; 911 } 912 } 913 #endif 914 915 #ifdef CONFIG_MEMORY_HOTPLUG 916 unsigned long memory_block_size_bytes(void) 917 { 918 if (ppc_md.memory_block_size) 919 return ppc_md.memory_block_size(); 920 921 return MIN_MEMORY_BLOCK_SIZE; 922 } 923 #endif 924 925 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 926 struct ppc_pci_io ppc_pci_io; 927 EXPORT_SYMBOL(ppc_pci_io); 928 #endif 929 930 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 931 u64 hw_nmi_get_sample_period(int watchdog_thresh) 932 { 933 return ppc_proc_freq * watchdog_thresh; 934 } 935 #endif 936 937 /* 938 * The perf based hardlockup detector breaks PMU event based branches, so 939 * disable it by default. Book3S has a soft-nmi hardlockup detector based 940 * on the decrementer interrupt, so it does not suffer from this problem. 941 * 942 * It is likely to get false positives in KVM guests, so disable it there 943 * by default too. PowerVM will not stop or arbitrarily oversubscribe 944 * CPUs, but give a minimum regular allotment even with SPLPAR, so enable 945 * the detector for non-KVM guests, assume PowerVM. 946 */ 947 static int __init disable_hardlockup_detector(void) 948 { 949 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF 950 hardlockup_detector_disable(); 951 #else 952 if (firmware_has_feature(FW_FEATURE_LPAR)) { 953 if (is_kvm_guest()) 954 hardlockup_detector_disable(); 955 } 956 #endif 957 958 return 0; 959 } 960 early_initcall(disable_hardlockup_detector); 961